Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Comput Methods Programs Biomed ; 229: 107265, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36455470

RESUMO

BACKGROUND AND OBJECTIVE: As an emerging dual-mode optical molecular imaging, cone-beam X-ray luminescence computed tomography (CB-XLCT) has shown potential in early tumor diagnosis and other applications with increased depth and little autofluorescence. However, due to the low transfer efficiency of PNPs to convert X-ray energy to visible or near-infrared (NIR) light and X-ray dose limitation, the signal to noise ratio of projections is quite low, making the quality of CB-XLCT relatively poor. METHODS: To improve the reconstruction quality of low-counts CB-XLCT imaging, an adaptive reconstruction algorithm (named ADFISTA-MLEM) based on the maximum likelihood expectation estimation (MLEM) framework is proposed for CB-XLCT reconstruction from Poisson distributed projections. In the proposed framework, the image reconstructed by fast iterative shrinkage-thresholding algorithm (FISTA) is used as the initial image for MLEM iterations to improve reconstruction accuracy, in which both the projection noise model and the sparsity constraint of the image could be considered. For relative quantitative imaging, a specific normalization is applied to the projection data and system matrix. To determine the hyperparameter of FISTA, which may be different for different projections, an adaptive strategy (ADFISTA) is then designed for adaptive update of the hyperparameter with reconstructed image in each iteration. RESULTS AND CONCLUSIONS: Results from numerical simulations and phantom experiments indicate that the proposed framework can obtain superior reconstruction accuracy in terms of contrast to noise ratio and shape similarity. In addition, high intensity-concentration linearity between different probe targets indicates its potential for quantitative CB-XLCT imaging.


Assuntos
Processamento de Imagem Assistida por Computador , Luminescência , Raios X , Processamento de Imagem Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Imagens de Fantasmas , Algoritmos
2.
J Biomed Opt ; 25(1): 1-14, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31970943

RESUMO

Significance: As a promising hybrid imaging technique with x-ray excitable nanophosphors, cone-beam x-ray luminescence computed tomography (CB-XLCT) has been proposed for in-depth biological imaging applications. In situations in which the full rotation of the imaging object (or x-ray source) is inapplicable, the x-ray excitation is limited by geometry, or a lower x-ray excitation dose is mandatory, limited view CB-XLCT reconstruction would be essential. However, this will result in severe ill-posedness and poor image quality.

Aim: The aim is to develop a limited view CB-XLCT imaging strategy to reduce the scanning span and a corresponding reconstruction method to achieve robust imaging performance.

Approach: In this study, a group sparsity-based reconstruction method is proposed with the consideration that nanophosphors usually cluster in certain regions, such as tumors or major organs such as the liver. In addition, depth compensation (DC) is adopted to avoid the depth inconsistency caused by a limited view strategy.

Results: Experiments using numerical simulations and physical phantoms with different edge-to-edge distances were carried out to illustrate the validity of the proposed method. The reconstruction results showed that the proposed method outperforms conventional methods in terms of localization accuracy, target shape, image contrast, and spatial resolution with two perpendicular projections.

Conclusions: A limited view CB-XLCT imaging strategy with two perpendicular projections and a reconstruction method based on DC and group sparsity, which is essential for fast CB-XLCT imaging and for some practical imaging applications, such as imaging-guided surgery, is proposed.


Assuntos
Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Cirurgia Assistida por Computador , Tomografia Computadorizada por Raios X/métodos , Algoritmos , Tomografia Computadorizada de Feixe Cônico/instrumentação , Testes Diagnósticos de Rotina , Humanos , Luminescência
3.
Bioconjug Chem ; 30(8): 2191-2200, 2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31344330

RESUMO

X-ray excited photodynamic therapy (X-PDT), which utilizes X-rays as the energy source and X-ray luminescent nanoparticles (XLNPs) as the transducer to excite photosensitizers (PS), resolves the penetration problem of light in traditional PDT to enable the treatment of deep-seated tumors. Nevertheless, the high X-ray dosage used in X-PDT hampers its potential applications in clinics. In this study, to alleviate the dose problem, ß-NaLuF4:Tb3+ spherical nanoparticles (NPs) with ultrastrong green X-ray excited optical luminescence (XEOL) due to the less nonradiative relaxation probability and high X-ray absorption mass coefficient, which perfectly matches the absorption spectrum of a photosensitizer named rose bengal (RB), were synthesized and employed as the energy transducer for X-PDT. After covalent conjugation of NPs with RB, high Förster resonant energy transfer (FRET) efficiency up to 94.29% was achieved, leading to high production of singlet oxygen. In vivo X-PDT efficacy was evaluated by nude mice with a HepG2 tumor xenograft. With excellent biocompatibility, the synthesized NPs-RB nanocomposite showed significant antitumor efficiency up to 80 ± 12.3% with a total X-ray dose of only 0.19 Gy, demonstrating the feasibility of low-dose X-PDT in vivo for the first time. The present work provides a promising platform for X-PDT in deep-seated tumors.


Assuntos
Nanocompostos/química , Nanopartículas/química , Neoplasias/terapia , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/efeitos da radiação , Raios X , Animais , Linhagem Celular Tumoral , Células Hep G2 , Xenoenxertos , Humanos , Camundongos , Nanopartículas/uso terapêutico , Rosa Bengala
4.
Biomaterials ; 184: 31-40, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30195803

RESUMO

The limitation of light penetration depth invalidates the application of photodynamic therapy in deep-seated tumors. X-ray excited photodynamic therapy (X-PDT), which is based on X-rays excited luminescent nanoparticles (XLNP), provides a new strategy for PDT in deep tissues. However, the high X-ray dosage used and non-specific cytotoxicity of the nanoparticle-photosensitizer nanocomposite (NPs-PS) hamper in-vivo X-PDT applications. To address these problems, a simple and efficient NPs-PS nanocomposite using ß-NaGdF4: Tb3+ nanoparticles and widely used PS called Rose Bengal (RB) was designed. With perfectly matched spectrum of NPs emission and RB absorption upon X-ray excitation and covalent conjugation of a large amount of RB on NP surfaces to minimize the energy transfer distance, the system demonstrated ultra-high FRET efficiency up to 99.739%, which leads to maximum production of singlet oxygen for PDT with significantly increased anti-tumor efficacy. By 2-aminoethylphosphonic acid surface modification of NPs, excellent biocompatibility was achieved even at a high concentration of 1 mg/mL. The in-vivo X-PDT efficacy was found around 90% of HepG2 tumor growth inhibition with X-ray dose of only 1.5 Gy, which shows the best anti-tumor efficacy at same X-ray dose level reported so far. The present work provides a promising platform for in-vivo X-PDT in deep tumors.


Assuntos
Gadolínio/química , Nanocompostos/química , Fármacos Fotossensibilizantes/química , Rosa Bengala/química , Térbio/química , Animais , Sobrevivência Celular , Feminino , Transferência Ressonante de Energia de Fluorescência , Células Hep G2 , Humanos , Camundongos Endogâmicos BALB C , Fotoquimioterapia , Oxigênio Singlete/metabolismo , Raios X
5.
Int J Comput Assist Radiol Surg ; 12(4): 645-656, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28110476

RESUMO

PURPOSE: This study aims to determine the three-dimensional (3D) texture features extracted from intensity and high-order derivative maps that could reflect textural differences between bladder tumors and wall tissues, and propose a noninvasive, image-based strategy for bladder tumor differentiation preoperatively. METHODS: A total of 62 cancerous and 62 wall volumes of interest (VOI) were extracted from T2-weighted MRI datasets of 62 patients with pathologically confirmed bladder cancer. To better reflect heterogeneous distribution of tumor tissues, 3D high-order derivative maps (the gradient and curvature maps) were calculated from each VOI. Then 3D Haralick features based on intensity and high-order derivative maps and Tamura features based on intensity maps were extracted from each VOI. Statistical analysis and recursive feature elimination-based support vector machine classifier (RFE-SVM) was proposed to first select the features with significant differences and then obtain a more predictive and compact feature subset to verify its differentiation performance. RESULTS: From each VOI, a total of 58 texture features were derived. Among them, 37 features showed significant inter-class differences ([Formula: see text]). With 29 optimal features selected by RFE-SVM, the classification results namely the sensitivity, specificity, accuracy and area under the curve (AUC) of the receiver operating characteristics were 0.9032, 0.8548, 0.8790 and 0.9045, respectively. By using synthetic minority oversampling technique to augment the sample number of each group to 200, the sensitivity, specificity, accuracy an AUC value of the feature selection-based classification were improved to 0.8967, 0.8780, 0.8874 and 0.9416, respectively. CONCLUSIONS: Our results suggest that 3D texture features derived from intensity and high-order derivative maps can better reflect heterogeneous distribution of cancerous tissues. Texture features optimally selected together with sample augmentation could improve the performance on differentiating bladder carcinomas from wall tissues, suggesting a potential way for tumor noninvasive staging of bladder cancer preoperatively.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias da Bexiga Urinária/diagnóstico por imagem , Bexiga Urinária/diagnóstico por imagem , Feminino , Humanos , Imageamento Tridimensional/métodos , Masculino , Sensibilidade e Especificidade , Máquina de Vetores de Suporte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA