Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38597685

RESUMO

The development and application of micropatterning technology play a promising role in the manipulation of biological substances and the exploration of life sciences at the microscale. However, the universally adaptable micropatterning method with user-friendly properties for acceptance in routine laboratories remains scarce. Herein, a green, facile, and rapid microcontact printing method is reported for upgrading popularization and diversification of biological patterning. The three-step printing can achieve high simplicity and fidelity of additive-free polydimethylsiloxane (PDMS) micropatterning and chip fabrication within 8 min as well as keep their high stability and diversity. A detailed experimental report is provided to support the advanced microcontact printing method. Furthermore, the applications of easy-to-operate PDMS-patterned chips are extensively validated to complete microdroplet array assembly with spatial control, cell pattern formation with high efficiency and geometry customization, and microtissue assembly and biomimetic tumor construction on a large scale. This straightforward method promotes diverse micropatternings with minimal time, effort, and expertise and maximal biocompatibility, which might broaden its applications in interdisciplinary scientific communities. This work also offers an insight into the establishment of popularized and market-oriented microtools for biomedical purposes such as biosensing, organs on a chip, cancer research, and bioscreening.

2.
Front Physiol ; 14: 1289537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046952

RESUMO

Skeletal muscles underpin myriad human activities, maintaining an intricate balance between protein synthesis and degradation crucial to muscle mass preservation. Historically, disruptions in this balance-where degradation overshadows synthesis-have marked the onset of muscle atrophy, a condition diminishing life quality and, in grave instances, imperiling life itself. While multiple protein degradation pathways exist-including the autophagy-lysosome, calcium-dependent calpain, and cysteine aspartate protease systems-the ubiquitin-proteasome pathway emerges as an especially cardinal avenue for intracellular protein degradation, wielding pronounced influence over the muscle atrophy trajectory. This paper ventures a panoramic view of predominant muscle atrophy types, accentuating the ubiquitin-proteasome pathway's role therein. Furthermore, by drawing from recent scholarly advancements, we draw associations between the ubiquitin-proteasome pathway and specific pathological conditions linked to muscle atrophy. Our exploration seeks to shed light on the ubiquitin-proteasome pathway's significance in skeletal muscle dynamics, aiming to pave the way for innovative therapeutic strategies against muscle atrophy and affiliated muscle disorders.

3.
Emerg Microbes Infect ; 12(2): 2233643, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401832

RESUMO

African swine fever (ASF) is an acute and highly contagious lethal infectious disease in swine that severely threatens the global pig industry. At present, a safe and efficacious vaccine is urgently required to prevent and control the disease. In this study, we evaluated the safety and immunogenicity of replication-incompetent type-2 adenoviruses carrying African swine fever virus (ASFV) antigens, namely CP204L (p30), E183L (p54), EP402R (CD2v), B646L (p72), and B602L (p72 chaperone). A vaccine cocktail delivered by simultaneous intramuscular (IM) and intranasal (IN) administration robustly elicited both systemic and mucosal immune responses against AFSV in mice and swine and provided highly effective protection against the circulating ASFV strain in farmed pigs. This multi-antigen cocktail vaccine was well tolerated in the vaccinated animals. No significant interference among antigens was observed. The combined IM and IN vaccination using this adenovirus-vectored antigen cocktail vaccine warrants further evaluation for providing safe and effective protection against ASFV infection and transmission.


Assuntos
Infecções por Adenoviridae , Vacinas contra Adenovirus , Vírus da Febre Suína Africana , Febre Suína Africana , Vacinas Virais , Suínos , Animais , Camundongos , Vírus da Febre Suína Africana/genética , Febre Suína Africana/prevenção & controle , Adenoviridae/genética , Antígenos Virais/genética , Vacinação
4.
Lab Chip ; 23(9): 2161-2174, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-36943157

RESUMO

The establishment and application of biomimetic preclinical tumor models for generalizable and high-throughput antitumor screening play a promising role in drug discovery and cancer therapeutics. Herein, a facile and robust microengineering-assisted methodology for highly biomimetic three-dimensional (3D) tumor construction for dynamic and large-scale antitumor investigation is developed using micropatterned array chips. The high fidelity, simplicity, and stability of chip fabrication are guaranteed by improved polydimethylsiloxane (PDMS) microcontact printing. The employment of a PDMS-micropatterned chip permits microscale, simple, biocompatible, and reproducible cell localization with quantity uniformity and 3D tumor array formation with geometric homogeneity. Array-like 3D tumor models possessing complex multilayer cell arrangements, diverse phenotypic gradients, and biochemical gradients were prepared based on the use of easy-to-operate chips. The applicability of the established biomimetic models in temporal and massive investigations of tumor responses to antitumor chemotherapy is also verified experimentally. The results support the importance of the dimensional geometry and biomimetic degree of 3D tumors when conducting antitumor screening to explore drug susceptibility and resistance. This work provides a facile and reliable strategy to perform highly biomimetic tumor manipulation and analysis, which holds great potential for applications in oncology, pharmacology, precision medicine, and tissue microengineering.


Assuntos
Biomimética , Neoplasias , Humanos , Neoplasias/patologia , Ensaios de Triagem em Larga Escala , Descoberta de Drogas
5.
Bioengineering (Basel) ; 10(3)2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36978772

RESUMO

Far-infrared (FIR) is considered to be an ideal method to promote fatigue recovery due to its high permeability and strong radiation. In this paper, we report a flexible and wearable graphene heating device to help fatigue recovery of human exercise by using its high FIR divergence property. This study compares two different fatigue recovery methods, graphene far-infrared heating device hot application and natural recovery, over a 20 min recovery time among the male colleges' exhaustion exercise. Experimental results show that the achieved graphene device holds excellent electro-thermal radiation conversion efficiency of 70% and normal total emissivity of 89%. Moreover, the graphene FIR therapy in our work is more energy-efficient, easy to use, and wearable than traditional fatigue recovery methods. Such an anti-fatigue strategy offers new opportunities for enlarging potential applications of graphene film in body science, athletic training recovery, and wearable devices.

6.
Acta Pharmacol Sin ; 44(6): 1191-1205, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36627345

RESUMO

UDP-glucose ceramide glucosyltransferase (UGCG) is the first key enzyme in glycosphingolipid (GSL) metabolism that produces glucosylceramide (GlcCer). Increased UGCG synthesis is associated with cell proliferation, invasion and multidrug resistance in human cancers. In this study we investigated the role of UGCG in the pathogenesis of hepatic fibrosis. We first found that UGCG was over-expressed in fibrotic livers and activated hepatic stellate cells (HSCs). In human HSC-LX2 cells, inhibition of UGCG with PDMP or knockdown of UGCG suppressed the expression of the biomarkers of HSC activation (α-SMA and collagen I). Furthermore, pretreatment with PDMP (40 µM) impaired lysosomal homeostasis and blocked the process of autophagy, leading to activation of retinoic acid signaling pathway and accumulation of lipid droplets. After exploring the structure and key catalytic residues of UGCG in the activation of HSCs, we conducted virtual screening, molecular interaction and molecular docking experiments, and demonstrated salvianolic acid B (SAB) from the traditional Chinese medicine Salvia miltiorrhiza as an UGCG inhibitor with an IC50 value of 159 µM. In CCl4-induced mouse liver fibrosis, intraperitoneal administration of SAB (30 mg · kg-1 · d-1, for 4 weeks) significantly alleviated hepatic fibrogenesis by inhibiting the activation of HSCs and collagen deposition. In addition, SAB displayed better anti-inflammatory effects in CCl4-induced liver fibrosis. These results suggest that UGCG may represent a therapeutic target for liver fibrosis; SAB could act as an inhibitor of UGCG, which is expected to be a candidate drug for the treatment of liver fibrosis.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Camundongos , Humanos , Animais , Simulação de Acoplamento Molecular , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/metabolismo , Fígado/metabolismo , Colágeno Tipo I/metabolismo
7.
Anal Chem ; 95(4): 2504-2512, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36651128

RESUMO

The establishment and application of a generalizable three-dimensional (3D) tumor device for high-throughput screening plays an important role in drug discovery and cancer therapeutics. In this study, we introduce a facile microplatform for considerable 3D tumor generation and combinatorial drug screening evaluation. High fidelity of chip fabrication was achieved depending on the simple and well-improved microcontact printing. We demonstrated the high stability and repeatability of the established tumor-on-a-chip system for controllable and massive production of 3D tumors with high size uniformity. Importantly, we accomplished the screening-like chemotherapy investigation involving individual and combinatorial drugs and validated the high accessibility and applicability of the system in 3D tumor-based manipulation and analysis on a large scale. This achievement in tumor-on-a-chip has potential applications in plenty of biomedical fields such as tumor biology, pharmacology, and tissue microengineering. It offers an insight into the development of the popularized microplatform with easy-to-fabricate and easy-to-operate properties for cancer exploration and therapy.


Assuntos
Neoplasias , Humanos , Avaliação Pré-Clínica de Medicamentos/métodos , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Ensaios de Triagem em Larga Escala , Descoberta de Drogas , Impressão Tridimensional
8.
World J Gastrointest Surg ; 14(9): 918-929, 2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36185554

RESUMO

BACKGROUND: Endoscopic resection approaches, including endoscopic submucosal dissection (ESD), submucosal tunneling endoscopic resection (STER) and endoscopic full-thickness resection (EFTR), have been widely used for the treatment of submucosal tumors (SMTs) located in the upper gastrointestinal tract. However, compared to SMTs located in the esophagus or stomach, endoscopic resection of SMTs from the esophagogastric junction (EGJ) is much more difficult because of the sharp angle and narrow lumen of the EGJ. SMTs originating from the muscularis propria (MP) in the EGJ, especially those that grow extraluminally and adhere closely to the serosa, make endoscopic resection even more difficult. AIM: To investigate the predictors of difficult endoscopic resection for SMTs from the MP layer at the EGJ. METHODS: A total of 90 patients with SMTs from the MP layer at the EGJ were included in the present study. The difficulty of endoscopic resection was defined as a long procedure time, failure of en bloc resection and intraoperative bleeding. Clinicopathological, endoscopic and follow-up data were collected and analyzed. Statistical analysis of independent risks for piecemeal resection, long operative time, and intraoperative bleeding were assessed using univariate and multivariate analyses. RESULTS: According to the location and growth pattern of the tumor, 44 patients underwent STER, 14 patients underwent EFTR, and the remaining 32 patients received a standard ESD procedure. The tumor size was 20.0 mm (range 5.0-100.0 mm). Fourty-seven out of 90 lesions (52.2%) were regularly shaped. The overall en bloc resection rate was 84.4%. The operation time was 43 min (range 16-126 min). The intraoperative bleeding rate was 18.9%. There were no adverse events that required therapeutic intervention during or after the procedures. The surgical approach had no significant correlation with en bloc resection, long operative time or intraoperative bleeding. Large tumor size (≥ 30 mm) and irregular tumor shape were independent predictors for piecemeal resection (OR: 7.346, P = 0.032 and OR: 18.004, P = 0.029, respectively), long operative time (≥ 60 min) (OR: 47.330, P = 0.000 and OR: 6.863, P = 0.034, respectively) and intraoperative bleeding (OR: 20.631, P = 0.002 and OR: 19.020, P = 0.021, respectively). CONCLUSION: Endoscopic resection is an effective treatment for SMTs in the MP layer at the EGJ. Tumors with large size and irregular shape were independent predictors for difficult endoscopic resection.

10.
Front Bioeng Biotechnol ; 10: 940634, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35814001

RESUMO

Constructing an engineered hepatic lobule-mimetic model is challenging owing to complicated lobular architecture and crucial hepatic functionality. Our previous study has demonstrated the feasibility of using silk fibroin (SF) scaffolds as functional templates for engineering hepatic lobule-like constructs. But the unsatisfactory chemical and physical performances of the SF-only scaffold and the inherent defect in the functional activity of the carcinoma-derived seeding cells remain to be addressed to satisfy the downstream application demand. In this study, SF-collagen I (SFC) composite scaffolds with improved physical and chemical properties were fabricated, and their utilization for bioengineering a more hepatic lobule-like construct was explored using the immortalized human hepatocyte-derived liver progenitor-like cells (iHepLPCs) and endothelial cells incorporated in the dynamic culture system. The SFC scaffolds prepared through the directional lyophilization process showed radially aligned porous structures with increased swelling ratio and porosity, ameliorative mechanical stiffness that resembled the normal liver matrix more closely, and improved biocompatibility. The iHepLPCs displayed a hepatic plate-like distribution and differentiated into matured hepatocytes with improved hepatic function in vitro and in vivo. Moreover, hepatocyte-endothelial cell interphase arrangement was generated in the co-culture compartment with improved polarity, bile capillary formation, and enhanced liver functions compared with the monocultures. Thus, a more biomimetic hepatic lobule-like model was established and could provide a valuable and robust platform for various applications, including bioartificial liver and drug screening.

11.
Virol Sin ; 37(5): 716-723, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35764207

RESUMO

Human adenoviruses type 26 (HAdV26) and type 35 (HAdV35) have increasingly become the choice of adenovirus vectors for vaccine application. However, the population pre-existing immunity to these two adenoviruses in China, which may reduce vaccine efficacy, remains largely unknown. Here, we established micro-neutralizing (MN) assays to investigate the seroprevalence of neutralizing antibodies (nAbs) against HAdV26 and HAdV35 in the general population of Guangdong and Shandong provinces, China. A total of 1184 serum samples were collected, 47.0% and 15.8% of which showed HAdV26 and HAdV35 nAb activity, respectively. HAdV26-seropositive individuals tended to have more moderate nAbs titers (201-1000), while HAdV35-seropositive individuals appeared to have more low nAbs titers (72-200). The seropositive rates of HAdV26 and HAdV35 in individuals younger than 20 years old were very low. The seropositive rates of HAdV26 increased with age before 70 years old and decreased thereafter, while HAdV35 seropositive rates did not show similar characteristics. Notably, the seropositive rates and nAb levels of both HAdV26 and HAdV35 were higher in Guangdong Province than in Shandong Province, but did not exert significant differences between males and females. The seroprevalence between HAdV26 and HAdV35 showed little correlation, and no significant cross-neutralizing activity was detected. These results clarified the characteristics of the herd immunity against HAdV26 and HAdV35, and provided information for the rational development and application of HAdV26 and HAdV35 as vaccine vectors in China.


Assuntos
Adenovírus Humanos , Anticorpos Neutralizantes , Adenoviridae , Adulto , Idoso , Anticorpos Antivirais , China/epidemiologia , Feminino , Humanos , Masculino , Estudos Soroepidemiológicos , Adulto Jovem
12.
Allergol Immunopathol (Madr) ; 50(3): 113-118, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35527664

RESUMO

BACKGROUND: Pneumonia is a continuous and widespread disease with higher incidence, the effects of it on human life can be fearful. Tricin has been demonstrated to take part in the progression and development of diseases. However, the function of Tricin and its related regulatory pathways remain unclear. This study was planned to investigate the effects of Tricin on severe pneumonia. METHODS: The cell viability was detected through CCK-8 assay. The TNF-α, IL-1ß and IL-6 levels were assessed through ELISA and RT-qPCR. The levels of MDA, SOD and GSH were tested through corresponding commercial kits. The protein expressions were examined through western blot. RESULTS: In our study, the lipopolysaccharide (LPS) was firstly used to stimulate cell model for severe pneumonia. We discovered that Tricin had no toxic effects on BEAS-2B cells and the decreased cell viability induced by LPS was relieved by a dose-dependent Tricin treatment. Additionally, through ELISA and RT-qPCR, it was uncovered that Tricin reduced the LPS-induced inflammation through regulating TNF-α, IL-1ß and IL-6. Furthermore, Tricin relieved LPS-induced oxidative stress through reducing MDA level and enhancing SOD and GSH levels. Finally, it was demonstrated that Tricin retarded LPS-activated AKT and MAPK pathways. CONCLUSION: Our findings revealed that Tricin attenuated the progression of LPS induced severe pneumonia through modulating AKT and MAPK signaling pathways. This discovery might afford one novel sight for the treatment of severe pneumonia.


Assuntos
Lipopolissacarídeos , Pneumonia , Células Epiteliais/metabolismo , Flavonoides , Humanos , Inflamação , Interleucina-6/metabolismo , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Proteínas Proto-Oncogênicas c-akt/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
13.
Cell Signal ; 93: 110274, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122989

RESUMO

We sought to pinpoint the potential role of C-MYC in pulmonary fibroblast proliferation in idiopathic pulmonary fibrosis (IPF) and its mechanism. A mouse model of IPF was established by injection of bleomycin. C-MYC and miR-9-5p expression was determined by RT-qPCR and Western blot analysis. The interaction among C-MYC, miR-9-5p, and TBPL1 was detected by ChIP assay and dual luciferase reporter gene assay. After alteration of C-MYC, miR-9-5p, and TBPL1, their roles in pulmonary fibrosis and collagen fiber deposition in mice as well as proliferation and differentiation of pulmonary fibroblasts were assessed. Upregulated C-MYC expression was seen in the lung tissues of IPF mice and its silencing retarded IPF in mice. C-MYC could activate miR-9-5p that negatively regulated TBPL1 expression. Up-regulated C-MYC promoted proliferation and differentiation of pulmonary fibroblasts by inhibiting TBPL1 via activation of miR-9-5p, thus triggering IPF. Moreover, in the lung tissues-derived cells of IPF mice, C-MYC inhibitor, 10,058-F4, was observed to inhibit miR-9-5p expression, thereby repressing pulmonary fibrosis by up-regulating TBPL1. Our data provided evidence pinpointed the aggravative role of C-MYC in IPF by activating miR-9-5p to regulate TBPL1 expression.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Bleomicina/metabolismo , Bleomicina/farmacologia , Proliferação de Células , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Pulmão/metabolismo , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Semelhantes à Proteína de Ligação a TATA-Box/metabolismo
14.
Front Pharmacol ; 12: 669199, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630074

RESUMO

Tumor necrosis factor-α inducible protein-8 (TIPE2), initially recognized as a negative immune regulator, exerts an important role in suppressing the progression of numerous cancers. In our previous investigation, we found that TIPE2 expression displayed a decrease or absence in gastric tumor tissue, and the overexpression of TIPE2 suppressed the growth of gastric cancer tumors and cells, demonstrating that TIPE2 could be a potential medicinal target for gastric cancer treatment. However, it's seldomly reported that several medicinal agents or candidates targeted TIPE2 for treating diseases, including gastric cancer. To identify the candidate targeting TIPE2 to fight against gastric cancer, several extractions from traditional natural medicinal plants with anti-tumor functions were employed to screen the active compounds according to bioassay-guided isolation. Interestingly, gracillin, a component from the ethyl acetate extraction of Rhizoma Paridis, was identified to induce the expression of TIPE2 and inhibit the cell proliferation in gastric cancer BGC-823 cells. Furthermore, the underlying mechanisms that restrain gastric cancer were evaluated by clone formation, EdU staining, flow cytometry, and other assays. Meanwhile, the role of TIPE2 in the anti-tumor effect of gracillin was elucidated via the use of siTIPE2 RNA. It was determined that gracillin could fight against gastric cancer cells by inhibiting the cell proliferation participated by the PI3K/AKT pathway and cell cycle arrest, suppressing the EMT pathway-regulating cell migration, and inducing bcl2-associated mitochondrial apoptosis. Additionally, TIPE2 maybe contribute to the benefits of gracillin. These results of the present study are an important step toward the medicinal development of gracillin, and are also of use in understanding the effect of TIPE2 as a potential tumor target.

15.
Biotechnol J ; 16(10): e2000655, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34218506

RESUMO

BACKGROUND: Cancer has been responsible for a large number of human deaths in the 21st century. Establishing a controllable, biomimetic, and large-scale analytical platform to investigate the tumor-associated pathophysiological and preclinical events, such as oncogenesis and chemotherapy, is necessary. METHODS AND RESULTS: This study presents antitumor investigation in a parallel, large-scale, and tissue-mimicking manner based on well-constructed chemical gradients and heterotypic three-dimensional (3D) tumor cocultures using a multifunction-integrated device. The integrated microfluidic device was engineered to produce a controllable and steady chemical gradient by manipulative optimization. Array-like and size-homogeneous production of heterotypic 3D tumor cocultures with in vivo-like features, including similar tumor-stromal composition and functional phenotypic gradients of metabolic activity and viability, was successfully established. Furthermore, temporal, parallel, and high-throughput analyses of tumor behaviors in different antitumor stimulations were performed in a device based on the integrated operations involving gradient generation and coculture. CONCLUSION: This achievement holds great potential for applications in the establishment of multifunctional tumor platforms to perform tissue-biomimetic neoplastic research and therapy assessment in the fields of oncology, bioengineering, and drug discovery.


Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Biomimética , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos
16.
Artigo em Inglês | MEDLINE | ID: mdl-34153506

RESUMO

To examine the relationship between heavy metal accumulation in mitochondria and their respiration function in fish during in vivo exposure, juvenile Spinibarbus sinensis were exposed to different waterborne cadmium (Cd) concentrations for up to 28 days. We measured the state III respiration rate and cytochrome c oxidase (CCO) activity of mitochondria in hepatopancreas and kidney and the accumulated Cd concentrations in mitochondria and heat-stable protein (HSP) fractions. Dose- and time-dependent Cd accumulation occurred at different levels in both organs, but was lower in hepatopancreas. When hepatopancreas mitochondrial Cd concentrations in Cd-exposed groups were > 5.5 µg/g dwt, their state III respiration rates were significantly lower than the control. CCO activity of hepatopancreas mitochondria exhibited decreasing dose- and time-dependent trends. However, kidney mitochondria respiratory activities were not affected significantly by Cd exposure. Cd concentrations in kidney HSP fraction were 2-5 times higher than in hepatopancreas under all exposure conditions, and were mainly present as non-deleterious metallothionein (MT)-Cd complexes. These results suggest that Cd accumulation occurred in hepatopancreas and kidney mitochondria of S. sinensis following waterborne Cd exposure, which significantly inhibited the respiration function of hepatopancreas mitochondria but did not have a deleterious effect on kidney mitochondria. The inhibitory pattern of hepatopancreas mitochondrial Cd concentrations related to function exhibited threshold and saturation effects, suggesting the capacity of S. sinensis to manage Cd toxicity. The difference in the relative proportion of Cd occurring as MT-Cd complexes in organs likely causes the organ-specific effects of Cd on hepatopancreas and kidney mitochondrial function.


Assuntos
Cádmio/toxicidade , Cyprinidae , Hepatopâncreas/efeitos dos fármacos , Rim/efeitos dos fármacos , Mitocôndrias/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Cádmio/química , Cádmio/metabolismo , Humanos , Consumo de Oxigênio , Poluentes Químicos da Água/química , Poluentes Químicos da Água/metabolismo
17.
Drug Des Devel Ther ; 15: 21-35, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33442234

RESUMO

OBJECTIVE: Cisplatin (DDP) is an effective first-line therapy for non-small cell lung cancer (NSCLC) treatment; however, it can cause resistance and thus pose an obstacle to the efficacy of chemotherapy in NSCLC. This study aims to detect the effect of RASSF1A on DDP resistance of NSCLC and the underlying mechanism. METHODS: The expression levels of RASSF1A and microtubule-associated protein 1S (MAP1S) were investigated by qRT-PCR and Western blot and their interaction was testified by co-immunoprecipitation (Co-IP) analysis. The IC50 value of DDP on A549 and A549/DDP cells (DDP-resistant cells) was measured. A549/DDP cells were transfected with pCDNA3.1-RASSF1A, pCDNA3.1-MAP1S, or si-RASSF1A, followed by treated with DDP. Cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EDU) were employed to measure cell survival rate. Western blot was applied to test the levels of autophagy-associated proteins p62, LC3II, and LC3I. Immunofluorescence staining was used to detect the green fluorescent protein (GFP)-LC3 puncta to evaluate the level of autophagy. Finally, a xenograft model in nude mice using A549/DDP cells was developed. RESULTS: RASSF1A and MAP1S were lowly expressed and positively correlated in NSCLC tissues. We observed that RASSF1A and MAP1S overexpression significantly enhanced DDP-induced effects in A549 and A549/DDP cells, including decreased cell viability, as well as increased autophagy levels. Besides, investigations into the mechanism between RASSF1A and MAP1S disclosed that RASSF1A could regulate MAP1S to inactivate the Keap1-Nrf2 pathway, thus activating autophagy to enhance chemosensitivity. Moreover, consistent results were confirmed in vivo experiments. CONCLUSION: RASSF1A increases chemosensitivity in NSCLC by facilitating autophagy via MAP1S-mediated Keap1-Nrf2 pathway.


Assuntos
Autofagia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Células Tumorais Cultivadas
18.
Analyst ; 145(20): 6447-6455, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33043931

RESUMO

The development of a microplatform with multifunctional integration allowing the dynamic and high-throughput exploration of three-dimensional (3D) cultures is promising for biomedical research. Here, we introduce an integrated microfluidic 3D tumor system with pneumatic manipulation and chemical gradient generation to investigate anticancer therapy in a parallel, controllable, dynamic, and high-throughput manner. The stability of the microfluidic system to realize precise and long-term chemical gradient production was developed. Serial manipulations including active cell trapping, array-like tumor self-assembly and formation, reliable gradient generation, parallel multi-concentration drug stimulation, and real-time tumor analysis were achieved in a single microfluidic device. The microfluidic platform was demonstrated to be stable for high-throughput cell trapping and 3D tumor formation with uniform quantities. On-chip analysis of phenotypic tumor responses to diverse chemotherapies with different concentrations can be conducted in this device. The microfluidic advancement holds great potential for applications in the development of high-performance and multi-functional biomimetic tumor systems and in the fields of cancer research and pharmaceutical development.


Assuntos
Técnicas Analíticas Microfluídicas , Microfluídica , Linhagem Celular Tumoral , Dispositivos Lab-On-A-Chip
19.
J Virol ; 94(17)2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32581104

RESUMO

Cap-independent translation initiation on picornavirus mRNAs is mediated by an internal ribosomal entry site (IRES) in the 5' untranslated region. The regulation of internal initiation requires the interaction of IRES-transacting factors (ITAFs) with the IRES. In this study, we identified a novel ITAF, heterogeneous nuclear ribonucleoprotein K (hnRNP K), which negatively regulates foot-and-mouth disease virus (FMDV) translation and viral replication. Further investigation revealed that the KH2 and KH3 domains of hnRNP K directly bind to domains II, III, and IV of the FMDV IRES, resulting in the inhibition of IRES-mediated translation by interfering with the recognition of another positive ITAF, polypyrimidine tract-binding protein (PTB). Conversely, hnRNP K-mediated inhibition was antagonized by the viral 3C protease through the cleavage of hnRNP K at the Glu-364 residue during FMDV infection. Interestingly, the N-terminal cleavage product, hnRNP K1-364, retained partial inhibitory effects on IRES activity, whereas the C-terminal cleavage product, hnRNP K364-465, became a positive regulator of FMDV replication. Our findings expand the current understanding of virus-host interactions concerning viral recruitment and the modulation of ITAFs, providing new insights into translational control during viral infection.IMPORTANCE The translation of picornaviral genome RNA mediated by the internal ribosomal entry site (IRES) is a crucial step for virus infections. Virus-host interactions play a critical role in the regulation of IRES-dependent translation, but the regulatory mechanism remains largely unknown. In this study, we identified an ITAF, hnRNP K, that negatively regulates FMDV replication by inhibiting viral IRES-mediated translation. In addition, we describe a novel translational regulation mechanism involving the proteolytic cleavage of hnRNP K by FMDV protease 3C. The cleavage of hnRNP K yields two cleavage products with opposite functions: the cleavage product hnRNP K1-364 retains a partial inhibitory effect on IRES activity, and the cleavage product hnRNP K364-465 becomes a positive regulator of FMDV replication. Our findings shed light on the effect of a novel ITAF on the translational regulation of picornavirus and provide new insights into translational control during viral infection.


Assuntos
Cisteína Endopeptidases/metabolismo , Vírus da Febre Aftosa/fisiologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo K/metabolismo , Sítios Internos de Entrada Ribossomal/fisiologia , Transativadores/metabolismo , Proteínas Virais/metabolismo , Replicação Viral/fisiologia , Proteases Virais 3C , Animais , Linhagem Celular , Cricetinae , Vírus da Febre Aftosa/genética , Regulação Viral da Expressão Gênica , Células HEK293 , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas , RNA Mensageiro , Proteínas Virais/genética
20.
Cell Cycle ; 19(12): 1502-1516, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32401659

RESUMO

Long non-coding RNAs (lncRNAs) have been proposed as suppressors or promoters in many tumor processes. LncRNA LINC01123 (LINC01123) was a newly identified lncRNA which was firstly functionally analyzed in lung cancer. However, its expression and function in other tumor types were rarely reported. In this study, we firstly confirmed that LINC01123 was highly expressed in both endometrial cancer (EC) tissues and cell lines using bioinformatics analysis and RT-CPR. Then, we preliminarily analyzed the mechanisms involved in overexpression of LINC01123 in EC, finding that STAT1 could bind directly to the LINC01123 promoter region and activate its transcription. Clinical research with 106 patients indicated that high expression of LINC01123 was associated with advanced clinical progression and poor clinical outcome of EC patients. Functionally, knockdown of LINC01123 suppressed the proliferation, migration and invasion of EC cells, and promoted apoptosis. Mechanistically, we observed that LINC01123 may act as an endogenous sponge by competing for miR-516b, thereby regulating KIF4A. Overall, our study revealed a novel LINC01123/miR-516b/KIF4A pathway regulatory axis in EC pathogenesis. LINC01123 may be a novel prognostic biomarker and therapeutic target in EC.Abbreviations: EC: Endometrial cancer; LncRNA: Long non-coding RNA; EMT: epithelial-mesenchymal transition; miRNA: microRNA; qRT-PCR: Quantitative real-time polymerase chain reaction; SPSS: Statistical Package for Social Sciences; Chip: chromatin-immunoprecipitation, TCGA: The Cancer Genome Atlas; CCK-8: Cell Counting Kit-8; KIF4A: Chromosome-associated kinesin KIF4A.


Assuntos
Progressão da Doença , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , Cinesinas/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT1/metabolismo , Regulação para Cima/genética , Apoptose/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Humanos , Cinesinas/genética , MicroRNAs/genética , Pessoa de Meia-Idade , Análise Multivariada , Invasividade Neoplásica , Prognóstico , RNA Longo não Codificante/genética , Fator de Transcrição STAT1/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA