Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 32(1): 132-137, 2024 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-38387911

RESUMO

OBJECTIVE: To investigate the toxic effect of chlorambucil combined with ibrutinib on mantle cell lymphoma (MCL) cell line Jeko-1 and its related mechanism. METHODS: The MCL cell line Jeko-1 was incubated with different concentrations of chlorambucil or ibrutinib or the combination of the two drugs, respectively. CCK-8 assay was used to detect the proliferation of the cells, and Western blot was used to measure the protein expression levels of BCL-2, caspase-3, PI3K, AKT and P-AKT. RESULTS: After Jeko-1 cells were treated with chlorambucil (3.125, 6.25, 12.5, 25, 50 µmol/L) and ibrutinib (3.125, 6.25, 12.5, 25, 50 µmol /L) alone for 24, 48, 72h respectively, the cell proliferation was inhibited in a time- and dose-dependent manner. Moreover, the two drugs were applied in combination at low doses (single drug inhibition rate<50%), and the results showed that the combination of two drugs had a more significant inhibitory effect (all P < 0.05). Compared with the control group, the apoptosis rate of the single drug group of chlorambucil (3.125, 6.25, 12.5, 25, 50 µmol/L) and ibutinib (3.125, 6.25, 12.5, 25, 50 µmol/L) was increased in a dose-dependent manner. The combination of the two drugs at low concentrations (3.125, 6.25, 12.5 µmol/L) could significantly increase the apoptosis rate compared with the corresponding concentration of single drug groups (all P < 0.05). Compared with control group, the protein expression levels of caspase-3 in Jeko-1 cells were upregulated, while the protein expression levels of BCL-2, PI3K, and p-AKT/AKT were downregulated after treatment with chlorambucil or ibrutinib alone. The combination of the two drugs could produce a synergistic effect on the expressions of the above-mentioned proteins, and the differences between the combination group and the single drug groups were statistically significant (all P < 0.05). CONCLUSION: Chlorambucil and ibrutinib can promote the apoptosis of MCL cell line Jeko-1, and combined application of the two drugs shows a synergistic effect, the mechanism may be associated with the AKT-related signaling pathways.


Assuntos
Adenina/análogos & derivados , Linfoma de Célula do Manto , Piperidinas , Humanos , Adulto , Linfoma de Célula do Manto/tratamento farmacológico , Clorambucila/farmacologia , Clorambucila/uso terapêutico , Caspase 3/metabolismo , Proteínas Proto-Oncogênicas c-akt , Linhagem Celular Tumoral , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Fosfatidilinositol 3-Quinases
2.
Front Oncol ; 13: 1172670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346071

RESUMO

Introduction: The occurrence of metastasis is a threat to patients with colon cancer (CC), and the liver is the most common metastasis organ. However, the role of the extrahepatic organs in patients with liver metastasis (LM) has not been distinctly demonstrated. Therefore, this research aimed to explore the prognostic value of extrahepatic metastases (EHMs). Methods: In this retrospective study, a total of 13,662 colon patients with LM between 2010 and 2015 were selected from the Surveillance, Epidemiology, and End Results database (SEER). Fine and Gray's analysis and K-M survival analysis were utilized to explore the impacts of the number of sites of EHMs and different sites of EHMs on prognosis. Finally, a prognostic nomogram model based on the number of sites of EHMs was constructed, and a string of validation methods was conducted, including concordance index (C-index), receiver operating characteristic curves (ROC), and decision curve analysis (DCA). Results: Patients without EHMs had better prognoses in cancer-specific survival (CSS) and overall survival (OS) than patients with EHMs (p < 0.001). Varied EHM sites of patients had different characteristics of primary location site, grade, and histology. Cumulative incidence rates for CSS surpassed that for other causes in patients with 0, 1, 2, ≥ 3 EHMs, and the patients with more numbers of sites of EHMs revealed worse prognosis in CSS (p < 0.001). However, patients with different EHM sites had a minor difference in cumulative incidence rates for CSS (p = 0.106). Finally, a nomogram was constructed to predict the survival probability of patients with EHMs, which is based on the number of sites of EHMs and has been proven an excellent predictive ability. Conclusion: The number of sites of EHMs was a significant prognostic factor of CC patients with LM. However, the sites of EHMs showed limited impact on survival. Furthermore, a nomogram based on the number of sites of EHMs was constructed to predict the OS of patients with EHMs accurately.

3.
J Ethnopharmacol ; 312: 116471, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37030556

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ischemic stroke is a common and frequent clinical disease. Recent studies have demonstrated that sphingolipid plays an important role in the pathological process of ischemic stroke. PI3K-Akt is a classic protective signaling pathway of cerebral ischemic injury. After acting on the S1P receptor, S1P can activate the downstream PI3K/Akt signaling pathway and play an anti-cerebral ischemia role. Buyang Huanwu Decoction (BHD) is a traditional Chinese medicine formula used to treat ischemic stroke. However, the mechanisms of BHD on ischemic stroke remain unclear based on S1P/S1PR1/PI3K/Akt signaling pathway. AIM OF THE STUDY: The present study is intended to investigate the action mechanism of BHD on ischemic stroke based on the S1P/S1PR1/PI3K/Akt signaling pathway from multiple perspectives. MATERIALS AND METHODS: The BHD lyophilized product was prepared by vacuum freeze-drying method, of which the chemical composition was determined by UPLC-Q-TOF/MS. The mouse permanent middle cerebral artery occlusion (pMCAO) model was established by the suture-occluded method. Male KM mice were randomly divided into seven groups: sham group, model group, FTY720 (positive control) group, BHD group, BHD + W146 (selective S1PR1 inhibitor) group, SEW2871 (selective S1PR1 agonist) group, and Calycosin group. Each group was administered continuously for 14 days and evaluated with modified neurological severity score (mNSS) and cerebral infarct volume on the 1st, 4th, 7th, and 14th days. The SphK1, SphK2, S1PR1, PI3K, Akt, and p-Akt protein in the prefrontal lobe, hippocampus, and striatum was quantified by Western blot and immunohistochemical (IHC) experiment respectively. The qRT-PCR method was employed to evaluate SphK1, SphK2, and S1PR1 mRNA expression in the above tissue. RESULTS: BHD and Calycosin both effectively improved mNSS scores with smaller infarct volumes. The SphK1 level in the prefrontal lobe, hippocampus, and striatum of mice in the BHD group was significantly lower, and SphK2, PI3K, and p-Akt in the hippocampus and striatum were significantly higher than those in the model group. BHD significantly decreased SphK1 mRNA expression in the prefrontal lobe, hippocampus, and striatum, and significantly up-regulated SphK2 mRNA and S1PR1 mRNA expression. Additionally, SphK1 protein expression levels of the prefrontal lobe, hippocampus, and striatum in the BHD group was significantly lower than model group, and SphK2, S1PR1, PI3K, Akt, and p-Akt protein expressions levels were increased obviously. Furthermore, SEW2871 can increase S1PR1 and Akt expression, and up-regulate SphK2 and S1PR1 mRNA expression. The effect of BHD on the expression of S1P/S1PR1/PI3K/Akt signaling pathway-related proteins and mRNA were weakened by BHD + W146. CONCLUSION: BHD and Calycosin significantly improved the symptoms of neurological deficits in pMCAO mice, reduced the cerebral infarction volume, up-regulated SphK2 and S1PR1 mRNA levels, enhanced SphK2, S1PR1, PI3K, Akt, p-Akt protein expression of the prefrontal lobe, hippocampus and striatum, and down-regulated SphK1 mRNA and protein expression, which may be helpful to clarify the mechanism of BHD through S1P/S1PR1/PI3K/Akt signaling pathway to protect against cerebral ischemic injury.


Assuntos
AVC Isquêmico , Camundongos , Masculino , Animais , AVC Isquêmico/tratamento farmacológico , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Infarto da Artéria Cerebral Média/tratamento farmacológico , RNA Mensageiro
4.
Biomolecules ; 13(3)2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-36979412

RESUMO

Ras-related associated with diabetes (RRAD), a member of the Ras-related GTPase superfamily, is primarily a cytosolic protein that actives in the plasma membrane. RRAD is highly expressed in type 2 diabetes patients and as a biomarker of congestive heart failure. Mounting evidence showed that RRAD is important for the progression and metastasis of tumor cells, which play opposite roles as an oncogene or tumor suppressor gene depending on cancer and cell type. These findings are of great significance, especially given that relevant molecular mechanisms are being discovered. Being regulated in various pathways, RRAD plays wide spectrum cellular activity including tumor cell division, motility, apoptosis, and energy metabolism by modulating tumor-related gene expression and interacting with multiple downstream effectors. Additionally, RRAD in senescence may contribute to its role in cancer. Despite the twofold characters of RRAD, targeted therapies are becoming a potential therapeutic strategy to combat cancers. This review will discuss the dual identity of RRAD in specific cancer type, provides an overview of the regulation and downstream effectors of RRAD to offer valuable insights for readers, explore the intracellular role of RRAD in cancer, and give a reference for future mechanistic studies.


Assuntos
Diabetes Mellitus Tipo 2 , Neoplasias , Proteínas ras , Humanos , Biomarcadores , Diabetes Mellitus Tipo 2/metabolismo , Neoplasias/metabolismo , Proteínas ras/metabolismo
5.
ACS Omega ; 7(36): 32577-32587, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120003

RESUMO

The use of mechanical ball milling to facilitate the synthesis of organic compounds has attracted intense interest from organic chemists. Herein, we report a new process for the preparation of xanthene and pyrimidinone compounds by a one-pot method using polymeric aluminum chloride (PAC), silica gel, and reaction raw materials under mechanical grinding conditions. During the grinding process, polymeric aluminum chloride and silica gel were reconstituted in situ to obtain a new composite catalyst (PAC-silica gel). This catalyst has good stability (six cycles) and wide applicability (22 substrates). The Al-O-Si active center formed by in situ grinding recombination was revealed to be the key to the effective catalytic performance of the PAC-silica gel composites by the comprehensive analysis of the catalytic materials before and after use. In addition, the mechanism of action of the catalyst was verified using density functional theory, and the synthetic pathway of the xanthene compound was reasonably speculated with the experimental data. Mechanical ball milling serves two purposes in this process: not only to induce the self-assembly of silica and PAC into new composites but also to act as a driving force for the catalytic reaction to take place. From a practical point of view, this "one-pot" catalytic method eliminates the need for a complex preparation process for catalytic materials. This is a successful example of the application of mechanochemistry in materials and organic synthesis, offering unlimited possibilities for the application of inorganic polymer materials in green synthesis and catalysis promoted by mechanochemistry.

6.
J Ethnopharmacol ; 295: 115455, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35697192

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Euscaphis konishii Hayata is a traditional medicinal plant in China, and its leaves are usually used to make dishes for hepatic or gastrointestinal issues by Chinese She nationality. Pharmacological analysis showed that E. konishii leaves contain high levels of flavonoids and chromones with favorable anti-hepatoma effect. AIM OF THE STUDY: The extract from E. konishii leaves was detected to evaluate its chemical composition, and the alcoholic liver injury mice model was adopted to elucidate its hepatoprotective effects. MATERIALS AND METHODS: The total leaf extract from E. konishii was separated by polyamide column to get the flavonoid and chromone-rich extract (FCE). Single compounds from FCE was purified by gel and Sephadex LH-20 chromatography and analyzed by nuclear magnetic resonance (NMR). The chemical component of FCE was confirmed and quantified by HPLC-MS. The OH·, O2-, DPPH and ABTS + free radical assays were adopted to estimate the antioxidant activity of FCE in vitro. The alcohol-fed model mice were established to assess the hepatoprotective capacity of FCE in vivo, through biochemical determination, histopathological analysis, mitochondrial function measurement, quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) detection and Western blot determination. RESULTS: 8 flavonoids and 2 chromones were recognized in the FCEextract by both NMR and HPLC-MS. FCE represented strong free radicals scavenging activity in vitro. With oral administration, FCE (50, 100 and 200 mg/kg) dose-dependently decreased the serum levels of alanine aminotransferase (ALT), alkaline phosphatase (ALP) and aspartate aminotransferase (AST) in alcohol-fed mice. FCE gradually reduced the malondialdehyde (MDA) content, increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the alcohol-treated liver tissues. FCE also alleviated the hepatic inflammation, inhibited the hepatocyte apoptosis and lessened the alcohol-induced histological alteration and lipid accumulation in the liver tissues. FCE administration inhibited the overexpression of endoplasmic reticulum (ER) chaperones signaling and unfolded protein response (UPR) pathways to defense the ER-induced apoptosis. Pretreatment with FCE also restored the mitochondrial membrane potentials andadenosine triphosphate (ATP) levels, which in turn suppressed the Cytochrome C release and mitochondria-induced apoptosis. CONCLUSIONS: FCE conferred great protection against alcoholic liver injury, which might be associated with its viability through suppressing reactive oxygen species (ROS) stress and hepatocyte apoptosis.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Flavonoides , Alanina Transaminase , Animais , Antioxidantes/farmacologia , Aspartato Aminotransferases , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Cromonas/farmacologia , Feminino , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Fígado , Camundongos , Estresse Oxidativo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico
7.
Molecules ; 22(12)2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215562

RESUMO

Lipases are the most widely employed enzymes in commercial industries. The catalytic mechanism of most lipases involves a step called "interfacial activation". As interfacial activation can lead to a significant increase in catalytic activity, it is of profound importance in developing lipase immobilization methods. To obtain a potential biocatalyst for industrial biodiesel production, an effective strategy for enhancement of catalytic activity and stability of immobilized lipase was developed. This was performed through the combination of interfacial activation with hybrid magnetic cross-linked lipase aggregates. This biocatalyst was investigated for the immobilization of lipase from Rhizomucor miehei (RML). Under the optimal conditions, the activity recovery of the surfactant-activated magnetic RML cross-linked enzyme aggregates (CLEAs) was as high as 2058%, with a 20-fold improvement over the free RML. Moreover, the immobilized RML showed excellent catalytic performance for the biodiesel reaction at a yield of 93%, and more importantly, could be easily separated from the reaction mixture by simple magnetic decantation, and retained more than 84% of its initial activities after five instances of reuse. This study provides a new and versatile approach for designing and fabricating immobilized lipase with high activation and stability.


Assuntos
Enzimas Imobilizadas/química , Proteínas Fúngicas/química , Jatropha/química , Lipase/química , Óleos de Plantas/química , Rhizomucor/química , Biocatálise , Biocombustíveis , Ativação Enzimática , Enzimas Imobilizadas/isolamento & purificação , Reutilização de Equipamento , Esterificação , Proteínas Fúngicas/isolamento & purificação , Lipase/isolamento & purificação , Imãs , Agregados Proteicos , Rhizomucor/enzimologia , Tensoativos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA