Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Soc Inf Disp ; 26(5): 296-303, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-30416331

RESUMO

Quantum dot light-emitting devices (QLEDs), originally developed for displays, were recently demonstrated to be promising light sources for various photomedical applications, including photodynamic therapy cancer cell treatment and photobimodulation cell metabolism enhancement. With exceptional emission wavelength tunability and potential flexibility, QLEDs could enable wearable, targeted photomedicine with maximized absorption of different medical photosensitizers. In this paper, we report, for the first time, the in vitro study to demonstrate that QLEDs-based photodynamic therapy can effectively kill Methicillin-resistant Staphylococcus aureus, an antibiotic-resistant bacterium. We then present successful synthesis of highly efficient quantum dots with narrow spectra and specific peak wavelengths to match the absorption peaks of different photosensitizers for targeted photomedicine. Flexible QLEDs with a peak external quantum efficiency of 8.2% and a luminance of over 20,000 cd/m2 at a low driving voltage of 6 V were achieved. The tunable, flexible QLEDs could be employed for oral cancer treatment or diabetic wound repairs in the near future. These results represent one fresh stride toward realizing QLEDs' long-term goal to enable the wide clinical adoption of photomedicine.

2.
J Am Chem Soc ; 131(2): 763-77, 2009 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-19093863

RESUMO

A series of group III metal chelates have been synthesized and characterized for the versatile application of organic light-emitting diodes (OLEDs). These metal chelates are based on 4-hydroxy-1,5-naphthyridine derivates as chelating ligands, and they are the blue version analogues of well-known green fluorophore Alq(3) (tris(8-hydroxyquinolinato)aluminum). These chelating ligands and their metal chelates were easily prepared with an improved synthetic method, and they were facially purified by a sublimation process, which enables the materials to be readily available in bulk quantity and facilitates their usage in OLEDs. Unlike most currently known blue analogues of Alq(3) or other deep blue materials, metal chelates of 4-hydroxy-1,5-naphthyridine exhibit very deep blue fluorescence, wide band gap energy, high charge carrier mobility, and superior thermal stability. Using a vacuum-thermal-deposition process in the fabrication of OLEDs, we have successfully demonstrated that the application of these unusual hydroxynaphthyridine metal chelates can be very versatile and effective. First, we have solved or alleviated the problem of exciplex formation that took place between the hole-transporting layer and hydroxynaphthyridine metal chelates, of which OLED application has been prohibited to date. Second, these deep blue materials can play various roles in OLED application. They can be a highly efficient nondopant deep blue emitter: maximum external quantum efficiency eta(ext) of 4.2%; Commision Internationale de L'Eclairage x, y coordinates, CIE(x,y) = 0.15, 0.07. Compared with Alq(3), Bebq(2) (beryllium bis(benzoquinolin-10-olate)), or TPBI (2,2',2''-(1,3,5-phenylene)tris(1-phenyl-1H-benzimidazole), they are a good electron-transporting material: low HOMO energy level of 6.4-6.5 eV and not so high LUMO energy level of 3.0-3.3 eV. They can be ambipolar and possess a high electron mobility of 10(-4) cm(2)/V s at an electric field of 6.4 x 10(5) V/cm. They are a qualified wide band gap host material for efficient blue perylene (CIE(x,y) = 0.14, 0.17 and maximum eta(ext) 3.8%) or deep blue 9,10-diphenylanthracene (CIE(x,y) = 0.15, 0.06 and maximum eta(ext) 2.8%). For solid state lighting application, they are desirable as a host material for yellow dopant (rubrene) in achieving high efficiency (eta(ext) 4.3% and eta(P) 8.7 lm/W at an electroluminance of 100 cd/m(2) or eta(ext) 3.9% and eta(P) 5.1 lm/W at an electroluminance of 1000 cd/m(2)) white electroluminescence (CIE(x,y) = 0.30, 0.35).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA