Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ecotoxicol Environ Saf ; 271: 116002, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277972

RESUMO

Propylene glycol (PG) and vegetable glycerin (VG) are the most common solvents used in electronic cigarette liquids. No long-term inhalation toxicity assessments have been performed combining conventional and multi-omics approaches on the potential respiratory effects of the solvents in vivo. In this study, the systemic toxicity of aerosol generated from a ceramic heating coil-based e-cigarette was evaluated. First, the aerosol properties were characterized, including carbonyl emissions, the particle size distribution, and aerosol temperatures. To determine toxicological effects, rats were exposed, through their nose only, to filtered air or a propylene glycol (PG)/ glycerin (VG) (50:50, %W/W) aerosol mixture at the target concentration of 3 mg/L for six hours daily over a continuous 28-day period. Compared with the air group, female rats in the PG/VG group exhibited significantly lower body weights during both the exposure period and recovery period, and this was linked to a reduced food intake. Male rats in the PG/VG group also experienced a significant decline in body weight during the exposure period. Importantly, rats exposed to the PG/VG aerosol showed only minimal biological effects compared to those with only air exposure, with no signs of toxicity. Moreover, the transcriptomic, proteomic, and metabolomic analyses of the rat lung tissues following aerosol exposure revealed a series of candidate pathways linking aerosol inhalation to altered lung functions, especially the inflammatory response and disease. Dysregulated pathways of arachidonic acids, the neuroactive ligand-receptor interaction, and the hematopoietic cell lineage were revealed through integrated multi-omics analysis. Therefore, our integrated multi-omics approach offers novel systemic insights and early evidence of environmental-related health hazards associated with an e-cigarette aerosol using two carrier solvents in a rat model.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Glicerol , Masculino , Feminino , Ratos , Animais , Glicerol/toxicidade , Glicerol/análise , Verduras , Multiômica , Proteômica , Propilenoglicol/toxicidade , Propilenoglicol/análise , Solventes , Aerossóis/análise
2.
Front Neurosci ; 17: 1288102, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033549

RESUMO

Since their introduction in the United States and Europe in 2007, electronic cigarettes (E-Cigs) have become increasingly popular among smokers. Nicotine, a key component in both tobacco and e-cigarettes, can exist in two forms: nicotine-freebase (FBN) and nicotine salts (NS). While nicotine salt is becoming more popular in e-cigarettes, the effect of nicotine salts on reinforcement-related behaviors remains poorly understood. This study aimed to compare the reinforcing effects of nicotine and nicotine salts in animal models of drug self-administration and explore potential mechanisms that may contribute to these differences. The results demonstrated that three nicotine salts (nicotine benzoate, nicotine lactate, and nicotine tartrate) resulted in greater reinforcement-related behaviors in rats compared to nicotine-freebase. Moreover, withdrawal-induced anxiety symptoms were lower in the three nicotine salt groups than in the nicotine-freebase group. The study suggested that differences in the pharmacokinetics of nicotine-freebase and nicotine salts in vivo may explain the observed behavioral differences. Overall, this study provides valuable insights into the reinforcing effects of nicotine as well as potential differences between nicotine-freebase and nicotine salts.

3.
Drug Dev Ind Pharm ; 49(10): 628-636, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37751149

RESUMO

OBJECTIVE: This study aimed to investigate the transport capability of nicotine across Calu-3 cell monolayer in various nicotine forms, including nicotine freebase, nicotine salts, and flavored e-liquids with nicotine benzoate. SIGNIFICANCE: Nicotine is rapidly absorbed from the respiratory system into systemic circulation during e-cigarettes use. However, the mechanism of nicotine transport in the lung has not been well understood yet. This study may offer critical biological evidence and have implications for the use and regulation of e-cigarettes. METHODS: The viability of Calu-3 cells after administration of nicotine freebase, nicotine salts and representative e-liquid were evaluated using the MTT assay, and the integrity of the Calu-3 cell monolayer was evaluated by transepithelial electrical resistance measurement and morphological analysis. Further, the nicotine transport capacity across the Calu-3 cell monolayer in various formulations of nicotine was investigated by analysis of nicotine transport amount. RESULTS: The findings indicated that nicotine transport occurred passively and was time-dependent across the Calu-3cell monolayer. In addition, the nicotine transport was influenced by the type of nicotine salts and their respective pH value. The nicotine benzoate exhibited the highest apparent permeability coefficient (Papp), and higher nicotine-to-benzoic acid ratios led to higher Papp values. The addition of flavors to e-liquid resulted in increased Papp values, with the most significant increment being observed in tobacco-flavored e-liquid. CONCLUSIONS: In summary, the transport capability of nicotine across the Calu-3 cell monolayer was influenced by the pH values of nicotine salts and flavor additives in e-liquids.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Nicotina , Nicotina/farmacologia , Sais , Pulmão , Aromatizantes , Benzoatos
4.
Pharmacol Res ; 194: 106860, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37482325

RESUMO

Cigarette smoking has long been recognized as a risk factor for type 2 diabetes (T2D), although the precise causal mechanisms underlying this relationship remain poorly understood. Recent evidence suggests that nicotine, the primary reinforcing component in tobacco, may play a pivotal role in connecting cigarette smoking and T2D. Extensive research conducted in both humans and animals has demonstrated that nicotine can elevate blood glucose levels, disrupt glucose homeostasis, and induce insulin resistance. The review aims to elucidate the genetic variants of nicotinic acetylcholine receptors associated with diabetes risk and provide a comprehensive overview of the available data on the mechanisms through which nicotine influences blood glucose homeostasis and the development of diabetes. Here we emphasize the central and peripheral actions of nicotine on the release of glucoregulatory hormones, as well as its effects on glucose tolerance and insulin sensitivity. Notably, the central actions of nicotine within the brain, which encompass both insulin-dependent and independent mechanisms, are highlighted as potential targets for intervention strategies in diabetes management.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Receptores Nicotínicos , Animais , Humanos , Nicotina/efeitos adversos , Glicemia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Receptores Nicotínicos/genética , Homeostase
6.
Front Mol Neurosci ; 15: 800406, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35359576

RESUMO

The use of electronic cigarette (e-cigarette) has been increasing dramatically worldwide. More than 8,000 flavors of e-cigarettes are currently marketed and menthol is one of the most popular flavor additives in the electronic nicotine delivery systems (ENDS). There is a controversy over the roles of e-cigarettes in social behavior, and little is known about the potential impacts of flavorings in the ENDS. In our study, we aimed to investigate the effects of menthol flavor in ENDS on the social behavior of long-term vapor-exposed mice with a daily intake limit, and the underlying immunometabolic changes in the central and peripheral systems. We found that the addition of menthol flavor in nicotine vapor enhanced the social activity compared with the nicotine alone. The dramatically reduced activation of cellular energy measured by adenosine 5' monophosphate-activated protein kinase (AMPK) signaling in the hippocampus were observed after the chronic exposure of menthol-flavored ENDS. Multiple sera cytokines including C5, TIMP-1, and CXCL13 were decreased accordingly as per their peripheral immunometabolic responses to menthol flavor in the nicotine vapor. The serum level of C5 was positively correlated with the alteration activity of the AMPK-ERK signaling in the hippocampus. Our current findings provide evidence for the enhancement of menthol flavor in ENDS on social functioning, which is correlated with the central and peripheral immunometabolic disruptions; this raises the vigilance of the cautious addition of various flavorings in e-cigarettes and the urgency of further investigations on the complex interplay and health effects of flavoring additives with nicotine in e-cigarettes.

7.
Cell Rep ; 36(2): 109369, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34260917

RESUMO

Synaptic structural plasticity, key to long-term memory storage, requires translation of localized RNAs delivered by long-distance transport from the neuronal cell body. Mechanisms and regulation of this system remain elusive. Here, we explore the roles of KIF5C and KIF3A, two members of kinesin superfamily of molecular motors (Kifs), and find that loss of function of either kinesin decreases dendritic arborization and spine density whereas gain of function of KIF5C enhances it. KIF5C function is a rate-determining component of local translation and is associated with ∼650 RNAs, including EIF3G, a regulator of translation initiation, and plasticity-associated RNAs. Loss of function of KIF5C in dorsal hippocampal CA1 neurons constrains both spatial and contextual fear memory, whereas gain of function specifically enhances spatial memory and extinction of contextual fear. KIF5C-mediated long-distance transport of local translation substrates proves a key mechanism underlying structural plasticity and memory.


Assuntos
Cinesinas/metabolismo , Memória de Longo Prazo , Proteínas Motores Moleculares/metabolismo , Plasticidade Neuronal , Biossíntese de Proteínas , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Potenciais Pós-Sinápticos Excitadores , Medo , Feminino , Mutação com Ganho de Função , Células HEK293 , Hipocampo/metabolismo , Humanos , Aprendizagem , Masculino , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Transtornos da Memória/fisiopatologia , Camundongos Endogâmicos C57BL , Transporte de RNA , Transdução de Sinais , Sinapses/metabolismo , Transmissão Sináptica
8.
Nature ; 574(7778): 372-377, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31619789

RESUMO

Diabetes is far more prevalent in smokers than non-smokers, but the underlying mechanisms of vulnerability are unknown. Here we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb) region of the rodent brain, where it regulates the function of nicotinic acetylcholine receptors. Inhibition of TCF7L2 signalling in the mHb increases nicotine intake in mice and rats. Nicotine increases levels of blood glucose by TCF7L2-dependent stimulation of the mHb. Virus-tracing experiments identify a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show increased circulating levels of glucagon and insulin, and diabetes-like dysregulation of blood glucose homeostasis. By contrast, mutant Tcf7l2 rats are resistant to these actions of nicotine. Our findings suggest that TCF7L2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.


Assuntos
Transtornos do Metabolismo de Glucose/genética , Habenula/metabolismo , Transdução de Sinais , Tabagismo/complicações , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Animais , AMP Cíclico/metabolismo , Glucose/metabolismo , Transtornos do Metabolismo de Glucose/metabolismo , Humanos , Camundongos , Mutagênese , Nicotina/metabolismo , Células PC12 , Pâncreas/metabolismo , Ratos , Receptores Nicotínicos/metabolismo , Tabagismo/genética , Tabagismo/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética
9.
Nat Neurosci ; 20(5): 708-716, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28368384

RESUMO

Tobacco smokers titrate their nicotine intake to avoid its noxious effects, sensitivity to which may influence vulnerability to tobacco dependence, yet mechanisms of nicotine avoidance are poorly understood. Here we show that nicotine activates glucagon-like peptide-1 (GLP-1) neurons in the nucleus tractus solitarius (NTS). The antidiabetic drugs sitagliptin and exenatide, which inhibit GLP-1 breakdown and stimulate GLP-1 receptors, respectively, decreased nicotine intake in mice. Chemogenetic activation of GLP-1 neurons in NTS similarly decreased nicotine intake. Conversely, Glp1r knockout mice consumed greater quantities of nicotine than wild-type mice. Using optogenetic stimulation, we show that GLP-1 excites medial habenular (MHb) projections to the interpeduncular nucleus (IPN). Activation of GLP-1 receptors in the MHb-IPN circuit abolished nicotine reward and decreased nicotine intake, whereas their knockdown or pharmacological blockade increased intake. GLP-1 neurons may therefore serve as 'satiety sensors' for nicotine that stimulate habenular systems to promote nicotine avoidance before its aversive effects are encountered.


Assuntos
Aprendizagem da Esquiva/fisiologia , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Habenula/fisiologia , Nicotina/farmacologia , Animais , Exenatida , Feminino , Técnicas de Silenciamento de Genes , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/antagonistas & inibidores , Receptor do Peptídeo Semelhante ao Glucagon 1/genética , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Núcleo Interpeduncular/fisiologia , Masculino , Camundongos , Camundongos Knockout , Vias Neurais/fisiologia , Nicotina/antagonistas & inibidores , Peptídeos/farmacologia , Ratos , Recompensa , Autoestimulação , Fosfato de Sitagliptina/farmacologia , Núcleo Solitário/fisiologia , Peçonhas/farmacologia
10.
11.
J Alzheimers Dis ; 19(3): 953-62, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20157251

RESUMO

Phosphorylation of tau, a major microtubule-associated protein, has been recently discovered to affect cell apoptosis. While the phosphorylation of tau is dynamically regulated, the role of tau dephosphorylation in cell viability is elusive. Here, we observed that the cells bearing high level of the dephosphorylated tau at Tau-1 epitope were more vulnerable to the apoptosis induced by staurosporine, camptothecin, and hydrogen peroxide, though the general outcome of tau expression was still anti-apoptotic. Further studies demonstrate that co-expression of tau and protein phosphatase 2A catalytic subunit (PP2Ac), the most active tau phosphatase, potentiates cell apoptosis with a correlatively increased dephosphorylation of tau and phosphorylation of Bcl-2 at Ser87 (pS87-Bcl2, the inactive form of the anti-apoptotic factor), whereas expression of PP2Ac alone in the absence of tau decreases the levels of pS87-Bcl2 and cleaved PARP, markers of early apoptosis. Finally, both tau and Bcl-2 were co-immunoprecipitated with PP2Ac, but the binding level of Bcl-2 with PP2Ac decreased prominently when tau was co-expressed. These data suggest that tau dephosphorylation by PP2Ac facilitates cell apoptosis with the mechanisms involving a failed dephosphorylation/activation of Bcl-2.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/fisiopatologia , Apoptose/fisiologia , Genes bcl-2/genética , Fosforilação/fisiologia , Proteínas tau/fisiologia , Animais , Anticorpos Monoclonais , Western Blotting , Linhagem Celular Tumoral , Modelos Animais de Doenças , Hipocampo/patologia , Humanos , Imunoprecipitação , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Neuroblastoma/patologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética
12.
Neurochem Res ; 33(9): 1811-20, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18338250

RESUMO

Protein kinase A (PKA) plays a crucial role in tau hyperphosphorylation, an early event of Alzheimer disease (AD), and 17beta-estradiol replacement in aging women forestalls the onset of AD. However, the role of estradiol in PKA-induced tau hyperphosphorylation is not known. Here, we investigated the effect of 17beta-estradiol on cAMP/PKA activity and the PKA-induced tau hyperphosphorylation in HEK293 cells stably expressing tau441. We found that 17beta-estradiol effectively attenuated forskolin-induced overactivation of PKA and elevation of cAMP, and thus prevented tau from hyperphosphorylation. These data provide the first evidence that 17beta-estradiol can inhibit PKA overactivation and the PKA-induced tau hyperphosphorylation, implying a preventive role of 17beta-estradiol in AD-like tau pathology.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Estradiol/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Linhagem Celular , Colforsina/farmacologia , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Estradiol/farmacologia , Feminino , Humanos , Masculino , Fosforilação/efeitos dos fármacos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Regulação para Cima
13.
J Neural Transm (Vienna) ; 115(6): 879-88, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18217188

RESUMO

Decline of estrogen is associated with high incidence of Alzheimer's disease (AD) characterized pathologically with tau hyperphosphorylation, and glycogen synthase kinase-3beta (GSK-3beta) is a major tau kinase. However, the role of estrogen on GSK3beta-induced tau hyperphosphorylation is elusive. Here, we treated N2a cells with wortmannin (Wort) and GF-109203X (GFX) or gene transfection to activate GSK-3beta and to induce tau hyperphosphorylation and then the effects of 17beta-estradiol (betaE2) on tau phosphorylation and GSK-3beta activity were studied. We found that betaE2 could attenuate tau hyperphosphorylation at multiple AD-related sites, including Ser396/404, Thr231, Thr205, and Ser199/202, induced by Wort/GFX or transient overexpression of GSK-3beta. Simultaneously, it increased the level of Ser9-phosphorylated (inactive) GSK-3beta. To study whether the protective effect of betaE2 on GSK-3beta and tau phosphorylation involves protein kinase B (Akt), an upstream effector of GSK-3, we transiently expressed the dominant negative Akt (dnAkt) in the cells. We found that betaE2 could attenuate Wort/GFX-induced GSK-3beta activation and tau hyperphosphorylation with Akt-independent manner. It suggests that betaE2 may arrest AD-like tau hyperphosphorylation by directly targeting GSK-3beta.


Assuntos
Doença de Alzheimer/metabolismo , Estradiol/farmacologia , Quinase 3 da Glicogênio Sintase/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas tau/metabolismo , Androstadienos/farmacologia , Animais , Linhagem Celular Tumoral , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta , Indóis/farmacologia , Maleimidas/farmacologia , Camundongos , Emaranhados Neurofibrilares/efeitos dos fármacos , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/genética , Transfecção/métodos , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Wortmanina , Proteínas tau/efeitos dos fármacos
14.
Huan Jing Ke Xue ; 27(4): 669-74, 2006 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-16767985

RESUMO

Algal will turn abio-phosphate and ADP (Adenosine biphosphate) into ATP (Adenosine Triphosphate) for storing energy under enough sunlight. As environment conditions change, there will be a reversible process that ATP turns into ADP in order to release energy. Based on local monitoring data from representative valleys along the Three-Gorges valley during algae blooms, the activation energy deltaE of green alga photophosphorylation, the effective energy delta e and the integrated nutritional index TLI(sigma) in these water areas under different hydrological conditions are studied, and then the algae blooms evaluative Function F which has three parameters deltaE, delta e and TLI(sigma) has been constructed. Based on the impact degree of inner factors and environmental factors described above to algae blooms, correlative weight coefficient of deltaE, delta e and TLI(sigma) were introduced as a1 = 0.3, a2 = 0.3 and a3 = 0.4 respectively. Computing results and local monitoring data indicate that F is more reasonable, persuasible and generalizable than a single TLI(sigma) to predicate algae blooms or eutrophication in water environment.


Assuntos
Monitoramento Ambiental , Eucariotos/crescimento & desenvolvimento , Poluição da Água , China , Clorofila/análise , Eutrofização , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA