Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 485
Filtrar
1.
Thorac Cancer ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984468

RESUMO

BACKGROUND: Lung cancer (LC) is currently the number one malignancy death rate disease in China, and its disease burden is serious. The study aimed to analyze trends of LC and its risk factor attributable disease in China from 1990 to 2019 and predict the next 41 years. METHODS: The average annual percentage change (AAPC) was used to analyze the trend of LC and its risk factor attributable incidence, deaths, and disability-adjusted life years (DALYs) rate in China from 1990 to 2019, collected in the Global Burden of Disease 2019. Cochran-Armitage trends examine trends in lung cancer disease burden by sex, age, and attributable risk factor groups in China from 1990 to 2019. In addition, based on data on death and DALYs rate due to LC and its risk factors between 1990 and 2019, an autoregressive integrated moving average (ARIMA) model was developed to predict the change in the trend of burden of disease due to LC and its risk factors over the next 41 years, and the model was evaluated using the model parameters root mean square error, mean absolute error, and mean absolute percentage error. RESULTS: From 1990 to 2019, the incidence, mortality and DALYs of LC were all increased. Among the eight risk factors associated with lung cancer, the DALYs rate and mortality rate of lung cancer risk factors for Chinese residents increased from 1990 to 2019, except for household air pollution from solid fuels and diet low in fruit, which showed a decrease; among them, the DALYs rate and mortality rate due to ambient particulate matter pollution showed the greatest increase with AAPC values of 2.880 and 3.310, respectively, while DALYs and mortality rates due to household air pollution from solid fuels showed the largest decreases, with AAPC values of -4.755 and -4.348, respectively. The results of the ARIMA model predictions show that both the mortality rate and the rate of DALYs for lung cancer are increasing yearly, and it is predicted that the rate of DALYs for lung cancer by 2060 will reach 740.095/100 000 and the mortality rate will reach 35.151/100 000. It is expected that by 2060, the top four risk factors for lung cancer in China will be, in order of DALYs rate and mortality rate, smoking, ambient particulate matter pollution, high fasting plasma glucose (HFPG), and secondhand smoke, with HFPG showing the greatest increase. CONCLUSIONS: The LC burden increased from 1990 to 2019 in China, the LC burden that could be attributed to HFPG will continue to increase in the next 40 years, and will be the third most factor by 2060. Targeted interventions are warranted to facilitate the prevention of LC and improvement of health-related quality of life patients with LC.

2.
Mol Cancer ; 23(1): 141, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982480

RESUMO

BACKGROUND: The aberrant expression of phosphofructokinase-platelet (PFKP) plays a crucial role in the development of various human cancers by modifying diverse biological functions. However, the precise molecular mechanisms underlying the role of PFKP in head and neck squamous cell carcinoma (HNSCC) are not fully elucidated. METHODS: We assessed the expression levels of PFKP and c-Myc in tumor and adjacent normal tissues from 120 HNSCC patients. A series of in vitro and in vivo experiments were performed to explore the impact of the feedback loop between PFKP and c-Myc on HNSCC progression. Additionally, we explored the therapeutic effects of targeting PFKP and c-Myc in HNSCC using Patient-Derived Organoids (PDO), Cell Line-Derived Xenografts, and Patients-Derived Xenografts. RESULTS: Our findings indicated that PFKP is frequently upregulated in HNSCC tissues and cell lines, correlating with poor prognosis. Our in vitro and in vivo experiments demonstrate that elevated PFKP facilitates cell proliferation, angiogenesis, and metastasis in HNSCC. Mechanistically, PFKP increases the ERK-mediated stability of c-Myc, thereby driving progression of HNSCC. Moreover, c-Myc stimulates PFKP expression at the transcriptional level, thus forming a positive feedback loop between PFKP and c-Myc. Additionally, our multiple models demonstrate that co-targeting PFKP and c-Myc triggers synergistic anti-tumor effects in HNSCC. CONCLUSION: Our study demonstrates the critical role of the PFKP/c-Myc positive feedback loop in driving HNSCC progression and suggests that simultaneously targeting PFKP and c-Myc may be a novel and effective therapeutic strategy for HNSCC.


Assuntos
Progressão da Doença , Retroalimentação Fisiológica , Regulação Neoplásica da Expressão Gênica , Neoplasias de Cabeça e Pescoço , Proteínas Proto-Oncogênicas c-myc , Carcinoma de Células Escamosas de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Camundongos , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Neoplasias de Cabeça e Pescoço/genética , Linhagem Celular Tumoral , Fosfofrutoquinase-1 Tipo C/metabolismo , Fosfofrutoquinase-1 Tipo C/genética , Proliferação de Células , Prognóstico , Feminino , Masculino , Ensaios Antitumorais Modelo de Xenoenxerto , Biomarcadores Tumorais/metabolismo
3.
J Nanobiotechnology ; 22(1): 364, 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915007

RESUMO

Photothermal therapy (PTT) is a promising cancer treatment method due to its ability to induce tumor-specific T cell responses and enhance therapeutic outcomes. However, incomplete PTT can leave residual tumors that often lead to new metastases and decreased patient survival in clinical scenarios. This is primarily due to the release of ATP, a damage-associated molecular pattern that quickly transforms into the immunosuppressive metabolite adenosine by CD39, prevalent in the tumor microenvironment, thus promoting tumor immune evasion. This study presents a photothermal nanomedicine fabricated by electrostatic adsorption among the Fe-doped polydiaminopyridine (Fe-PDAP), indocyanine green (ICG), and CD39 inhibitor sodium polyoxotungstate (POM-1). The constructed Fe-PDAP@ICG@POM-1 (FIP) can induce tumor PTT and immunogenic cell death when exposed to a near-infrared laser. Significantly, it can inhibit the ATP-adenosine pathway by dual-directional immunometabolic regulation, resulting in increased ATP levels and decreased adenosine synthesis, which ultimately reverses the immunosuppressive microenvironment and increases the susceptibility of immune checkpoint blockade (aPD-1) therapy. With the aid of aPD-1, the dual-directional immunometabolic regulation strategy mediated by FIP can effectively suppress/eradicate primary and distant tumors and evoke long-term solid immunological memory. This study presents an immunometabolic control strategy to offer a salvage option for treating residual tumors following incomplete PTT.


Assuntos
Imunoterapia , Nanomedicina , Terapia Fototérmica , Microambiente Tumoral , Animais , Terapia Fototérmica/métodos , Imunoterapia/métodos , Camundongos , Nanomedicina/métodos , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Neoplasias/terapia , Trifosfato de Adenosina/metabolismo , Adenosina/farmacologia , Adenosina/química , Camundongos Endogâmicos C57BL , Apirase/metabolismo , Feminino , Fototerapia/métodos
4.
J Am Chem Soc ; 146(27): 18592-18605, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38943624

RESUMO

Ascorbic acid (AA) has been attracting great attention with its emerging potential in T cell-dependent antitumor immunity. However, premature blood clearance and immunologically "cold" tumors severely compromise its immunotherapeutic outcomes. As such, the reversal of the immunosuppressive tumor microenvironment (TME) has been the premise for improving the effectiveness of AA-based immunotherapy, which hinges upon advanced AA delivery and amplified immune-activating strategies. Herein, a novel Escherichia coli (E. coli) outer membrane vesicle (OMV)-red blood cell (RBC) hybrid membrane (ERm)-camouflaged immunomodulatory nanoturret is meticulously designed based on gating of an AA-immobilized metal-organic framework (MOF) onto bortezomib (BTZ)-loaded magnesium-doped mesoporous silica (MMS) nanovehicles, which can realize immune landscape remodeling by chemotherapy-assisted ascorbate-mediated immunotherapy (CAMIT). Once reaching the acidic TME, the acidity-sensitive MOF gatekeeper and MMS core within the nanoturret undergo stepwise degradation, allowing for tumor-selective sequential release of AA and BTZ. The released BTZ can evoke robust immunogenic cell death (ICD), synergistically promote dendritic cell (DC) maturation in combination with OMV, and ultimately increase T cell tumor infiltration together with Mg2+. The army of T cells is further activated by AA, exhibiting remarkable antitumor and antimetastasis performance. Moreover, the CD8-deficient mice model discloses the T cell-dependent immune mechanism of the AA-based CAMIT strategy. In addition to providing a multifunctional biomimetic hybrid nanovehicle, this study is also anticipated to establish a new immunomodulatory fortification strategy based on the multicomponent-driven nanoturret for highly efficient T cell-activation-enhanced synergistic AA immunotherapy.


Assuntos
Antineoplásicos , Ácido Ascórbico , Estruturas Metalorgânicas , Linfócitos T , Animais , Camundongos , Estruturas Metalorgânicas/química , Ácido Ascórbico/química , Ácido Ascórbico/farmacologia , Linfócitos T/imunologia , Linfócitos T/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Imunoterapia , Bortezomib/química , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Materiais Biomiméticos/química , Materiais Biomiméticos/farmacologia , Escherichia coli/efeitos dos fármacos , Dióxido de Silício/química , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Magnésio/química , Nanopartículas/química , Humanos , Linhagem Celular Tumoral , Microambiente Tumoral/efeitos dos fármacos , Liberação Controlada de Fármacos
6.
J Diabetes Investig ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38932465

RESUMO

AIMS/INTRODUCTION: We investigated the relationship of circulating TSP-1 mRNA and miR-194 with diabetic kidney disease's degree. MATERIALS AND METHODS: We enrolled 167 hospitalized type 2 diabetes patients in the endocrinology department. Patients were split into three groups according to urinary microalbumin: A, B and C. The control group comprised healthy outpatients (n = 163). The quantities of microribonucleic acid (miR)-194 and thrombospondin-1 (TSP-1) messenger ribonucleic acid (mRNA) in the participants' circulation were measured using a quantitative real-time polymerase chain reaction. RESULTS: Circulating TSP-1 mRNA (P = 0.024) and miR-194 (P = 0.029) expressions significantly increased in type 2 diabetes patients. Circulating TSP-1 mRNA (P = 0.040) and miR-194 (P = 0.007) expression levels differed significantly among the three groups; circulating TSP-1 mRNA expression increased with urinary microalbumin. However, miR-194 declined in group B and increased in group C. Circulating TSP-1 mRNA was positively correlated with cystatin-c (r = 0.281; P = 0.021) and microalbumin/creatinine ratio (UmALB/Cr; r = 0.317; P = 0.009); miR-194 was positively correlated with UmALB/Cr (r = 0.405; P = 0.003). Stepwise multivariate linear regression analysis showed cystatin-c (ß = 0.578; P = 0.021) and UmALB/Cr (ß = 0.001; P = 0.009) as independent factors for TSP-1 mRNA; UmALB/Cr (ß = 0.005; P = 0.028) as an independent factor for miR194. Areas under the curve for circulating TSP-1 mRNA and miR194 were 0.756 (95% confidence interval 0.620-0.893; sensitivity 0.69 and specificity 0.71, P < 0.01) and 0.584 (95% confidence interval 0.421-0.748; sensitivity 0.54 and specificity 0.52, P < 0.01), respectively. CONCLUSIONS: Circulating TSP-1 mRNA and miR-194 expressions significantly increased in type 2 diabetes patients. The microalbumin group had lower levels of miR-194 (a risk factor that is valuable for type 2 diabetes kidney disease evaluation).

7.
Front Immunol ; 15: 1332303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38698843

RESUMO

Background: Immune checkpoint inhibitors (ICIs) have left a deep impression in the treatment of non-small cell lung cancer (NSCLC), however, not all patients benefit from it. The purpose of this study was to investigate the prognostic value of baseline bone mineral density (BMD) derived from chest computed tomography (CT) scans in NSCLC patients treated with ICIs. Methods: This study included patients with advanced NSCLC who underwent ICI treatment at the Wuhan Union Hospital from March 2020 to October 2022. Baseline BMD was evaluated at non-contrast chest CT at the level of first lumbar vertebra. Patients were divided into BMD-lower group and BMD-higher group according to the optimal cutoff value calculated by X-tile software. Baseline characteristics of the two groups were compared and variables between the two groups were balanced by propensity score matching (PSM) analysis. We calculated the objective response rate (ORR) and disease control rate (DCR) of the two groups and analyzed overall survival (OS) and progression-free survival (PFS) using BMD and other clinical indexes through Cox regression models and Kaplan-Meier survival curves. Results: A total of 479 patients were included in this study, and all patients were divided into BMD-lower group (n=270) and BMD-higher group (n=209). After PSM analysis, each group consisted of 150 patients. ORR (43.3% vs. 43.5% before PSM, P = 0.964; 44.7% vs. 44.7% after PSM, P = 1.000) and DCR (91.1% vs. 94.3% before PSM, P = 0.195; 93.3% vs. 96.7% after PSM, P =0.190) were similar in two groups. There was no statistically significant relationship between BMD degree and PFS before (16.0 months vs. 18.0 months, P = 0.067) and after PSM analysis (17.0 months vs. 19.0 months, P = 0.095). However, lower BMD was associated with shorter OS both before (20.5 months vs. 23.0 months, P< 0.001) and after PSM analysis (20.0 months vs. 23.0 months, P = 0.008). Conclusion: Lower baseline BMD is associated with worse clinical outcomes in NSCLC patients treated with ICIs. As a reliable and easily obtained individual prognostic biomarker, BMD can become a routine detection indicator before immunotherapy.


Assuntos
Densidade Óssea , Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Masculino , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Feminino , Pessoa de Meia-Idade , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Densidade Óssea/efeitos dos fármacos , Idoso , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X , Adulto
8.
J Clin Invest ; 134(14)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38787791

RESUMO

Intratumoral Tregs are key mediators of cancer immunotherapy resistance, including anti-programmed cell death (ligand) 1 [anti-PD-(L)1] immune checkpoint blockade (ICB). The mechanisms driving Treg infiltration into the tumor microenvironment (TME) and the consequence on CD8+ T cell exhaustion remain elusive. Here, we report that heat shock protein gp96 (also known as GRP94) was indispensable for Treg tumor infiltration, primarily through the roles of gp96 in chaperoning integrins. Among various gp96-dependent integrins, we found that only LFA-1 (αL integrin), and not αV, CD103 (αE), or ß7 integrin, was required for Treg tumor homing. Loss of Treg infiltration into the TME by genetic deletion of gp96/LFA-1 potently induced rejection of tumors in multiple ICB-resistant murine cancer models in a CD8+ T cell-dependent manner, without loss of self-tolerance. Moreover, gp96 deletion impeded Treg activation primarily by suppressing IL-2/STAT5 signaling, which also contributed to tumor regression. By competing for intratumoral IL-2, Tregs prevented the activation of CD8+ tumor-infiltrating lymphocytes, drove thymocyte selection-associated high mobility group box protein (TOX) induction, and induced bona fide CD8+ T cell exhaustion. By contrast, Treg ablation led to striking CD8+ T cell activation without TOX induction, demonstrating clear uncoupling of the 2 processes. Our study reveals that the gp96/LFA-1 axis plays a fundamental role in Treg biology and suggests that Treg-specific gp96/LFA-1 targeting represents a valuable strategy for cancer immunotherapy without inflicting autoinflammatory conditions.


Assuntos
Linfócitos T CD8-Positivos , Imunoterapia , Linfócitos T Reguladores , Microambiente Tumoral , Animais , Linfócitos T Reguladores/imunologia , Camundongos , Linfócitos T CD8-Positivos/imunologia , Microambiente Tumoral/imunologia , Glicoproteínas de Membrana/imunologia , Glicoproteínas de Membrana/genética , Camundongos Knockout , Antígeno-1 Associado à Função Linfocitária/imunologia , Antígeno-1 Associado à Função Linfocitária/genética , Antígeno-1 Associado à Função Linfocitária/metabolismo , Humanos , Exaustão das Células T
9.
Anal Chem ; 96(22): 9218-9227, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38781682

RESUMO

In situ monitoring of cell secretions and communications plays a fundamental role in screening of disease diagnostic biomarkers and drugs. Quantitative detection of cell secretions and monitoring of intercellular communication have been separately reported, which often rely on target labeling or complex pretreatment steps, inevitably causing damage to the target. Simultaneous in situ noninvasive detection of cell secretions and monitoring of intercellular communication are challenging and have never been reported. Herein, we smartly developed a portable device for in situ label-free monitoring of cell secretions and communications with fluorescence and ion-transport-based nanochannel electrochemistry. Based on the dual signal mode, a series of nonelectroactive secretions were sensitively and accurately quantified. The detection limits for VEGF, MUC1, and ATP were 3.84 pg/mL, 32.7 pg/mL, and 47.4 fM (3σ/S), which were 1/3.9, 1/1.1, and 1/41 of those of commercial ELISA kits, respectively. More interestingly, under the released secretions, the gradual opening of the nanochannel connected the two cells in the left and right chambers of the device; thus, the secretion mediated intercellular communication can be monitored. The proposed platform may provide a promising tool for understanding the mechanism of intercellular communication and discovering new therapeutic targets.


Assuntos
Técnicas Eletroquímicas , Humanos , Técnicas Eletroquímicas/instrumentação , Trifosfato de Adenosina/análise , Trifosfato de Adenosina/metabolismo , Mucina-1/análise , Mucina-1/metabolismo , Comunicação Celular , Fator A de Crescimento do Endotélio Vascular/análise , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fluorescência , Limite de Detecção
10.
Cell Death Discov ; 10(1): 228, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740771

RESUMO

Chemotherapy is an important therapuetic strategy for colorectal cancer (CRC), but chemoresistance severely affects its efficacy, and the underlying mechanism has not been fully elucidated. Increasing evidence suggests that lipid peroxidation imbalance-mediated ferroptosis is closely associated with chemoresistance. Hence, targeting ferroptosis pathways or modulating the tolerance to oxidative stress might be an effective strategy to reverse tumor chemoresistance. HtrA serine protease 1 (HTRA1) was screened out as a CRC progression- and chemoresistance-related gene. It is highly expressed in CRC cells and negatively correlated with the prognosis of CRC patients. Gain- and loss-of-function analyses demonstrated a stimulatory role of HTRA1 on the proliferation of CRC cells. The enrichment analysis of HTRA1-interacting proteins indicated the involvement of ferroptosis in the HTRA1-mediated chemoresistance. Moreover, electron microscope analysis, as well as the ROS and MDA levels in CRC cells also confirmed the effect of HTRA1 on ferroptosis. We also verified that HTRA1 could interact with SLC7A11 through its Kazal structural domain and up-regulate the expression of SLC7A11, which in turn inhibited the ferroptosis and leaded to the chemoresistance of CRC cells to 5-FU/L-OHP. Hence, we propose that HTRA1 may be a potential therapeutic target and a prognostic indicator in CRC.

11.
J Exp Clin Cancer Res ; 43(1): 112, 2024 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-38610018

RESUMO

BACKGROUND: The dysregulated mechanistic target of rapamycin complex 1 (mTORC1) signaling plays a critical role in ferroptosis resistance and tumorigenesis. However, the precise underlying mechanisms still need to be fully understood. METHODS: Endoplasmic reticulum oxidoreductase 1 alpha (ERO1α) expression in mTORC1-activated mouse embryonic fibroblasts, cancer cells, and laryngeal squamous cell carcinoma (LSCC) clinical samples was examined by quantitative real-time PCR (qRT-PCR), western blotting, immunofluorescence (IF), and immunohistochemistry. Extensive in vitro and in vivo experiments were carried out to determine the role of ERO1α and its downstream target, member 11 of the solute carrier family 7 (SLC7A11), in mTORC1-mediated cell proliferation, angiogenesis, ferroptosis resistance, and tumor growth. The regulatory mechanism of ERO1α on SLC7A11 was investigated via RNA-sequencing, a cytokine array, an enzyme-linked immunosorbent assay, qRT-PCR, western blotting, IF, a luciferase reporter assay, and a chromatin immunoprecipitation assay. The combined therapeutic effect of ERO1α inhibition and the ferroptosis inducer imidazole ketone erastin (IKE) on mTORC1-activated cells was evaluated using cell line-derived xenografts, LSCC organoids, and LSCC patient-derived xenograft models. RESULTS: ERO1α is a functional downstream target of mTORC1. Elevated ERO1α induced ferroptosis resistance and exerted pro-oncogenic roles in mTORC1-activated cells via upregulation of SLC7A11. Mechanically, ERO1α stimulated the transcription of SLC7A11 by activating the interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) pathway. Moreover, ERO1α inhibition combined with treatment using the ferroptosis inducer IKE exhibited synergistic antitumor effects on mTORC1-activated tumors. CONCLUSIONS: The ERO1α/IL-6/STAT3/SLC7A11 pathway is crucial for mTORC1-mediated ferroptosis resistance and tumor growth, and combining ERO1α inhibition with ferroptosis inducers is a novel and effective treatment for mTORC1-related tumors.


Assuntos
Ferroptose , Animais , Camundongos , Humanos , Regulação para Cima , Interleucina-6 , Fibroblastos , Transformação Celular Neoplásica , Sistema y+ de Transporte de Aminoácidos/genética
12.
Heliyon ; 10(8): e29291, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644851

RESUMO

Tongue squamous cell carcinoma (TSCC) occupies a high proportion of oral squamous cell carcinoma. TSCC features high lymph node metastasis rates and chemotherapy resistance with a poor prognosis. Therefore, an effective therapy strategy is needed to improve patient prognosis. Melatonin (MT) is a natural indole compound shown to have anti-tumor effects in several cancers. This study focused on the role and mechanism of MT in TSCC cells. The results of the study suggest that MT could inhibit cell proliferation in CRL-1623 cells. Western blot analysis showed the down-regulate of cyclin B1 and the up-regulate P21 protein by MT. MT was also shown to down-regulate the expression of Zeb1, Wnt5A/B, and ß-catenin protein and up-regulate E-cadherin to inhibit the migration of CRL-1623 cells. MT also promoted the expression of ATF4, ATF6, Bip, BAP31 and CHOP in CRL-1623 cells leading to endoplasmic reticulum stress, and induced autophagy and apoptosis in CRL-1623 cells. Western blots showed that MT could promote the expression of Bax, LC3, and Beclin1 proteins and inhibit the expression of p62. We screened differentially expressed long non-coding RNAs (lncRNAs) in MT-treated cells and found that the expression of MALAT1 and H19 decreased. Moreover, MT inhibited tumor growth in nude mice inoculated with CRL-1623 cells. These results suggest that MT could induce autophagy, promote apoptosis, and provide a potential natural compound for the treatment of TSCC.

13.
BMC Cancer ; 24(1): 511, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654205

RESUMO

BACKGROUND: Although papillary thyroid carcinoma (PTC) has a favorable prognosis, it could affect patient life quality and become a serious threat because of invasion and metastasis. Many investigations have suggested that circular RNAs (circRNAs) are involved in different cancer regulations. Nevertheless, circRNAs role in invasive PTC remains unclear. METHODS: In the present investigation, next-generation sequencing was applied to explore abnormal circRNA expression. The expression of circRNA phosphoglycerate dehydrogenase (circPHGDH) in PTC cell lines and tissues were examined. Then, we investigated regulatory mechanism and circPHGDH downstream targets using bioinformatics analysis and luciferase reporting analysis. Then transwell migration, Cell Counting Kit-8 (CCK8) and 5-ethynyl-2'-deoxyuridine (EdU) assays were used for cells migration and proliferation analysis. In vivo metastasis and tumorigenesis assays were also employed to evaluate the circPHGDH role in PTC. RESULTS: The data showcased that circPHGDH expression increased in both PTC cell lines and tissues, which suggested that circPHGDH functions in PTC progression. circPHGDH downregulation suppressed PTC invasion and proliferation in both in vivo and in vitro experiments. Bioinformatics and luciferase reporter results confirmed that both microRNA (miR)-122-5p and pyruvate kinase M2 subtype (PKM2) were downstream targets of circPHGDH. PKM2 overexpression or miR-122-5p suppression reversed PTC cell invasion and proliferation post silencing circPHGDH by restoring aerobic glycolysis. CONCLUSION: Taken together, our research found that circPHGDH downregulation reduced PTC progression via miR-122-5p/PKM2 axis regulation mediated by aerobic glycolysis.


Assuntos
Proliferação de Células , Progressão da Doença , Regulação para Baixo , Proteínas de Membrana , MicroRNAs , Fosfoglicerato Desidrogenase , RNA Circular , Câncer Papilífero da Tireoide , Neoplasias da Glândula Tireoide , Animais , Feminino , Humanos , Masculino , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica , Fosfoglicerato Desidrogenase/genética , RNA Circular/genética , RNA Circular/metabolismo , Câncer Papilífero da Tireoide/genética , Câncer Papilífero da Tireoide/patologia , Câncer Papilífero da Tireoide/metabolismo , Neoplasias da Glândula Tireoide/genética , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/metabolismo , Piruvato Quinase/genética , Piruvato Quinase/metabolismo
14.
BMC Cancer ; 24(1): 535, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38671373

RESUMO

BACKGROUND: Immunotherapy based on the application of immune checkpoint inhibitors (ICIs) is one of the standard treatments for advanced non-small cell lung cancer (NSCLC). Non-alcoholic fatty liver Disease (NAFLD) has demonstrated predictive value for response to immunotherapy in non-lung cancer types. Our study investigated the effect of NAFLD on the efficacy of real-life use of ICIs for patients with stage III / IV NSCLC. METHODS: The clinical and imaging data of patients with stage III / IV NSCLC who were first admitted to Union Hospital, Tongji Medical College, Huazhong University of Science and Technology from March 2020 to July 2022 were retrospectively collected to ensure that they underwent at least one CT scan before treatment. A total of 479 patients were divided into the NAFLD group (Liver/Spleen density ratio ≤ 1) and the non-NAFLD group (Liver/Spleen density ratio > 1) by measuring the baseline liver and spleen CT value. The overall survival (OS), progression-free survival (PFS), objective response rate (ORR) and disease control rate (DCR) of the patients were obtained. RESULTS: A total of 118 patients with NAFLD and 361 patients without NAFLD were included in the study. Patients with NAFLD tended to have higher BMI and higher total bilirubin compared to patients without NAFLD. The median duration of follow-up in the study was 22 m (IQR, 17-29 m). Both of 2 groups had a higher DCR (94% vs. 92%, p = 0.199) and ORR (38.1% vs. 44.9%, p = 0.452) respectively. There was no difference in efficacy between the two groups. In univariate analysis, NAFLD had no significant effect on PFS (p = 0.785) and OS (p = 0.851). Surprisingly, the presence of hypertension was observed to be associated with a higher OS (HR 1.471 95%CI 1.018-2.127, p = 0.040). Besides, based on multivariate analysis, lactic dehydrogenase was associated with PFS (HR 1.001 95%CI 1.000,1.002, p = 0.037) and OS (HR 1.002, 95%CI 1.001-1.003, p < 0.001). CONCLUSIONS: Among patients with NSCLC, NAFLD did not result in changes in survival or disease progression after immune checkpoint inhibitor therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Inibidores de Checkpoint Imunológico , Neoplasias Pulmonares , Hepatopatia Gordurosa não Alcoólica , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Masculino , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/efeitos adversos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/complicações , Feminino , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Intervalo Livre de Progressão , Adulto , Estadiamento de Neoplasias
15.
Cell Signal ; 119: 111186, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38643945

RESUMO

Breast cancer is one of the most common cancers threatening women's health. Our previous study found that silibinin induced the death of MCF-7 and MDA-MB-231 human breast cancer cells. We noticed that silibinin-induced cell damage was accompanied by morphological changes, including the increased cell aspect ratio (cell length/width) and decreased cell area. Besides, the cytoskeleton is also destroyed in cells treated with silibinin. YAP/TAZ, a mechanical signal sensor interacted with extracellular pressure, cell adhesion area and cytoskeleton, is also closely associated with cell survival, proliferation and migration. Thus, the involvement of YAP/TAZ in the cytotoxicity of silibinin in breast cancer cells has attracted our interests. Excitingly, we find that silibinin inhibits the nuclear translocation of YAP/TAZ in MCF-7 and MDA-MB-231 cells, and reduces the mRNA expressions of YAP/TAZ target genes, ACVR1, MnSOD and ANKRD. More importantly, expression of YAP1 gene is negatively correlated with the survival of the patients with breast cancers. Molecular docking analysis reveals high probabilities for binding of silibinin to the proteins in the YAP pathways. DARTS and CETSA results confirm the binding abilities of silibinin to YAP and LATS. Inhibiting YAP pathway either by addition of verteporfin, an inhibitor of YAP/TAZ-TEAD, or by transfection of si-RNAs targeting YAP or TAZ further enhances silibinin-induced cell damage. While enhancing YAP activity by silencing LATS1/2 or overexpressing YAPS127/397A, an active form of YAP, attenuates silibinin-induced cell damage. These findings demonstrate that inhibition of the YAP/TAZ pathway contributes to cytotoxicity of silibinin in breast cancers, shedding lights on YAP/TAZ-targeted cancer therapies.


Assuntos
Neoplasias da Mama , Silibina , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional , Proteínas de Sinalização YAP , Feminino , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Células MCF-7 , Simulação de Acoplamento Molecular , Fosfoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Silibina/farmacologia , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/antagonistas & inibidores , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/efeitos dos fármacos , Proteínas com Motivo de Ligação a PDZ com Coativador Transcricional/metabolismo , Verteporfina/farmacologia , Proteínas de Sinalização YAP/antagonistas & inibidores , Proteínas de Sinalização YAP/efeitos dos fármacos , Proteínas de Sinalização YAP/metabolismo
16.
Redox Biol ; 71: 103100, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484644

RESUMO

Th2-high asthma is characterized by elevated levels of type 2 cytokines, such as interleukin 13 (IL-13), and its prevalence has been increasing worldwide. Ferroptosis, a recently discovered type of programmed cell death, is involved in the pathological process of Th2-high asthma; however, the underlying mechanisms remain incompletely understood. In this study, we demonstrated that the serum level of malondialdehyde (MDA), an index of lipid peroxidation, positively correlated with IL-13 level and negatively correlated with the predicted forced expiratory volume in 1 s (FEV1%) in asthmatics. Furthermore, we showed that IL-13 facilitates ferroptosis by upregulating of suppressor of cytokine signaling 1 (SOCS1) through analyzing immortalized airway epithelial cells, human airway organoids, and the ovalbumin (OVA)-challenged asthma model. We identified that signal transducer and activator of transcription 6 (STAT6) promotes the transcription of SOCS1 upon IL-13 stimulation. Moreover, SOCS1, an E3 ubiquitin ligase, was found to bind to solute carrier family 7 member 11 (SLC7A11) and catalyze its ubiquitinated degradation, thereby promoting ferroptosis in airway epithelial cells. Last, we found that inhibiting SOCS1 can decrease ferroptosis in airway epithelial cells and alleviate airway hyperresponsiveness (AHR) in OVA-challenged wide-type mice, while SOCS1 overexpression exacerbated the above in OVA-challenged IL-13-knockout mice. Our findings reveal that the IL-13/STAT6/SOCS1/SLC7A11 pathway is a novel molecular mechanism for ferroptosis in Th2-high asthma, confirming that targeting ferroptosis in airway epithelial cells is a potential therapeutic strategy for Th2-high asthma.


Assuntos
Asma , Interleucina-13 , Animais , Humanos , Camundongos , Sistema y+ de Transporte de Aminoácidos , Asma/genética , Asma/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Pulmão/metabolismo , Camundongos Endogâmicos BALB C , Ovalbumina/metabolismo , Ovalbumina/uso terapêutico , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo , Proteína 1 Supressora da Sinalização de Citocina/uso terapêutico , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Células Th2/metabolismo , Células Th2/patologia
17.
Asian J Androl ; 26(4): 389-395, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38445955

RESUMO

Failure of oocyte activation, including polyspermy and defects in pronuclear (PN) formation, triggers early embryonic developmental arrest. Many studies have shown that phospholipase C zeta 1 ( PLCZ1 ) mutations cause failure of PN formation following intracytoplasmic sperm injection (ICSI); however, whether PLCZ1 mutation is associated with polyspermy during in vitro fertilization (IVF) remains unknown. Whole-exome sequencing (WES) was performed to identify candidate mutations in couples with primary infertility. Sanger sequencing was used to validate the mutations. Multiple PLCZ1 -mutated sperm were injected into human and mouse oocytes to explore whether PN formation was induced. Assisted oocyte activation (AOA) after ICSI was performed to overcome the failure of oocyte activation. We identified three PLCZ1 mutations in three patients who experienced polyspermy during IVF cycles, including a novel missense mutation c.1154C>T, p.R385Q. PN formation failure was observed during the ICSI cycle. However, injection of multiple PLCZ1- mutated sperm induced PN formation, suggesting that the Ca 2+ oscillations induced by the sperm exceeded the necessary threshold for PN formation. AOA after ICSI enabled normal fertilization, and all patients achieved successful pregnancies. These findings expand the mutational spectrum of PLCZ1 and suggest an important role for PLCZ1 in terms of blocking polyspermy. Furthermore, this study may benefit genetic diagnoses in cases of abnormal fertilization and provide potential appropriate therapeutic measures for these patients with sperm-derived polyspermy.


Assuntos
Fertilização in vitro , Fosfoinositídeo Fosfolipase C , Injeções de Esperma Intracitoplásmicas , Humanos , Masculino , Fosfoinositídeo Fosfolipase C/genética , Feminino , Animais , Camundongos , Adulto , Oócitos , Gravidez , Mutação de Sentido Incorreto , Espermatozoides , Sequenciamento do Exoma , Mutação , Fertilização/genética
18.
Signal Transduct Target Ther ; 9(1): 70, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531882

RESUMO

Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.


Assuntos
Adenosina , Imunoterapia , Aminoácidos , Epigênese Genética , RNA
19.
J Nanobiotechnology ; 22(1): 110, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481281

RESUMO

BACKGROUND: Breast cancer ranks first among malignant tumors, of which triple-negative breast cancer (TNBC) is characterized by its highly invasive behavior and the worst prognosis. Timely diagnosis and precise treatment of TNBC are substantially challenging. Abnormal tumor vessels play a crucial role in TNBC progression and treatment. Nitric oxide (NO) regulates angiogenesis and maintains vascular homeostasis, while effective NO delivery can normalize the tumor vasculature. Accordingly, we have proposed here a tumor vascular microenvironment remodeling strategy based on NO-induced vessel normalization and extracellular matrix collagen degradation with multimodality imaging-guided nanoparticles against TNBC called DNMF/PLGA. RESULTS: Nanoparticles were synthesized using a chemotherapeutic agent doxorubicin (DOX), a NO donor L-arginine (L-Arg), ultrasmall spinel ferrites (MnFe2O4), and a poly (lactic-co-glycolic acid) (PLGA) shell. Nanoparticle distribution in the tumor was accurately monitored in real-time through highly enhanced magnetic resonance imaging and photoacoustic imaging. Near-infrared irradiation of tumor cells revealed that MnFe2O4 catalyzes the production of a large amount of reactive oxygen species (ROS) from H2O2, resulting in a cascade catalysis of L-Arg to trigger NO production in the presence of ROS. In addition, DOX activates niacinamide adenine dinucleotide phosphate oxidase to generate and supply H2O2. The generated NO improves the vascular endothelial cell integrity and pericellular contractility to promote vessel normalization and induces the activation of endogenous matrix metalloproteinases (mainly MMP-1 and MMP-2) so as to promote extravascular collagen degradation, thereby providing an auxiliary mechanism for efficient nanoparticle delivery and DOX penetration. Moreover, the chemotherapeutic effect of DOX and the photothermal effect of MnFe2O4 served as a chemo-hyperthermia synergistic therapy against TNBC. CONCLUSION: The two therapeutic mechanisms, along with an auxiliary mechanism, were perfectly combined to enhance the therapeutic effects. Briefly, multimodality image-guided nanoparticles provide a reliable strategy for the potential application in the fight against TNBC.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias de Mama Triplo Negativas , Humanos , Óxido Nítrico , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Doxorrubicina/farmacologia , Fototerapia/métodos , Colágeno , Linhagem Celular Tumoral , Microambiente Tumoral
20.
Connect Tissue Res ; 65(2): 170-185, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526028

RESUMO

PURPOSE: Besides comprising scaffolding, extracellular matrix components modulate many biological processes including inflammation and cell differentiation. We previously found precoating cell plates with extracellular matrix collagen I, or its denatured product gelatin, causes aggregation of macrophage-like human lymphoma U937 cells, which are induced to differentiation by phorbol myristate treatment. In the present study, we investigated the influence of gelatin or collagen I precoating on the bacteria phagocytosis in PMA-stimulated U937 cells. MATERIALS AND METHODS: Colony forming units of phagocytosed bacteria, Giemsa-staining of cells with phagocytosed bacteria, confocal microscopic and flow cytometric analysis of cells with phagocytosed FITC-labeled bacteria and non-bioactive latex beats were conducted. RESULTS: Gelatin precoating enhances the phagocytosis of both Gram-negative and positive bacteria, as shown by the increased colony forming units of bacteria phagocytosed by cells, and increased intracellular bacteria observed after Giemsa-staining. But collagen I has no marked influence. Confocal microscopy reveals that both live and dead FITC-bacteria were phagocytosed more in the cells with gelatin-coating but not collagen-coating. Of note, both gelatin and collagen I coating had no influence on the phagocytosis of non-bioactive latex beads. Since gelatin-coating increases autophagy but collagen I has no such impact, we are curious about the role of autophagy. Inhibiting autophagy reduced the phagocytosis of bacteria, in cells with gelatin-coating, while stimulating autophagy enhanced phagocytosis. CONCLUSION: This study finds the bacteria-phagocytosis stimulatory effect of gelatin in PMA-treated U937 cells and reveals the positive regulatory role of autophagy, predicting the potential use of gelatin products in anti-bacterial therapy.


Assuntos
Colágeno Tipo I , Gelatina , Humanos , Gelatina/farmacologia , Células U937 , Fluoresceína-5-Isotiocianato , Fagocitose , Colágeno , Bactérias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA