Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Int J Biol Macromol ; 247: 125663, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37399880

RESUMO

Hydrogels for wound dressings have recently attracted considerable attention in the field of biomedical materials. Developing hydrogel dressings with multiple functions, including good antibacterial, mechanical and adhesive properties, to enhance wound regeneration is significant for clinical applications. To this end, a novel hydrogel wound dressing (PB-EPL/TA@BC) was developed, which was prepared by incorporating bacterial cellulose (BC) modified with tannic acid and ε-polylysine (EPL) into a PVA and borax matrix through a simple method without introducing any other chemical reagents. The hydrogel exhibited good adhesion (8.8 ± 0.2 kPa) to porcine skin, and the mechanical properties were significantly improved after adding BC. Meanwhile, it showed good inhibition against Escherichia coli, Staphylococcus aureus and Methicillin-resistant Staphylococcus aureus (84.1 ± 2.6 %, 86.0 ± 2.3 % and 80.7 ± 4.5 %) in vitro and Methicillin-resistant Staphylococcus aureus (MRSA) in vivo without the use of antibiotics, ensuring that the process of wound repair with a sterile environment. The hydrogel also presented good cytocompatibility and biocompatibility and could achieve hemostasis within 120 s. The in vivo experiments indicated that hydrogel could not only instantly complete hemostasis of the injured liver models but also obviously promote wound healing in a full-thickness skin. Furthermore, the hydrogel accelerated wound healing process by reducing inflammation promoting collagen deposition compared with commercial Tegaderm™ films. Therefore, the hydrogel is a promising high-end dressing material for wound hemostasis and repair for to enhance the wound healing.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Polifenóis , Suínos , Animais , Polifenóis/farmacologia , Polilisina/farmacologia , Hidrogéis/farmacologia , Antibacterianos/farmacologia , Celulose/farmacologia , Escherichia coli , Cicatrização
2.
Vet Res ; 54(1): 22, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918891

RESUMO

Orf virus (ORFV) is the causative agent of contagious ecthyma, which is an important zoonotic pathogen with a widespread distribution affecting sheep, goats and humans. Our previous research showed that autophagy can be induced in host cells by ORFV infection. However, the exact mechanism of ORFV-induced autophagy remains unknown. In this study, we investigated the underlying mechanisms of autophagy induced by ORFV in OFTu cells and the impact of autophagy on ORFV replication. By using specific autophagy inhibitors and activators, Western blotting, immunofluorescence and transmission electron microscopy imaging, we confirmed that ORFV infection triggered intracellular autophagosome accumulation and the activation of autophagic flux. Moreover, ORFV-induced autophagic activity was found to rely on an increase in the phosphorylation of tuberous sclerosis complex 2 (TSC2) and a decrease in the phosphorylation of mammalian target of rapamycin (mTOR), which is mediated by the suppression of the PI3K/AKT/mTOR signalling pathway and activation of the ERK1/2/mTOR signalling pathway. Furthermore, we investigated the role of mTOR-mediated autophagy during ORFV replication using pharmacological agents and demonstrated that ORFV-induced autophagy correlated positively with viral replication. Taken together, our data reveal the pathways of ORFV-induced autophagy and the impact of autophagy on ORFV replication, providing new insights into ORFV pathogenesis.


Assuntos
Vírus do Orf , Animais , Humanos , Autofagia , Sistema de Sinalização das MAP Quinases , Vírus do Orf/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ovinos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral
3.
Exp Hematol Oncol ; 12(1): 31, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918934

RESUMO

BACKGROUND: Endoplasmic reticulum stress (ER stress) may destroy endoplasmic reticulum homeostasis (ER homeostasis) and leads to programmable cell death. Unfolded protein response (UPR) originally stimulated by ER stress is critical for the survival of tumor cells through trying to re-establish ER homeostasis as an adaption to harsh microenvironment. However, mechanisms involving key regulators in modulating UPR remain underexplored. METHODS: The expression of LINP1 in cutaneous squamous cell carcinoma (cSCC) tissues and cell lines was assessed. Subsequently, LINP1 was knocked out, knocked down or overexpressed in cSCC cells. CCK-8 assays, colony forming assays, transwell migration assays and invasiveness measurement by matrigel-coated transwell were performed to examine the role of LINP1 in cSCC development through gain-of-function and loss-of-function experiments. Transcriptomic sequencing (RNA-Seq) was conducted and indicated the key downstream signaling events regulated by LINP1 including UPR and apoptosis signaling. Furthermore, the direct interaction between LINP1 and eIF2α to modulate UPR and apoptosis was confirmed by RNA pulldown, RNA immunoprecipitation (RIP), ChIP-qPCR and in vitro phosphorylation assays. RESULTS: In this study, LncRNA in non-homologous end joining pathway 1 (LINP1) was identified to be one of the top ten highest-expressed LncRNAs in cSCC, the second most common cancer in the world. Functional studies using in vitro and in vivo models revealed that LINP1 functions as an oncogene to promote cell proliferation, colony formation, migration and invasiveness while inhibiting cell apoptosis in cSCC. Transcriptomic sequencing after knockdown of LINP1 indicated LINP1 negatively regulates UPR-related pathways involving key effectors for activating UPR and the apoptosis following the prolonged UPR. Mechanistic study showed LINP1 physically interacts with eIF2α to inhibit its phosphorylation for avoiding unmitigated UPR. Loss of LINP1 followed by enhanced eIF2α phosphorylation led to overactivated UPR and induced DDIT3 expression, contributing to ER stress-induced apoptosis and suppression of cSCC development. CONCLUSIONS: Our findings demonstrate a novel regulatory hierarchy of UPR by demonstrating LINP1 as a critical modulator for eIF2α phosphorylation and a suppressor of UPR-mediated apoptosis, which suggests a novel therapeutic target for cSCC treatment.

4.
Cell Death Dis ; 13(10): 847, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36587031

RESUMO

Cutaneous radiation injury (CRI) interrupts the scheduled process of radiotherapy and even compromises the life quality of patients. However, the current clinical options for alleviating CRI are relatively limited. Resveratrol (RSV) has been shown to be a promising protective agent against CRI; yet the mechanisms of RSV enhancing radioresistance were not fully elucidated and limited its clinical application. In this study, we demonstrate RSV promotes cutaneous radioresistance mainly through SIRT7. During ionizing radiation (IR) treatment, RSV indirectly phosphorylates and activates SIRT7 through AMPK, which is critical for maintaining the genome stability of keratinocytes. Immunoprecipitation and mass spectrometry identified HMGB1 to be the key interacting partner of SIRT7 to mediate the radioprotective function of RSV. Mechanistic study elucidated that SIRT7 interacts with and deacetylates HMGB1 to redistribute it into nucleus and "switch on" its function for DNA damage repair. Our findings establish a novel AMPK/SIRT7/HMGB1 regulatory axis that mediates the radioprotective function of RSV to alleviate IR-induced cutaneous DNA injury, providing an efficiently-curative option for patients with CRI during radiotherapy.


Assuntos
Proteína HMGB1 , Lesões por Radiação , Sirtuínas , Humanos , Resveratrol/farmacologia , Proteínas Quinases Ativadas por AMP , Dano ao DNA
5.
Cell Death Dis ; 13(7): 642, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35871161

RESUMO

Hepatocellular carcinoma (HCC) is the most common subtype of liver cancer and the second most fatal cancer in the world despite the great therapeutic advances in the past two decades, which reminds us of the gap in fully understanding the oncogenic mechanism of HCC. To explore the key factors contributing to the progression of HCC, we identified a LncRNA, termed SALIS (Suppression of Apoptosis by LINC01186 Interacting with STAT5A), functions in promoting the proliferation, colony formation, migration and invasion while suppressing apoptosis in HCC cells. Mechanistic study indicated SALIS physically associates with transcription factor STAT5A and binds to the promoter regions of IGFBP3 and Caspase-7 to transcriptionally repress their expression and further inhibit apoptosis. Our findings identified SALIS as an oncogene to promote HCC by physically binding with STAT5A to inhibit the expression of pro-apoptotic IGFBP3 and Caspase-7, which suggests novel therapeutic targets for HCC treatments.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Apoptose/genética , Carcinoma Hepatocelular/patologia , Caspase 7/genética , Caspase 7/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Hepáticas/patologia , RNA Longo não Codificante/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Proteínas Supressoras de Tumor/metabolismo
6.
Front Vet Sci ; 9: 1062908, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619965

RESUMO

Orf virus (ORFV) causes highly contagious vesiculoulcerative pustular and skin lesions in ruminants like sheep. Developing ORFV-based recombinant vaccine is a potential way to combat Orf disease. Although ORFV could propagate in some kinds of primary cells, the proliferative capacity of primary cells is limited. Therefore, establishing immortalized stable cell line is an effective and affordable way for the production of live ORFV vaccine. In the present study, we introduced a telomerase reverse transcriptase (TERT) gene-expressing cassette into primary ovine fetal turbinate (OFTu) cells, then selected and expanded the cells, which was considered as immortalized OFTu cell line. Our results showed that TERT introduction has successfully expended the lifespan of OFTu cell line over 80 passages, without changing the cellular morphology, affecting chromosomes karyotype and inducing the cellular tumorigenic ability. Immortalized OFTu cell line-derived ORFV has caused similar levels of cytopathic effects (CPE), viral titers and viral particles when compared with the ORFV from primary OFTu cell. Importantly, immortalized OFTu cell line was suitable for generating gene-modified ORFV recombinant through homologous recombination, and for the amplification of ORFV recombinant. In summary, an immortalized OFTu cell line was established and characterized, which could be a powerful tool for preparing ORFV recombinant vaccines.

7.
Cell Death Dis ; 12(11): 1070, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34759263

RESUMO

Uncontrolled overactivation of autophagy may lead to autophagic cell death, suppression of which is a pro-survival strategy for tumors. However, mechanisms involving key regulators in modulating autophagic cell death remain poorly defined. Here, we report a novel long noncoding RNA, p53 upregulated regulator of p53 levels (PURPL), functions as an oncogene to promote cell proliferation, colony formation, migration, invasiveness, and inhibits cell death in melanoma cells. Mechanistic studies showed that PURPL promoted mTOR-mediated ULK1 phosphorylation at Ser757 by physical interacting with mTOR and ULK1 to constrain autophagic response to avoid cell death. Loss of PURPL led to AMPK-mediated phosphorylation of ULK1 at Ser555 and Ser317 to over-activate autophagy and induce autophagic cell death. Our results identify PURPL as a key regulator to modulate the activity of autophagy initiation factor ULK1 to repress autophagic cell death in melanoma and may represent a potential intervention target for melanoma therapy.


Assuntos
Morte Celular Autofágica/imunologia , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Melanoma/genética , Neoplasias Cutâneas/genética , Proteína Supressora de Tumor p53/metabolismo , Animais , Humanos , Incidência , Camundongos , Fosforilação , Melanoma Maligno Cutâneo
8.
Front Med (Lausanne) ; 8: 757459, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087843

RESUMO

Objective: To study the differences in clinical characteristics, risk factors, and complications across age-groups among the inpatients with the coronavirus disease 2019 (COVID-19). Methods: In this population-based retrospective study, we included all the positive hospitalized patients with COVID-19 at Wuhan City from December 29, 2019 to April 15, 2020, during the first pandemic wave. Multivariate logistic regression analyses were used to explore the risk factors for death from COVID-19. Canonical correlation analysis (CCA) was performed to study the associations between comorbidities and complications. Results: There are 36,358 patients in the final cohort, of whom 2,492 (6.85%) died. Greater age (odds ration [OR] = 1.061 [95% CI 1.057-1.065], p < 0.001), male gender (OR = 1.726 [95% CI 1.582-1.885], p < 0.001), alcohol consumption (OR = 1.558 [95% CI 1.355-1.786], p < 0.001), smoking (OR = 1.326 [95% CI 1.055-1.652], p = 0.014), hypertension (OR = 1.175 [95% CI 1.067-1.293], p = 0.001), diabetes (OR = 1.258 [95% CI 1.118-1.413], p < 0.001), cancer (OR = 1.86 [95% CI 1.507-2.279], p < 0.001), chronic kidney disease (CKD) (OR = 1.745 [95% CI 1.427-2.12], p < 0.001), and intracerebral hemorrhage (ICH) (OR = 1.96 [95% CI 1.323-2.846], p = 0.001) were independent risk factors for death from COVID-19. Patients aged 40-80 years make up the majority of the whole patients, and them had similar risk factors with the whole patients. For patients aged <40 years, only cancer (OR = 17.112 [95% CI 6.264-39.73], p < 0.001) and ICH (OR = 31.538 [95% CI 5.213-158.787], p < 0.001) were significantly associated with higher odds of death. For patients aged >80 years, only age (OR = 1.033 [95% CI 1.008-1.059], p = 0.01) and male gender (OR = 1.585 [95% CI 1.301-1.933], p < 0.001) were associated with higher odds of death. The incidence of most complications increases with age, but arrhythmias, gastrointestinal bleeding, and sepsis were more common in younger deceased patients with COVID-19, with only arrhythmia reaching statistical difference (p = 0.039). We found a relatively poor correlation between preexisting risk factors and complications. Conclusions: Coronavirus disease 2019 are disproportionally affected by age for its clinical manifestations, risk factors, complications, and outcomes. Prior complications have little effect on the incidence of extrapulmonary complications.

9.
ACS Appl Mater Interfaces ; 12(38): 43331-43338, 2020 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-32838522

RESUMO

Properties of the underlying hole transport layer (HTL) in perovskite light-emitting devices (PeLEDs) play a critical role in determining the optoelectronic performance through influencing both the charge transport and the quality of the active perovskite emission layer (EML). This work focuses on manipulating the carrier transport behavior and obtaining a high-quality EML film by tailoring the poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HTL with previously unused amino alcohol 3-amino-1-propanol (3AP). The modified PEDOT:PSS rendered a deeper work function that is more suitable for the hole injection from the HTL to EML. More importantly, the 3AP-modified PEDOT:PSS film can induce a low-dimensional perovskite phase that can passivate the defects in the EML, resulting in a significantly improved light emission. Such ameliorations consequently result in a dramatical enhancement in performance of PeLED with a low turn-on voltage of 2.54 V, a maximum luminance of 23033 cd/m2, a highest current efficiency of 29.38 cd/A, a corresponding maximum external quantum efficiency of 9.4%, and a prolonged lifetime of 6.1 h at a proper Cs/Pb ratio.

10.
Med Sci Monit ; 26: e922070, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32578582

RESUMO

BACKGROUND We aimed to screen and identify central genetic and molecular targets involved in advancement of lung adenocarcinoma (LUAD) and to perform an integrated analysis and clinical validation. MATERIAL AND METHODS The GEO2R technique was utilized to assess differentially expressed genes (DEGs) among the gene sets GSE75037, GSE85716, and GSE118370. Subsequently, gene Ontology (GO) analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) analytical methods were executed to determine related biofunctions and signaling pathways, which were annotated with tools from the Database for Annotation, Visualization and Integrated Discovery (DAVID) resource. Then, a protein-protein interaction (PPI) network complex consisting of all detected DEGs was built with the STRING web interface. Cytohubba and MCODE plug-ins for Cytoscape software and Gene Expression Profiling Interactive Analysis (GEPIA) were employed to identify the hub genes. Finally, the mRNA expression of the identified hub genes was quantitatively validated by The Cancer Genome Atlas (TCGA) database analysis and real-time quantitative polymerase chain reaction (RT-qPCR). RESULTS We screened 146 upregulated DEGs and 431 downregulated DEGs with the criteria of |logFC| >1 and P<0.05, and the GO analysis indicated that DEGs were implicated in mitotic nuclear division (biological process, BP), the nucleus (cellular component, CC), and protein binding (molecular function, MF) and were associated with multiple KEGG pathways, such as the p53 signaling pathway in cancer. Then, the top 8 genes that predicted significantly different outcomes in LUAD patients were filtered from the DEGs and selected as hub genes. The TCGA database analysis and RT-qPCR results demonstrated that these genes were differentially expressed with the same trends in LUAD tissues compared with normal tissues. CONCLUSIONS Overall, we propose that 8 genes (PECAM1, CDK1, MKI67, SPP1, TOP2A, CHEK1, CCNB1, and RRM2) might be novel hub genes strongly associated with the progression and prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão/diagnóstico , Adenocarcinoma de Pulmão/genética , Perfilação da Expressão Gênica/métodos , Adenocarcinoma/genética , Biomarcadores Tumorais/genética , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Humanos , Neoplasias Pulmonares/genética , Análise em Microsséries , Prognóstico , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas/genética , Transdução de Sinais , Transcriptoma/genética
11.
Onco Targets Ther ; 13: 3511-3523, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32425551

RESUMO

BACKGROUND: Epithelial-to-mesenchymal transition (EMT) has been considered a latent mediator of diverse biological processes in cancer. However, the mechanisms involved in high glucose-associated EMT in lung adenocarcinoma (LAD) have not been fully clarified. In this study, we aimed to investigate whether mitofusin1 (MFN1) is involved in the EMT of LAD cells induced by glucose and to identify the molecular mechanism involved in this process. MATERIALS AND METHODS: The expression of specific proteins was analysed by Western blotting, immunohistochemistry, co-immunoprecipitation and immunofluorescence analysis. The proliferation, migration and invasion of cells were assessed by Cell Counting Kit-8, bromodeoxyuridine incorporation, wound-healing and transwell assays. Lung tissues of adjacent normal regions and lung tissues from patients with LAD and LAD combined with diabetes mellitus were collected to determine the expression and significance of MFN1. RESULTS: Here, we showed that the expression of MFN1 was increased in LAD tissues compared with adjacent normal tissues and expression was even higher in lung tissues from patients with LAD combined with diabetes. In the lung cancer cell line A549, increased cell proliferation, invasion and EMT induced by high glucose were inhibited by MFN1 silencing. Mechanistic studies demonstrated that inhibiting autophagy reversed the abnormal EMT triggered by high glucose conditions. In addition, our data provide novel evidence demonstrating that PTEN-induced kinase (Pink) is a potential regulator involved in MFN1-mediated cell autophagy, which eventually leads to high glucose-induced proliferation, invasion and EMT of A549 cells. CONCLUSION: Taken together, our data show that MFN1 interacts with Pink to induce the autophagic process and that the abnormal occurrence of autophagy ultimately contributes to glucose-induced pathological EMT in LAD.

12.
Med Sci Monit ; 25: 9280-9289, 2019 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-31805030

RESUMO

Non-small cell lung cancer (NSCLC) is the main histologic form of lung cancer that affects human health, but biomarkers for therapeutic diagnosis and prognosis of the disease are currently lacking. The gene expression profile GSE18842 was downloaded from the Gene Expression Omnibus database in this prospective study, which consisted of 46 tumors and 45 controls. After screening differentially expressed genes (DEGs), we conducted functional enrichment analysis and KEGG analysis with upregulated differentially expressed genes (uDEGs) and downregulated differentially expressed genes (dDEGs), respectively. Protein-protein interaction (PPI) networks among DEGs and corresponding coding protein complexes, constructed using the STRING database, were analyzed using Cytoscape. Kaplan-Meier method was used to verify survival associated with hub genes. The GEPIA webserver was used to plot the gene expression level heat map of hub genes between NSCLC and adjacent lung tissues in the TCGA database. We identified 368 DEGs (168 uDEGs and 200 dDEGs) in NSCLC samples relative to control samples after gene integration. We established a PPI network for the DEGs, which had 249 nodes and 1472 edges protein pairs. Ten undefined hub genes with the highest connectivity degree (CDK1, UBE2C, AURKA, CCNA2, CDC20, CCNB1, TOP2A, ASPM, MAD2L1, and KIF11) were verified by survival analysis, and 9 of them were associated with poorer overall survival in NSCLC. The expression reliability of hub genes was verified by use of the GEPIA web tool. The results suggested that UBE2C, AURKA, CCNA2, CDC20, CCNB1, TOP2A, ASPM, MAD2L1, and KIF11 are inherent key biomarkers for diagnosis and prognosis, while KEGG analysis results showed the mitotic cell cycle pathway is a probable signaling pathway contributing to NSCLC progression. These genes could be promising biomarkers for diagnosis and provide a new approach for developing targeted therapeutic NSCLC drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Biologia Computacional/métodos , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , China , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/genética , Ontologia Genética , Redes Reguladoras de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Análise em Microsséries , Prognóstico , Mapas de Interação de Proteínas/genética , Reprodutibilidade dos Testes , Transcriptoma/genética
13.
ChemMedChem ; 13(12): 1181-1192, 2018 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-29637713

RESUMO

A novel series of indole-2-carbohydrazide derivatives were synthesized, characterized, and evaluated for their antiproliferative activities against two cancer cell lines, HCT116 and SW480, and a normal human fetal lung fibroblast cell line, MRC-5. Among this series, compound 24 f displayed potent cytotoxic activities in vitro against HCT116 and SW480 cell lines with GI50 values of 8.1 and 7.9 µm, respectively, and was inactive against MRC-5 cells. The newly synthesized compounds were also evaluated for anti-angiogenesis capabilities by chick chorioallantoic membrane, human umbilical vein endothelial cell (HUVEC) migration, and endothelial microtubule formation assays. Moreover, the effects of 24 f on the vascular endothelial growth factor receptor-2 and the signaling pathway in HUVECs indicated that this compound inhibits VEGFR-2 and its downstream related proteins. These results indicate that compound 24 f, as well as the other derivatives, are promising inhibitors of angiogenesis.


Assuntos
Inibidores da Angiogênese/farmacologia , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Hidrazonas/farmacologia , Indóis/farmacologia , Inibidores da Angiogênese/síntese química , Inibidores da Angiogênese/química , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Galinhas , Membrana Corioalantoide/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidrazonas/síntese química , Hidrazonas/química , Indóis/síntese química , Indóis/química , Estrutura Molecular , Transdução de Sinais/efeitos dos fármacos , Relação Estrutura-Atividade , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
14.
Exp Ther Med ; 15(1): 447-453, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29250159

RESUMO

Conotruncal defects (CTDs) account for ~30% of all types of congenital heart disease and contribute to increased morbidity and mortality rates. Increasing evidence suggests that genetic risk factors are involved in the pathogenesis of CTDs. Mutations in a number of genes, including the TBX1 gene that codes for a T-box transcription factor essential for normal cardiovascular development, may contribute to the development of CTD. CTDs are genetically heterogeneous and the genetic defects responsible for CTDs in the majority of patients remain unknown. The present study sequenced the coding regions and splicing junction boundaries of TBX1 in 136 patients with CTDs and 300 matched healthy individuals. The disease-causing potential of the identified TBX1 sequence variation was evaluated using MutationTaster, PolyPhen-2, SIFT and PROVEN software. The functional characteristics of the mutant TBX1 gene were defined using a dual-luciferase reporter assay system. A novel heterozygous TBX1 mutation, p.S233Y, was identified in a patient with transposition of the great arteries (TGA) and a ventricular septal defect. This mutation was absent in the 300 controls and altered the amino acid produced, serine, which is evolutionarily conserved across several species, and was predicted to be pathogenic in silico. Luciferase assays conducted in COS-7 cells demonstrated that the newly identified TBX1 mutation was associated with significantly diminished transcriptional activation of the ANF promoter compared with the wild-type TBX1. To the best of our knowledge, the present study is the first to associate a TBX1 loss-of-function mutation with enhanced susceptibility to TGA, which adds significant insight to the molecular mechanism of TGA.

15.
Nanotechnology ; 28(36): 365201, 2017 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-28675754

RESUMO

As an indium-free transparent conducting film, Al-doped zinc oxide (AZO) was prepared by magnetron sputtering technique, exhibiting good electrical, optical and surface characteristics. UPS/XPS measurements show that AZO and zinc oxide nanoparticles (ZnO NPs) have matched energy level that can facilitate the electron injection from AZO to ZnO NPs. Inverted structural green quantum dot light-emitting diodes based on AZO cathode were fabricated, which exhibits a maximum luminance up to 178 000 cd m-2, and a maximum current efficiency of 10.1 cd A-1. Therewith, combined with the simulated space-charge-limited current (SCLC) theory, the measured current density-voltage characteristics of charge-only devices were analyzed. It demonstrated that AZO and ZnO NPs had much better electron injection efficiency than ITO, showing a electron injection efficiency close to 100%. By studying the relationship between the electric field and the current density, the measured curve of AZO-based devices nearly fits the theoretical curve of SCLC and the AZO electrode has a better ohmic contact with ZnO NPs than ITO.

16.
Int J Med Sci ; 13(1): 60-7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26917986

RESUMO

Atrial fibrillation (AF), the most common type of cardiac rhythm disturbance encountered in clinical practice, is associated with substantially increased morbidity and mortality. Aggregating evidence demonstrates that abnormal cardiovascular development is involved in the pathogenesis of AF. A recent study has revealed that the TBX5 gene, which encodes a T-box transcription factor key to cardiovascular development, was associated with AF and atypical Holt-Oram syndrome. However, the prevalence and spectrum of TBX5 mutation in patients with lone AF remain unclear. In this study, the coding regions and splicing junction sites of TBX5 were sequenced in 192 unrelated patients with lone AF and 300 unrelated ethnically-matched healthy individuals used as controls. The causative potential of the identified TBX5 variation was evaluated by MutationTaster and PolyPhen-2. The functional effect of the mutant TBX5 was assayed by using a dual-luciferase reporter assay system. As a result, a novel heterozygous TBX5 mutation, p.H170D, was identified in a patient, with a mutational prevalence of approximately 0.52%. This mutation, which was absent in the 300 control individuals, altered the amino acid completely conserved evolutionarily across species, and was predicted to be disease-causing. Functional deciphers showed that the mutant TBX5 was associated with significantly reduced transcriptional activity when compared with its wild-type counterpart. Furthermore, the mutation significantly decreased the synergistic activation between TBX5 and NKX2-5 or GATA4. The findings expand the mutational spectrum of TBX5 linked to AF and provide new evidence that dysfunctional TBX5 may contribute to lone AF.


Assuntos
Fibrilação Atrial/genética , Predisposição Genética para Doença , Mutação/genética , Proteínas com Domínio T/genética , Adulto , Sequência de Aminoácidos/genética , Fibrilação Atrial/patologia , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade
17.
Di Yi Jun Yi Da Xue Xue Bao ; 23(1): 62-4, 2003 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-12527520

RESUMO

OBJECTIVE: To investigate the value of superparamagnetic iron oxide particles (SPIO) in magnetic resonance (MR) imaging for detecting lymph node metastasis of tumors. METHODS: Twelve New Zealand rabbits were used in this study, 6 of which received unilateral intra-muscular inoculation of VX2 carcinoma cells to induce lymph node metastasis of the tumor, and the other 6 served as normal control group. MR images of the lymph nodes of the rabbits were obtained before and 12 h after subcutaneous injection of SPIO, followed by image analysis in correlation with pathological examinations. RESULTS: On plain MR images, normal and metastatic lymph nodes showed similar signal characteristics. After administration of SPIO, the signal intensity of both normal lymph nodes and metastatic ones remained unchanged in spin echo (SE) T1-weighted images. On SE T2-weighted images, the signal intensity of normal lymph nodes significantly decreased heterogeneously, while that of all metastatic lymph nodes remained unchanged. In gradient recalled echo (GRE) T2-weighted images, the signal intensity of normal lymph nodes decreased significantly and homogeneously, while that of 4 rabbits in metastasis group remained unchanged, with the signal intensity in the other 2 rabbits decreased heterogeneously. CONCLUSION: SPIO-enhanced MR imaging can be applied to detect lymph node metastasis of the tumors.


Assuntos
Compostos Férricos/farmacologia , Aumento da Imagem , Metástase Linfática/diagnóstico , Animais , Feminino , Linfonodos/patologia , Magnetismo , Masculino , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA