Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Neurol ; 15: 1369414, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39108659

RESUMO

Objective: To explore the spatial relationship between A1 segment proximal anterior cerebral artery aneurysms and their main trunks, classify them anatomically and develop targeted treatment strategies. Methods: This single-center retrospective analysis involved 39 patients diagnosed with aneurysms originating from the proximal of A1 segment of the anterior cerebral artery (2014-2023). Classify the patient's aneurysm into 5 types based on the location of the neck involving the carrier artery and the spatial relationship and projection direction of the aneurysm body with the carrier artery, and outcomes from treatment methods were compared. Results: Among 39 aneurysms, 18 cases underwent endovascular intervention treatment, including 6 cases of stent assisted embolization, 1 case of flow-diverter embolization, 5 cases of balloon assisted embolization, and 6 cases of simple coiling. At discharged, the mRS score of all endovascularly treated patients was 0, and the GOS score was 5 at 6 months after discharge. At discharge, the mRS score of microsurgical clipping treated patients was 0 for 15 cases, 3 for 1 case, 4 for 1 case and 5 for 2 cases. Six months after discharge, the GOS score was 5 for 16 cases, 4 for 2 cases, 3 for 2 cases, and 1 for 1 case. GOS outcomes at 6 months were better for endovascularly treated patients (p = 0.047). Conclusion: Results showed better outcomes for the endovascular treatment group compared to microsurgical clipping at 6 months after surgery. The anatomical classification of aneurysms in this region may be of help to develop effective treatment strategies.

2.
BMC Cancer ; 24(1): 815, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977962

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) is the primary reason for cancer-related deaths globally. Tertiary lymphoid structure (TLS) is an organized collection of immune cells acquired in non-physiological, non-lymphoid tissues. High expression of TLS in tumor tissues is generally associated with better prognosis. This research aimed to investigate the prognostic and clinicopathological significance of TLS in patients with NSCLC. METHODS: A comprehensive literature search was conducted based on Pubmed, EMBASE, and Cochrane Library databases to identify eligible studies published up to December 8, 2023. The prognostic significance and clinicopathological value of TLS in NSCLC were evaluated by calculating the combined hazard ratios (HRs) and odds ratios (ORs) and their 95% confidence intervals (CIs). Following that, additional analyses, including subgroup analysis and sensitivity analysis, were conducted. RESULTS: This meta-analysis evaluated the prognostic and clinicopathological significance of TLS in 10 studies involving 1,451 patients with NSCLC. The results revealed that the high levels of TLS were strongly associated with better overall survival (OS) (HR = 0.48, 95% CI: 0.35-0.66, p < 0.001), disease-free survival (DFS)/recurrence-free survival (RFS) (HR = 0.37, 95% CI: 0.24-0.54, p < 0.001), and disease-specific survival (DSS) (HR = 0.45, 95% CI: 0.30-0.68, p < 0.001) in NSCLC patients. In addition, the increased expression of TLS was closely related to the Tumor Node Metastasis (TNM) stage of tumors (OR = 0.71, 95% CI: 0.51-1.00, p < 0.05) and neutrophil-lymphocyte ratio (NLR) (OR = 0.33, 95% CI: 0.17-0.62, p < 0.001). CONCLUSIONS: The results revealed that highly expressed TLS is closely associated with a better prognosis in NSCLC patients. TLS may serve as a novel biomarker to predict the prognosis of NSCLC patients and guide the clinical treatment decisions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Estruturas Linfoides Terciárias , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/imunologia , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/imunologia , Prognóstico , Estruturas Linfoides Terciárias/patologia , Estruturas Linfoides Terciárias/imunologia , Intervalo Livre de Doença , Biomarcadores Tumorais/metabolismo
3.
ACS Appl Mater Interfaces ; 16(31): 40753-40766, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39046129

RESUMO

Platinum(II) drugs as a first-line anticancer reagent are limited by side effects and drug resistance. Stimuli-responsive nanosystems hold promise for precise spatiotemporal manipulation of drug delivery, with the aim to promote bioavailability and minimize side effects. Herein, a multitargeting octahedral platinum(IV) prodrug with octadecyl aliphatic chain and histone deacetylase inhibitor (phenylbutyric acid, PHB) at axial positions to improve the therapeutic effect of cisplatin was loaded on the upconversion nanoparticles (UCNPs) through hydrophobic interaction. Followed attachment of DSPE-PEG2000 and arginine-glycine-aspartic (RGD) peptide endowed the nanovehicles with high biocompatibility and tumor specificity. The fabricated nanoparticles (UCNP/Pt(IV)-RGD) can be triggered by upconversion luminescence (UCL) irradiation and glutathione (GSH) reduction to controllably release Pt(II) species and PHB, inducing profound cytotoxicity. Both in vitro and in vivo experiments demonstrated that UCNP/Pt(IV)-RGD exhibited remarkable antitumor efficiency, high tumor-targeting specificity, and real-time UCL imaging capacity, presenting an intelligent platinum(IV) prodrug-loaded nanovehicle for UCL-guided dual-stimuli-responsive combination therapy.


Assuntos
Antineoplásicos , Glutationa , Nanopartículas , Oligopeptídeos , Pró-Fármacos , Animais , Humanos , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Cisplatino/química , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Glutationa/química , Glutationa/metabolismo , Raios Infravermelhos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/diagnóstico por imagem , Oligopeptídeos/química , Platina/química , Platina/farmacologia , Platina/uso terapêutico , Pró-Fármacos/química , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , Proibitinas
4.
Children (Basel) ; 11(7)2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39062333

RESUMO

Anthracyclines have significantly improved the survival of children with malignant tumors, but the associated cardiotoxicity, an effect now under the purview of pediatric cardio-oncology, due to its cumulative and irreversible effects on the heart, limits their clinical application. A systematic screening and risk stratification approach provides the opportunity for early identification and intervention to mitigate, reverse, or prevent myocardial injury, remodeling, and dysfunction associated with anthracyclines. This review summarizes the risk factors, surveillance indexes, and preventive strategies of anthracycline-related cardiotoxicity to improve the safety and efficacy of anthracyclines.

5.
Biomedicines ; 12(6)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38927347

RESUMO

(1) Background: Immune-related adverse events (irAEs) are a series of unique organ-specific inflammatory toxicities observed in patients with hepatocellular carcinoma (HCC) undergoing PD-1 inhibition combination therapy. The specific underlying mechanisms remain unclear. (2) Methods: We recruited 71 patients with HCC undergoing PD-1 inhibition combination therapy. These patients were then divided into two groups based on irAE occurrence: 34 had irAEs and 37 did not. Using Olink proteomics, we analyzed the aberrant inflammation-related proteins (IRPs) in these patient groups. For single-cell RNA sequencing (scRNA-seq) analysis, we collected peripheral blood mononuclear cells (PBMCs) from two representative patients at the pretreatment, irAE occurrence, and resolution stages. (3) Results: Our study revealed distinct plasma protein signatures in HCC patients experiencing irAEs after PD-1 inhibition combination therapy. We clarified the relationship between monocyte activation and irAEs, identified a strongly associated CD14-MC-CCL3 monocyte subset, and explored the role of the IFN-γ signaling pathway in monocyte activation during irAEs. (4) Conclusions: The activation of monocytes induced by the IFN-γ signaling pathway is an important mechanism underlying the occurrence of irAEs in HCC patients receiving PD-1 inhibition combination therapy.

6.
Dig Dis Sci ; 69(7): 2450-2461, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38722410

RESUMO

AIM: To explore the global burden of pancreatic cancer (PC) from 1990 to 2019, evaluate independent effects of age, period, and cohort on the incidence of PC, and predict the incidence of PC in the next decade. METHODS: Data were obtained from the Global Burden of Disease Study 2019. We calculated the age-standardized disability-adjusted life years (DALY) rate, age-standardized mortality rate (ASMR), age-standardized incidence rate (ASIR), and age-standardized prevalence rate (ASPR) of PC. Joinpoint Poisson regression analysis was performed to identify the temporal trends in the incidence of PC. Then, a two-factor model was constructed using the Poisson log-linear model, and a three-factor model was constructed using the intrinsic estimator (IE) method to estimate the independent effects of age, period, and cohort on the incidence of PC. Finally, the Bayesian age-period-cohort (BAPC) model was also used to predict the age-standardized global incidence rate of PC and age-standardized new PC cases from 2020 to 2030. RESULTS: Overall, the DALY rate, ASMR, ASIR, and ASPR all increased from 1990 to 2019. The ASIR in males increased from 6 per 100,000 in 1990 to 7.5 per 100,000 in 2019 and was predicted to rise to 8.2 per 100,000 by 2030. Meanwhile, the ASIR in females rose from 4.5 per 100,000 in 1990 to 5.7 per 100,000 in 2019 and was predicted to rise to 6.3 per 100,000 by 2030. The age effect on the incidence of PC showed sharp increasing trends from 40 to 79 years. The period effect continuously increased with advancing periods, but the cohort effect showed substantial decreasing trends. CONCLUSIONS: The age and period effect on the incidence of PC presented increasing trends, while the cohort effect showed decreasing trends. All indicators of the global burden of PC are increasing in both males and females, and the ASIR is predicted to rise at an alarming rate by 2030. Thus, timely screening and intervention are recommended, especially for earlier birth cohorts at high risk.


Assuntos
Carga Global da Doença , Neoplasias Pancreáticas , Humanos , Neoplasias Pancreáticas/epidemiologia , Neoplasias Pancreáticas/mortalidade , Masculino , Feminino , Incidência , Carga Global da Doença/tendências , Pessoa de Meia-Idade , Idoso , Adulto , Saúde Global , Prevalência , Anos de Vida Ajustados por Deficiência/tendências , Teorema de Bayes , Idoso de 80 Anos ou mais , Distribuição por Idade , Fatores de Tempo
7.
Colloids Surf B Biointerfaces ; 238: 113923, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692173

RESUMO

The rapid advancement of photodynamic therapy (PDT) antibacterial materials has led to promising alternatives to antibiotics for treating bacterial infections. However, antibacterial drugs have poor light absorption and utilization rates, which limits their practical application. Constructing two-dimensional (2D) heterojunctions from materials with matching photophysical properties has emerged as a highly effective strategy for achieving high-efficiency photo-antibacterial performance. Here, we designed and prepared an atom co-sharing Bi/Bi4O5Br2 nanosheet heterojunction by a simple in situ reduction. This heterojunction material combines outstanding biocompatibility with excellent bactericidal efficiency, which exceeded 90 % against Escherichia coli (a Gram-negative bacterium) and Staphylococcus aureus (a Gram-positive bacterium) under visible light irradiation, around nine-fold higher than that with pure Bi4O5Br2 nanosheets. The results suggest that localized surface plasmon resonance (LSPR) of shared Bi atoms on the Bi4O5Br2 nanosheets promotes light utilization and the separation and transfer of photo-generated charges, thus producing more abundant reactive oxygen species (ROS), which can partake in the PDT antibacterial effect. Our study underscores the potential utility of LSPR-enhanced Bi-based nanosheet heterojunctions for safe and efficient PDT to combat bacterial infections.


Assuntos
Antibacterianos , Bismuto , Escherichia coli , Luz , Nanoestruturas , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Nanoestruturas/química , Bismuto/química , Bismuto/farmacologia , Catálise , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Espécies Reativas de Oxigênio/metabolismo , Ressonância de Plasmônio de Superfície , Fotoquimioterapia , Tamanho da Partícula
8.
Mol Cell Biol ; 44(5): 165-177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38758542

RESUMO

Systemic amyloid A (AA) amyloidosis, which is considered the second most common form of systemic amyloidosis usually takes place several years prior to the occurrence of chronic inflammation, generally involving the kidney. Activated HSF1, which alleviated unfolded protein response (UPR) or enhanced HSR, is the potential therapeutic target of many diseases. However, the effect of HSF1 on AA amyloidosis remains unclear. This study focused on evaluating effect of HSF1 on AA amyloidosis based on HSF1 knockout mice. As a result, aggravated amyloid deposits and renal dysfunction have been found in HSF1 knockout mice. In progressive AA amyloidosis, HSF1 deficiency enhances serum amyloid A production might to lead to severe AA amyloid deposition in mice, which may be related to deactivated unfolded protein response as well as enhanced inflammation. Thus, HSF1 plays a significant role on UPR related pathway impacting AA amyloid deposition, which can mitigate amyloidogenic proteins from aggregation pathologically and is the possible way for intervening with the pathology of systemic amyloid disorder. In conclusion, HSF1 could not only serve as a new target for AA amyloidosis treatment in the future, but HSF1 knockout mice also can be considered as a valuable novel animal model for renal AA amyloidosis.


Assuntos
Amiloidose , Fatores de Transcrição de Choque Térmico , Rim , Camundongos Knockout , Resposta a Proteínas não Dobradas , Animais , Amiloidose/metabolismo , Amiloidose/genética , Amiloidose/patologia , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Camundongos , Rim/patologia , Rim/metabolismo , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/genética , Modelos Animais de Doenças , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/genética , Nefropatias/etiologia , Camundongos Endogâmicos C57BL
9.
Plant Physiol ; 195(2): 1446-1460, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38431523

RESUMO

Terpene trilactones (TTLs) are important secondary metabolites in ginkgo (Ginkgo biloba); however, their biosynthesis gene regulatory network remains unclear. Here, we isolated a G. biloba ethylene response factor 4 (GbERF4) involved in TTL synthesis. Overexpression of GbERF4 in tobacco (Nicotiana tabacum) significantly increased terpenoid content and upregulated the expression of key enzyme genes (3-hydroxy-3-methylglutaryl-CoA reductase [HMGR], 3-hydroxy-3-methylglutaryl-CoA synthase [HMGS], 1-deoxy-D-xylulose-5-phosphate reductoisomerase [DXR], 1-deoxy-D-xylulose-5-phosphate synthase [DXS], acetyl-CoA C-acetyltransferase [AACT], and geranylgeranyl diphosphate synthase [GGPPS]) in the terpenoid pathway in tobacco, suggesting that GbERF4 functions in regulating the synthesis of terpenoids. The expression pattern analysis and previous microRNA (miRNA) sequencing showed that gb-miR160 negatively regulates the biosynthesis of TTLs. Transgenic experiments showed that overexpression of gb-miR160 could significantly inhibit the accumulation of terpenoids in tobacco. Targeted inhibition and dual-luciferase reporter assays confirmed that gb-miR160 targets and negatively regulates GbERF4. Transient overexpression of GbERF4 increased TTL content in G. biloba, and further transcriptome analysis revealed that DXS, HMGS, CYPs, and transcription factor genes were upregulated. In addition, yeast 1-hybrid and dual-luciferase reporter assays showed that GbERF4 could bind to the promoters of the HMGS1, AACT1, DXS1, levopimaradiene synthase (LPS2), and GGPPS2 genes in the TTL biosynthesis pathway and activate their expression. In summary, this study investigated the molecular mechanism of the gb-miR160-GbERF4 regulatory module in regulating the biosynthesis of TTLs. It provides information for enriching the understanding of the regulatory network of TTL biosynthesis and offers important gene resources for the genetic improvement of G. biloba with high contents of TTLs.


Assuntos
Regulação da Expressão Gênica de Plantas , Ginkgo biloba , Lactonas , MicroRNAs , Nicotiana , Proteínas de Plantas , Terpenos , MicroRNAs/genética , MicroRNAs/metabolismo , Terpenos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ginkgo biloba/genética , Ginkgo biloba/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Lactonas/metabolismo , Plantas Geneticamente Modificadas , Vias Biossintéticas/genética
10.
J Am Chem Soc ; 146(8): 5597-5604, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38366992

RESUMO

Rechargeable aqueous batteries are potential systems for large-scale energy storage due to their high safety and low cost. However, developing aqueous batteries with high sustainability, affordability, and reversibility is urgent and challenging. Here we report an amphoteric aluminum hydroxyacetate (AlAc(OH)2) electrolyte with the ability of bipolar ionization of H+ and OH-, which facilitates the redox reactions at both the anthraquinone (AQ) anode and nickel hydroxide (Ni(OH)2) cathode. The bipolar ionization ability of the AlAc(OH)2(H2O)3 solvation structure results from the strong polarization ability of Al3+ and OH-. The H+/OH- dissociation ability with a dissociation constant of 5.0/3.0 is stronger than that of water (14.0), which boosts the simultaneous stable redox reactions of electrodes. Specifically, H+ uptake prevents the AQ anode from the formation of an ionic bond, suppressing the electrode dissolution, whereas OH- provides the local alkaline environment for the stable conversion reaction of the Ni(OH)2 cathode. The AQ anode in the designed AQ||Ni(OH)2 battery delivers a discharge capacity of 243.9 mAh g-1 and a capacity retention of 78.2% after 300 cycles with high reversibility. Moreover, a pouch cell with a discharge capacity of 0.90 Ah was assembled, exhibiting an energy density of 44.7 Wh kg-1 based on the total mass of the battery. This work significantly widens the types of aqueous batteries and represents a design philosophy of bipolar electrolytes and distinct electrochemical reactions with H+ and OH-.

11.
Exp Hematol Oncol ; 13(1): 3, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229178

RESUMO

As integral components of the immune microenvironment, tissue resident macrophages (TRMs) represent a self-renewing and long-lived cell population that plays crucial roles in maintaining homeostasis, promoting tissue remodeling after damage, defending against inflammation and even orchestrating cancer progression. However, the exact functions and roles of TRMs in cancer are not yet well understood. TRMs exhibit either pro-tumorigenic or anti-tumorigenic effects by engaging in phagocytosis and secreting diverse cytokines, chemokines, and growth factors to modulate the adaptive immune system. The life-span, turnover kinetics and monocyte replenishment of TRMs vary among different organs, adding to the complexity and controversial findings in TRMs studies. Considering the complexity of tissue associated macrophage origin, macrophages targeting strategy of each ontogeny should be carefully evaluated. Consequently, acquiring a comprehensive understanding of TRMs' origin, function, homeostasis, characteristics, and their roles in cancer for each specific organ holds significant research value. In this review, we aim to provide an outline of homeostasis and characteristics of resident macrophages in the lung, liver, brain, skin and intestinal, as well as their roles in modulating primary and metastatic cancer, which may inform and serve the future design of targeted therapies.

12.
J Fluoresc ; 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252217

RESUMO

A novel multi-functional fluorescence probe HMIC based on hydrazide Schiff base has been successfully synthesized and characterized. It can distinguish Al3+/Zn2+/Cd2+ in ethanol, in which fluorescence emission with different colors (blue for Al3+, orange for Zn2+, and green for Cd2+) were presented. The limits of detection of HMIC towards three ions were calculated from the titration curve as 7.70 × 10- 9 M, 4.64 × 10- 9 M, and 1.35 × 10- 8 M, respectively. The structures of HMIC and its complexes were investigated using UV-Vis spectra, Job's plot, infrared spectra, mass spectrometry, 1H-NMR and DFT calculations. Practical application studies have also demonstrated that HMIC can be applied to real samples with a low impact of potential interferents. Cytotoxicity and cellular imaging assays have shown that HMIC has good cellular permeability and potential antitumor effects. Interestingly, HMIC can image Al3+, Zn2+ and Cd2+ in the cells with different fluorescence signals.

13.
Clinics ; 78: 100171, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1421264

RESUMO

Abstract Objective: To investigate the safety and efficacy of short-term (7-day) Dual Antiplatelet Therapy (DAPT) with intensive rosuvastatin in Acute Ischemic Stroke (AIS). Methods: In this study, patients with AIS in the emergency department of the hospital from October 2016 to December 2019 were registered and divided into the control group (Single Antiplatelet Therapy [SAPT] + rosuvastatin) and the study group (7-day DAPT + intensive rosuvastatin) according to the therapy regimens. The generalized linear model was used to compare the National Institute of Health Stroke Scale (NIHSS) scores between the two groups during the 21-day treatment. A Cox regression model was used to compare recurrent ischemic stroke, bleeding events, Statin-Induced Liver Injury (SILI), and Statin-Associated Myopathy (SAM) between the two groups during the 90-day follow-up. Results: Comparison of NIHSS scores after 21-day treatment: NIHSS scores in the study group decreased significantly, 0.273-times as much as that in the control group (Odds Ratio [OR] 0.273; 95% Confidence Interval [95% CI] 0.208-0.359; p < 0.001). Comparison of recurrent ischemic stroke during the 90-day follow-up: The therapy of the study group reduced the risk of recurrent stroke by 65% (7.76% vs. 22.82%, Hazard Ratio [HR] 0.350; 95% CI 0.167-0.730; p = 0.005). Comparison of bleeding events: There was no statistical difference between the two groups (7.79% vs. 6.71%, HR = 1.076; 95% CI 0.424-2.732; p = 0.878). No cases of SILI and SAM were found. Conclusions: Short-term DAPT with intensive rosuvastatin effectively relieved the clinical symptoms and significantly reduced the recurrent stroke for patients with mild-to-moderate AIS within 90 days, without increasing bleeding events, SILI and SAM.

14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 40(5): 532-540, 2022 Oct 01.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38596973

RESUMO

OBJECTIVES: The occurrence and development of periodontitis and nonalcoholic fatty liver disease (NAFLD) are closely related to the accumulation of reactive oxygen species (ROS). ROS are involved in regulating the activation of c-Jun N-terminal kinase (JNK)/nuclear factor kappa-B (NF-κB) signaling molecules. When the signaling molecules are overactivated by ROS, the internal environment of the body can be disturbed. Therefore, this study aimed to explore the mechanism by which ROS/JNK/NF-κB signaling molecules are involved in periodontitis-induced liver injury. METHODS: Twelve SPF male Wistar rats were randomly divided into control and periodontitis groups. The perio-dontitis model of rats was established by wire ligation in the neck of bilateral maxillary first molars. After 8 weeks, the periodontal clinical indexes of the rats were examined, and the rats were sacrificed. Micro-CT reconstruction of a three-dimensional alveolar bone structure and analysis of alveolar bone absorption were conducted. Pathological changes in the periodontal and liver tissues were analyzed by histopathology. MitoSOX red reagent was used to detect the ROS content in liver tissue. Biochemical kits were used to detect liver function and oxidative stress biomarkers. The mRNA expression levels ofinterleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), NF-κB, BCL2-associated X (Bax), and B-cell lymphoma-2 (Bcl-2) in liver tissue were detected through quantitative real-time polymerase chain reaction (qRT-PCR). The protein expression levels of phosphorylated c-Jun N-terminal kinase (P-JNK), JNK, NF-κB, Caspase-3, Bax, and Bcl-2 in liver tissue were detected by Western blot. Apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining. RESULTS: Micro-CT results showed that the mice in the periodontitis group had obvious alveolar bone resorption and significantly greater distance from the cemento-enamel junction to the alveolar bone crest than those in the control group. Histopathological results showed that a large number of inflammatory cells were infiltrated in the periodontal tissue of the periodontitis group. In addition, the resorption of alveolar ridge bone was obvious and liver tissue structure was destroyed, with balloon-like changes and red lipid droplets. MitoSOX red staining results showed that the ROS level was significantly higher in the liver tissue of the periodontitis group than in that of the control group. Biochemical test results showed that the aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels in the serum of the periodontitis group were higher than those in the serum of the control group. The levels of superoxide dismutase (SOD) and glutathione (GSH) in liver tissue decreased, whereas the that of malondialdehyde (MDA) increased. Western blot and qRT-PCR results revealed that the mRNA levels of IL-6, TNF-α, Bax, and NF-κB and the protein levels of P-JNK/JNK, NF-κB, Caspase-3, and Bax were significantly higher in the liver tissue of the perio-dontitis group than in that of the control group. Meanwhile, the mRNA and protein levels of Bcl-2 were lower in the periodontitis group than in the control group. TUNEL staining showed that the number of apoptotic cells was significantly higher in the periodontitis group than in the control group. CONCLUSIONS: ROS/JNK/NF-κB signaling molecules are involved in periodontitis-induced liver injury by regulating apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA