Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
iScience ; 27(7): 110285, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39050705

RESUMO

von Hippel-Lindau (VHL), known as a tumor suppressor gene, is frequently mutated in clear cell renal cell carcinoma (ccRCC). However, VHL mutation is not sufficient to promote tumor formation. In most cases other than ccRCC, VHL loss alters cellular homeostasis and causes cell stress and metabolic changes by stabilizing hypoxia-inducible factor (HIF) levels, resulting in a fitness disadvantage. In addition, the function of VHL in regulating immune response is still not well established. In this study, we demonstrate that VHL loss enhances the efficacy of anti-programmed death 1 (PD1) treatment in multiple murine tumor models in a T cell-dependent manner. Mechanistically, we discovered that upregulation of HIF1α/2α induced by VHL loss decreased mitochondrial outer membrane potential and caused the cytoplasmic leakage of mitochondrial DNA, which triggered cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) activation and induced type I interferons. Our study thus provided mechanistic insights into the role of VHL gene loss in boosting antitumor immunity.

2.
Cell Death Discov ; 10(1): 337, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048556

RESUMO

Epirubicin (EPI) is effective in the treatment of malignant cancers, but its application is limited by life-threatening cardiotoxicity. Iron homeostasis disturbance has been implicated in anthracycline induced cardiotoxicity (AIC), and ferroptosis is involved in AIC which dependent upon intracellular iron. However, the role and exact mechanisms of ferroptosis in the pathogenesis of epirubicin-induced cardiotoxicity (EIC) remain elusive. In this study, we aimed to investigate mechanisms underlying ferroptosis-driven EIC. Epirubicin triggered ferroptosis both in vivo and in cultured cardiomyocytes, and pretreatment with ferroptosis inhibitor, Ferrostatin-1(Fer-1) alleviates EIC. Microarray analysis was performed to screen for potential molecules involved in EIC in neonatal primary mouse ventricular cardiomyocytes (NMVMs). We found that the transcript level of ATP6V0A2, a subunit of vacuolar ATPase (V-ATPase), was significantly downregulated when NMVMs were subjected to EPI, which was verified in vivo and in vitro as measured by real time quantitative reverse transcription PCR (qRT-PCR) and immunoblotting. Intriguingly, overexpression of ATP6V0A2 effectively decreased excessive oxidative stress and lipid-peroxidation accumulation, thereby inhibiting ferroptosis and protecting cardiomyocytes against EIC, as evidenced by functional, enzymatic, and morphological changes. Mechanistically, forced expression of ATP6V0A2 restored lysosomal acidification in EPI-treated cardiomyocytes and protected cardiomyocytes and mice hearts from ferroptosis-driven EIC. In this study, our data elucidate that ferroptosis is involved in EIC, which is ignited by ATP6V0A2-dependent lysosomal acidification dysfunction. Our study provides a new potential therapeutic target for ameliorating EIC.

3.
Cell Death Dis ; 15(7): 486, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38977663

RESUMO

Accumulating evidence suggests that caspase-3 plays critical roles beyond apoptosis, serving pro-survival functions in malignant transformation and tumorigenesis. However, the mechanism of non-apoptotic action of caspase-3 in oncogenic transformation remains unclear. In the present study, we show that caspase-3 is consistently activated in malignant transformation induced by exogenous expression of oncogenic cocktail (c-Myc, p53DD, Oct-4, and H-Ras) in vitro as well as in the mouse mammary tumor virus-polyomavirus middle T antigen (MMTV-PyMT) mouse model of breast cancer. Genetic ablation of caspase-3 significantly attenuated oncogene-induced transformation of mammalian cells and delayed breast cancer progression in MMTV-PyMT transgenic mice. Mechanistically, active caspase-3 triggers the translocation of endonuclease G (EndoG) from mitochondria, which migrates to the nucleus, thereby induces phosphorylation of Src-STAT3 signaling pathway to facilitate oncogenic transformation. Taken together, our data suggest that caspase-3 plays pivotal role in facilitating rather than suppressing oncogene-induced malignant transformation of mammalian cells.


Assuntos
Caspase 3 , Transformação Celular Neoplásica , Oncogenes , Fator de Transcrição STAT3 , Animais , Feminino , Humanos , Camundongos , Caspase 3/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Oncogenes/genética , Fosforilação , Transdução de Sinais , Quinases da Família src/metabolismo , Quinases da Família src/genética , Fator de Transcrição STAT3/metabolismo
4.
Mol Cancer ; 23(1): 27, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297362

RESUMO

BACKGROUND: Pancreatic cancer (PC) is an extremely malignant tumor with low survival rate. Effective biomarkers and therapeutic targets for PC are lacking. The roles of circular RNAs (circRNAs) in cancers have been explored in various studies, however more work is needed to understand the functional roles of specific circRNAs. In this study, we explore the specific role and mechanism of circ_0035435 (termed circCGNL1) in PC. METHODS: qRT-PCR analysis was performed to detect circCGNL1 expression, indicating circCGNL1 had low expression in PC cells and tissues. The function of circCGNL1 in PC progression was examined both in vitro and in vivo. circCGNL1-interacting proteins were identified by performing RNA pulldown, co-immunoprecipitation, GST-pulldown, and dual-luciferase reporter assays. RESULTS: Overexpressing circCGNL1 inhibited PC proliferation via promoting apoptosis. CircCGNL1 interacted with phosphatase nudix hydrolase 4 (NUDT4) to promote histone deacetylase 4 (HDAC4) dephosphorylation and subsequent HDAC4 nuclear translocation. Intranuclear HDAC4 mediated RUNX Family Transcription Factor 2 (RUNX2) deacetylation and thereby accelerating RUNX2 degradation. The transcription factor, RUNX2, inhibited guanidinoacetate N-methyltransferase (GAMT) expression. GAMT was further verified to induce PC cell apoptosis via AMPK-AKT-Bad signaling pathway. CONCLUSIONS: We discovered that circCGNL1 can interact with NUDT4 to enhance NUDT4-dependent HDAC4 dephosphorylation, subsequently activating HDAC4-RUNX2-GAMT-mediated apoptosis to suppress PC cell growth. These findings suggest new therapeutic targets for PC.


Assuntos
MicroRNAs , Neoplasias Pancreáticas , Humanos , RNA Circular/genética , Guanidinoacetato N-Metiltransferase , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fatores de Transcrição/genética , Neoplasias Pancreáticas/genética , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Apoptose , MicroRNAs/genética , Proliferação de Células , Linhagem Celular Tumoral , Proteínas Repressoras
5.
bioRxiv ; 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38076884

RESUMO

Despite a moderate mutation burden, clear cell renal cell carcinoma (ccRCC) responds well to immune checkpoint blockade (ICB) therapy. Here we report that loss-of-function mutations in the von Hippel-Lindau (VHL) gene, the most frequent in ccRCC, underlies its responsiveness to ICB therapy. We demonstrate that genetic knockout of the VHL gene enhanced the efficacy of anti-PD-1 therapy in multiple murine tumor models in a T cell-dependent manner. Mechanistically, we discovered that upregulation of HIF1α and HIF2α induced by VHL gene loss decreased mitochondrial outer membrane potential and caused the cytoplasmic leakage of mitochondrial DNA (mtDNA), which triggered cGAS-STING activation and induced type I interferons. Our study thus provided novel mechanistic insights into the role of VHL gene loss in potentiating ccRCC immunotherapy.

6.
Target Oncol ; 18(6): 941-952, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37855991

RESUMO

BACKGROUND: The efficacy of systemic treatment for primary central nervous system lymphoma (PCNSL) is limited because of the blood-brain barrier (BBB) and the ineffectiveness of chemotherapy. The dual PI3K/HDAC inhibitor BEBT-908 has exhibited favorable in vivo distribution and activity in various cancers. OBJECTIVES: The aims of this study were to assess the efficacy of BEBT-908 in brain orthotopic mouse models of hematological malignancies, to investigate its pharmacologic properties, and to elucidate the underlying mechanism of action. METHODS: We evaluated the anticancer activity of BEBT-908 in various hematological malignancies through cell viability assays. The impact of BEBT-908 on c-Myc expression and ferroptosis signaling pathways was assessed using Western blotting, qPCR, ROS detection, GSH/GSSG detection, and IHC. Pharmacokinetic and pharmacodynamic profiles were assessed through LC-MS/MS and Western blotting. The effects of BEBT-908 in vivo were examined using xenografts and brain orthotopic mouse models. RESULTS: Our findings demonstrate that BEBT-908 exhibits promising anti-tumor activity in vitro and in vivo across multiple subtypes of hematological malignancies. Furthermore, BEBT-908 exhibits excellent BBB penetration and inhibits tumor growth in a brain orthotopic lymphoma model with prolonged survival of host mice. Mechanistically, BEBT-908 downregulated c-Myc expression, which contributed to ferroptosis, ultimately leading to tumor shrinkage. CONCLUSION: Our study provides robust evidence for the dual PI3K/HDAC inhibitor BEBT-908 as an effective anti-cancer agent for PCNSL.


Assuntos
Neoplasias Hematológicas , Linfoma não Hodgkin , Linfoma , Neoplasias , Humanos , Camundongos , Animais , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Inibidores de Fosfoinositídeo-3 Quinase , Linfoma/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Sistema Nervoso Central/metabolismo , Linhagem Celular Tumoral
7.
Mol Carcinog ; 62(10): 1518-1530, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37341611

RESUMO

RRM2 is the catalytic subunit of ribonucleotide reductase (RNR), which catalyzes de novo synthesis of deoxyribonucleotide triphosphates (dNTPs) and plays critical roles in cancer cell proliferation. RRM2 protein level is controlled by ubiquitination mediated protein degradation system; however, its deubiquitinase has not been identified yet. Here we showed that ubiquitin-specific peptidase 12 (USP12) directly interacts with and deubiquitinates RRM2 in non-small cell lung cancer (NSCLC) cells. Knockdown of USP12 causes DNA replication stress and retards tumor growth in vivo and in vitro. Meanwhile, USP12 protein levels were positively correlated to RRM2 protein levels in human NSCLC tissues. In addition, high expression of USP12 was associated with poor prognosis in NSCLC patients. Therefore, our study reveals that USP12 is a RRM2 regulator and targeting USP12 could be considered as a potential therapeutical strategy for NSCLC treatment.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pulmonares/genética , Ubiquitina Tiolesterase/genética , Ubiquitina Tiolesterase/metabolismo , Ubiquitinação
8.
Ageing Res Rev ; 89: 101984, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37330019

RESUMO

BACKGROUND: The associations between lipocalin-2 (LCN2) with mild cognitive impairment (MCI) and dementia have gained growing interest. However, population-based studies have yielded inconsistent findings. Therefore, we conducted this essential systematic review and meta-analysis to analyze and summarize the existing population-based evidence. METHODS: PubMed, EMBASE, and Web of Science were systematically searched until Mar 18, 2022. Meta-analysis was performed to generate the standard mean difference (SMD) of peripheral blood and cerebrospinal fluid (CSF) LCN2. A qualitative review was performed to summarize the evidence from postmortem brain tissue studies. RESULTS: In peripheral blood, the overall pooled results showed no significant difference in LCN2 across Alzheimer's disease (AD), MCI and control groups. Further subgroup analysis revealed higher serum LCN2 levels in AD compared to controls (SMD =1.28 [0.44;2.13], p = 0.003), while the difference remained insignificant in plasma (SMD =0.04 [-0.82;0.90], p = 0.931). Besides, peripheral blood LCN2 were higher in AD when age difference between AD and controls ≥ 4 years (SMD =1.21 [0.37;2.06], p = 0.005). In CSF, no differences were found in LCN2 across groups of AD, MCI and controls. However, CSF LCN2 was higher in vascular dementia (VaD) compared to controls (SMD =1.02 [0.17;1.87], p = 0.018), as well as compared to AD (SMD =1.19 [0.58;1.80], p < 0.001). Qualitative analysis supported that LCN2 was increased in the brain tissue of AD-related areas, especially in astrocytes and microglia; while LCN2 increased in infarct-related brain areas and over-expressed in astrocytes and macrophages in mixed dementia (MD). CONCLUSION: The difference in peripheral blood LCN2 between AD and controls may be affected by the type of biofluid and age. No differences were found in CSF LCN2 across AD, MCI and controls groups. In contrast, CSF LCN2 was elevated in VaD patients. Moreover, LCN2 was increased in AD-related brain areas and cells in AD, while in infarcts-related brain areas and cells in MD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Demência Vascular , Demências Mistas , Humanos , Doença de Alzheimer/diagnóstico , Biomarcadores , Disfunção Cognitiva/diagnóstico , Demência Vascular/diagnóstico , Lipocalina-2
9.
Adv Sci (Weinh) ; 10(10): e2205835, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36739602

RESUMO

Cytotoxic chemotherapy is a primary treatment modality for many patients with advanced cancer. Increasing preclinical and clinical observations indicate that chemotherapy can exacerbate tumor metastasis. However, the underlying mechanism remains unclear. Here, it is attempted to identify the mechanisms underlying chemotherapy-induced cancer recurrence and metastasis. It is revealed that a small subpopulation of "near-death cells" (NDCs) with compromised plasma membranes can reverse the death process to enhance survival and repopulation after exposure to lethal doses of cytotoxins. Moreover, these NDCs acquire enhanced tumorigenic and metastatic capabilities, but maintain chemosensitivity in multiple models. Mechanistically, cytotoxin exposure induces activating transcription factor 4 (ATF4)-dependent nonclassical NF-κB signaling activation; ultimately, this results in nuclear translocation of p52 and RelB in NDCs. Deletion of ATF4 in parental cancer cells significantly reduces colony formation and metastasis of NDCs, whereas overexpression of ATF4 activates the nonclassical NF-κB signaling pathway to promote chemotherapy-induced metastasis of NDCs. Overall, these results provide novel mechanistic insights into the chemotherapy-induced metastasis and indicate the pivotal role of NDCs in mediating tumor relapse after cytotoxic therapy. This study also suggests that targeting ATF4 may be an effective approach in improving the efficacy of chemotherapy.


Assuntos
Antineoplásicos , NF-kappa B , Humanos , NF-kappa B/metabolismo , Fator 4 Ativador da Transcrição/metabolismo , Recidiva Local de Neoplasia , Transdução de Sinais
10.
PLoS Negl Trop Dis ; 17(2): e0011105, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36730424

RESUMO

Toxoplasma gondii is the most successful parasite worldwide. It is of great interest to understand how T. gondii induce different immune responses in different hosts. In this study, we found that a peptide of T. gondii microneme protein MIC3 induced TNF-α production, NF-κB phosphorylation, iNOS transcription and Ly6C expression in mouse macrophage RAW264.7 cells. MyD88 inhibition, small interfering RNA against Tlr11 and CRISPR/Cas9-mediated knock-out of Tlr11 all reduced MIC3-induced TNF-α production, NF-κB phosphorylation, iNOS transcription and Ly6C expression. Additionally, we determined the location of MIC3 peptide in mouse macrophages using immunofluorescence. MIC3 could both adhere to the cell membrane of mouse macrophages and enter the cells. These results suggest that MIC3 triggered the immune responses in mouse macrophages via TLR11/MyD88/NF-κB pathway. It is known that human macrophages lacking TLR11. We predicted that the immune responses induced by MIC3 in human macrophages were significantly different from those in mouse macrophages. As expected, MIC3 peptide failed to induce TNF-α expression, iNOS expression and NF-κB phosphorylation in human THP-1 derived macrophages. MIC3 induced macrophage immune responses via TLR11. Intriguingly, the amino acid sequence of MIC3 is completely different from the well-known TLR11 ligand profilin, which generates a potent IL-12p40, TNF-α and IL-6 response. In marked contrast to profilin, MIC3 could not induce IL-12p40 expression in both mouse RAW264.7 cells and human THP-1 derived macrophages. Furthermore, the simulated tertiary structure of MIC3 peptide shows poor similarity with the crystal structure of profilin, suggesting that MIC3 might be a different ligand from profilin. These findings about MIC3 and TLR11 will provide us with important insights into the pathogenesis of toxoplasmosis and coevolution during host-parasite interaction.


Assuntos
Toxoplasma , Toxoplasmose Animal , Camundongos , Humanos , Animais , Fator de Necrose Tumoral alfa/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p40 da Interleucina-12/metabolismo , NF-kappa B , Profilinas , Ligantes , Micronema , Toxoplasmose Animal/parasitologia , Macrófagos/metabolismo , Receptores Toll-Like/genética
11.
Adv Sci (Weinh) ; 10(8): e2204177, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36658726

RESUMO

Repopulation of residual tumor cells impedes curative radiotherapy, yet the mechanism is not fully understood. It is recently appreciated that cancer cells adopt a transient persistence to survive the stress of chemo- or targeted therapy and facilitate eventual relapse. Here, it is shown that cancer cells likewise enter a "radiation-tolerant persister" (RTP) state to evade radiation pressure in vitro and in vivo. RTP cells are characterized by enlarged cell size with complex karyotype, activated type I interferon pathway and two gene patterns represented by CST3 and SNCG. RTP cells have the potential to regenerate progenies via viral budding-like division, and type I interferon-mediated antiviral signaling impaired progeny production. Depleting CST3 or SNCG does not attenuate the formation of RTP cells, but can suppress RTP cells budding with impaired tumor repopulation. Interestingly, progeny cells produced by RTP cells actively lose their aberrant chromosomal fragments and gradually recover back to a chromosomal constitution similar to their unirradiated parental cells. Collectively, this study reveals a novel mechanism of tumor repopulation, i.e., cancer cell populations employ a reversible radiation-persistence by poly- and de-polyploidization to survive radiotherapy and repopulate the tumor, providing a new therapeutic concept to improve outcome of patients receiving radiotherapy.


Assuntos
Neoplasias , Humanos , Linhagem Celular Tumoral , Neoplasias/radioterapia
12.
J Oncol ; 2022: 1790993, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36245993

RESUMO

Abnormalities of the ERCC1 gene can affect DNA repair pathways, thereby having a vital effect on genomic stability. A growing amount of case-control studies have focused on making an investigation of the association between ERCC1 rs11615 polymorphism and cervical cancer susceptibility. However, the controversial results have raised concerns. To draw a more accurate conclusion, six studies were elaborately selected from the electronic databases for this meta-analysis, with 753 cervical cancer cases and 851 healthy controls. We applied pooled ORs combined with 95% CIs to test the potential associations. Significant associations were revealed in Chinese populations (T vs C: OR = 1.557 and 95%CI = 1.234-1.966; TT vs CC: OR = 3.175 and 95%CI = 1.754-5.748; TT/CT vs CC: OR = 1.512 and 95%CI = 1.126-2,031; and TT vs CT/CC: OR = 2.836 and 95%CI = 1.592-5.051). Even when the studies deviating from HWE were excluded, an increased cervical cancer susceptibility was observed in Chinese. These results disclose that there is an obvious correlation between the risk of cervical cancer and ERCC1 rs11615 polymorphism, especially in Chinese populations, and the T variant is the risky one. Also, our findings need further studies to validate.

13.
Ann Hematol ; 101(12): 2611-2616, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36220881

RESUMO

Hetrombopag is the only CFDA-approved thrombopoietin (TPO) receptor agonist for severe aplastic anemia (SAA) in China. Its chemical structure has an iron chelation domain. To explore the iron chelation effect of hetrombopag, we performed a post hoc analysis of the phase II clinical trial (NCT03557099). Thirty-five immunosuppressive therapy (IST)-refractory SAA patients were enrolled in the study, and the longitudinal changes of serum ferritin (SF) were assessed. At 18 weeks post-hetrombopag initiation, 51.4% of patients showed decreased SF levels by a median of 49.0 (18.1-95.5) % from baseline (median ΔSF decrease value, 917.2 ng/ml, range from 104.0 to 7030.0 ng/ml). A decrease in SF was found in 75.0% of hematologic responders and 31.6% of non-responders. Among the 24 patients with iron overload, 12 had decreased SF levels by up to 51% of the baseline. Patients with normal SF levels also showed decreased SF levels, and iron deficiency occurred in two patients. In conclusion, hetrombopag showed a powerful and rapid iron chelation effect.


Assuntos
Anemia Aplástica , Pirazolonas , Humanos , Anemia Aplástica/tratamento farmacológico , Pirazolonas/uso terapêutico , Hidrazonas/uso terapêutico , Trombopoetina/uso terapêutico , Quelantes de Ferro/uso terapêutico
14.
Cell Mol Life Sci ; 79(7): 352, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676564

RESUMO

Immune checkpoint blockade therapy has drastically improved the prognosis of certain advanced-stage cancers. However, low response rates and immune-related adverse events remain important limitations. Here, we report that inhibiting ALG3, an a-1,3-mannosyltransferase involved in protein glycosylation in the endoplasmic reticulum (ER), can boost the response of tumors to immune checkpoint blockade therapy. Deleting N-linked glycosylation gene ALG3 in mouse cancer cells substantially attenuates their growth in mice in a manner depending on cytotoxic T cells. Furthermore, ALG3 inhibition or N-linked glycosylation inhibitor tunicamycin treatment synergizes with anti-PD1 therapy in suppressing tumor growth in mouse models of cancer. Mechanistically, we found that inhibiting ALG3 induced deficiencies of post-translational N-linked glycosylation modification and led to excessive lipid accumulation through sterol-regulated element-binding protein (SREBP1)-dependent lipogenesis in cancer cells. N-linked glycosylation deficiency-mediated lipid hyperperoxidation induced immunogenic ferroptosis of cancer cells and promoted a pro-inflammatory microenvironment, which boosted anti-tumor immune responses. In human subjects with cancer, elevated levels of ALG3 expression in tumor tissues are associated with poor patient survival. Taken together, we reveal an unappreciated role of ALG3 in regulating tumor immunogenicity and propose a potential therapeutic strategy for enhancing cancer immunotherapy.


Assuntos
Ferroptose , Manosiltransferases , Neoplasias , Animais , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Lipídeos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Camundongos , Neoplasias/terapia
15.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 39(2): 202-204, 2022 Feb 10.
Artigo em Chinês | MEDLINE | ID: mdl-35076920

RESUMO

OBJECTIVE: To analyze the clinical features and genetic basis for a Chinese pedigree affected with hereditary dyschromatosis symmetrica hereditaria (DSH). METHODS: Peripheral blood samples of the proband and his mother were collected and subjected to PCR and Sanger sequencing. RESULTS: The patient has conformed to the typical pattern of DSH and manifested with hyperpigmentation, hypo- and hyperpigmentation spots on the back of hands, feet and face. Sanger sequencing confirmed that the proband and his mother have both harbored heterozygous splicing variant c.2762+1G>T in exon 9 of the ADAR gene, which was unreported previously. The same variant was not detected among 100 healthy controls. According to the guidelines of the American College of Medical Genetics and Genomics, the variant was predicted to be pathogenic (PVS1+PM2+PP4). CONCLUSION: The c.2762+1G>T variant of the ADAR gene probably underlay the DSH in this pedigree. Above finding has enriched the spectrum of ADAR gene mutations.


Assuntos
Adenosina Desaminase , Proteínas de Ligação a RNA , Adenosina Desaminase/genética , China , Humanos , Mutação , Linhagem , Transtornos da Pigmentação/congênito , Proteínas de Ligação a RNA/genética
16.
Cancer Res ; 81(24): 6233-6245, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34711611

RESUMO

The capacity of targeted anticancer agents to exert immunomodulatory effects provides a strong rationale to develop novel agents suitable for combinatorial regimens with immunotherapy to improve clinical outcomes. In this study, we developed a dual-targeting PI3K and HDAC inhibitor BEBT-908 that potently inhibits tumor cell growth and potentiates anti-PD1 therapy in mice by inducing immunogenic ferroptosis in cancer cells. Treatment with BEBT-908 promoted ferroptotic cell death of cancer cells by hyperacetylating p53 and facilitating the expression of ferroptotic signaling. Furthermore, BEBT-908 promoted a proinflammatory tumor microenvironment that activated host antitumor immune responses and potentiated immune checkpoint blockade therapy. Mechanistically, BEBT-908-induced ferroptosis led to upregulation of MHC class I and activation of endogenous IFNγ signaling in cancer cells via the STAT1 signaling pathway. The dual PI3K/HDAC inhibitor BEBT-908 is a promising targeted therapeutic agent against multiple cancer types that promotes immunogenic ferroptosis and enhances the efficacy of immunotherapy. SIGNIFICANCE: The dual PI3K/HDAC inhibitor BEBT-908 elicits potent antitumor responses, effectively inducing immunogenic ferroptosis of tumor cells and potentiating cancer immunotherapy.


Assuntos
Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/imunologia , Ferroptose , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Pirimidinas/farmacologia , Animais , Apoptose , Proliferação de Células , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Front Cell Dev Biol ; 9: 723103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650975

RESUMO

Background: Immune checkpoint inhibitors have been successfully used in a variety of tumors, however, the efficacy of immune checkpoint blockade therapy for patients with glioma is limited. In this study, we tried to clarify gene expression signatures related to the prognosis of gliomas and construct a signature to predict the survival of patients with gliomas. Methods: Calcium-related differential expressed genes (DEGs) between gliomas and normal brain tissues were comprehensively analyzed in two independent databases. Univariate, multivariate Cox regression analysis and proportional hazards model were used to identify the prognostic of calcium-related risk score signature. The CIBERSORT algorithm and association analysis were carried out to evaluate the relationship between calcium-related signature and characteristic clinical features, tumor-infiltrating immune cell signatures as well as immune checkpoint molecules in glioma. A nomogram model was developed for predicting the overall survival for patients with gliomas. Results: We found the intersection of 415 DEGs between gliomas and normal brain tissues, and identified that an eighteen calcium-related gene panel was significantly enriched in these DEGs. A calcium-related signature derived risk score was developed to divide patients into high- and low-risk groups. Low levels of calcium-related gene expression in high-risk score cases were accompanied with worse outcomes of patients. Calcium-related risk scores were significantly associated with characteristic clinical features, immune infiltrating signatures of tumor microenvironment, and exhausted T cell markers including programmed cell death 1 (PD-1), lymphocyte activating 3 (LAG3), and T cell membrane protein 3 (TIM-3), which contribute to an adverse therapeutic effect of immunotherapy. Calcium-related signature risk score was considered as an independent prognostic parameter to predict the of overall survival of patients with gliomas in nomogram model. Conclusion: Our study demonstrated that calcium signaling pathway is highly associated with immunosuppression of gliomas and overall survival of patients. Targeting the calcium signaling pathway might be a new strategy to reverse the immunosuppressive microenvironment of gliomas and improve the efficacy of glioma immunotherapy.

18.
Front Cell Dev Biol ; 9: 647387, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33763427

RESUMO

Pancreatic cancer (PC) is one of the most lethal human malignancies without effective treatment. In an effort to discover key genes and molecular pathways underlying PC growth, we have identified LIM domain only 7 (LMO7) as an under-investigated molecule, which highly expresses in primary and metastatic human and mouse PC with the potential of impacting PC tumorigenesis and metastasis. Using genetic methods with siRNA, shRNA, and CRISPR-Cas9, we have successfully generated stable mouse PC cells with LMO7 knockdown or knockout. Using these cells with loss of LMO7 function, we have demonstrated that intrinsic LMO7 defect significantly suppresses PC cell proliferation, anchorage-free colony formation, and mobility in vitro and slows orthotopic PC tumor growth and metastasis in vivo. Mechanistic studies demonstrated that loss of LMO7 function causes PC cell-cycle arrest and apoptosis. These data indicate that LMO7 functions as an independent and unrecognized druggable factor significantly impacting PC growth and metastasis, which could be harnessed for developing a new targeted therapy for PC.

19.
Medicine (Baltimore) ; 100(12): e24776, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33761639

RESUMO

BACKGROUND: Postoperative complications after abdominal surgery are high, and there is no reliable intervention program to prevent them. Some studies have pointed out that early postoperative activities have advantages in preventing the occurrence of complications, but lack of evidence-based basis. The purpose of this study is to systematically evaluate the effect of nursing intervention is guiding early postoperative activities on the rapid recovery of patients undergoing abdominal surgery. METHODS: China National Knowledge Infrastructure, Wanfang, China Science and Technology Journal Database and Chinese Biomedical Database, PubMed, Embase, Web of Science and the Cochrane Library will be searched by computer, and a randomized controlled study is conducted on early participation in exercise programs after abdominal surgery from the establishment of the database to January 2021. The language is limited to English and Chinese. The quality of the included study is independently extracted and the literature quality is evaluated by 2 researchers, and the included literature is analyzed by Meta using RevMan5.3 software. RESULTS: This study will evaluate the effect of nursing intervention is guiding early postoperative activities on the rapid rehabilitation of patients undergoing abdominal surgery through the indexes of postoperative quality of life score, the incidence of complications, mortality, length of stay and so on. CONCLUSION: This study will provide reliable evidence-based basis for establishing a reasonable and effective postoperative activity guidance program for patients undergoing abdominal surgery. ETHICS AND DISSEMINATION: Private information from individuals will not be published. This systematic review also does not involve endangering participant rights. Ethical approval will not be required. The results may be published in a peer-reviewed journal or disseminated at relevant conferences. OSF REGISTRATION NUMBER: DOI 10.17605/OSF.IO/59MD4.


Assuntos
Abdome/cirurgia , Cuidados de Enfermagem/métodos , Cuidados Pós-Operatórios/métodos , Complicações Pós-Operatórias/epidemiologia , Procedimentos Cirúrgicos Operatórios/reabilitação , Mortalidade Hospitalar , Humanos , Incidência , Tempo de Internação , Metanálise como Assunto , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Qualidade de Vida , Ensaios Clínicos Controlados Aleatórios como Assunto , Procedimentos Cirúrgicos Operatórios/efeitos adversos , Revisões Sistemáticas como Assunto , Fatores de Tempo , Resultado do Tratamento
20.
Sci Rep ; 11(1): 253, 2021 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420287

RESUMO

Posttransplant cyclophosphamide (PTCy) as graft-versus-host disease (GVHD) prophylaxis is an effective strategie for patients receiving matched sibling donor hematopoietic stem cell transplantation (MSD-HSCT) and haploidentical HSCT (haplo-HSCT). We evaluated the effectiveness and safety of reduced-dose cyclophosphamide, 20 mg/kg for 13 patients in MSD-HSCT cohort and 25 mg/kg for 22 patients in haplo-HSCT cohort, on days + 3, + 4 combined with cotransplantation of peripheral blood stem cells (PBSCs) and human umbilical cord-derived mesenchymal stem cells (UC-MSCs) for severe aplastic anemia (SAA). In MSD-PTCy cohort, the times to neutrophil and platelet engraftment were significantly shorter than those in the MSD-control cohort (P < 0.05). The cumulative incidence of acute GVHD (aGVHD) at day + 100 (15.4%) was lower than that in the MSD-control cohort (P = 0.050). No patient developed chronic GVHD (cGVHD). The 1-year overall survival (OS) and event-free survival (EFS) rates were 100% and 92.3%. In haplo-PTCy cohort, the times to neutrophil and platelet engraftment were significantly shorter than those in the haplo-control cohort (P < 0.05). The cumulative incidences of aGVHD at day + 100 and 1-year cGVHD were 31.8% and 18.2%, and the 1-year OS and EFS rates were 81.8% and 66.9%. Reduced-dose PTCy and cotransplantation of PBSCs and UC-MSCs is an acceptable alternative to patients with SAA.


Assuntos
Anemia Aplástica/terapia , Ciclofosfamida/administração & dosagem , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante de Células-Tronco Mesenquimais/métodos , Transplante de Células-Tronco de Sangue Periférico/métodos , Condicionamento Pré-Transplante/métodos , Adolescente , Adulto , Anemia Aplástica/mortalidade , Criança , Ciclofosfamida/efeitos adversos , Estudos de Viabilidade , Feminino , Doença Enxerto-Hospedeiro/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Transplante de Células-Tronco Mesenquimais/efeitos adversos , Transplante de Células-Tronco Mesenquimais/mortalidade , Uso Off-Label , Transplante de Células-Tronco de Sangue Periférico/efeitos adversos , Transplante de Células-Tronco de Sangue Periférico/mortalidade , Irmãos , Doadores de Tecidos , Transplante Haploidêntico/métodos , Resultado do Tratamento , Cordão Umbilical/citologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA