Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Clin Chim Acta ; : 119967, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39304108

RESUMO

DNA synthesis is a critical process for cell growth and division. In cancer patients, an enzyme called thymidine kinase 1 (TK1) is often elevated in the blood, making it a valuable biomarker for cancer diagnosis and treatment. However, previous studies have shown that recombinant TK1 can exist in unstable mixtures of tetramers and dimers, leading to inconsistent results and potentially affecting accuracy. To address this issue, we hypothesized that incorporating tetrameric coiled-coil peptides could enhance TK1 self-assembly into stable tetramers without requiring additional adenosine triphosphate. In this study, we successfully expressed a recombinant TK1 tetramer protein in the Escherichia coli system. We optimized the induction conditions, significantly increasing protein expression levels, functionality, and solubility. Size exclusion chromatography confirmed the formation of a tetrameric structure in the expressed TK1 protein, with a molecular weight of 127.2 KDa, consistent with our expectations. We also found that the TK1 tetramer exhibited higher affinity with anti-TK1 IgY than wild-type TK1, as shown by enzyme-linked immunosorbent assay experiments. Moreover, the TK1 tetramer demonstrated good stability against heating, freeze-thawing and lyophilization with almost no immunoactivity lost. These findings suggest that recombinant TK1 tetramers have the potential to serve as calibrators in diagnostic assay kits, becoming promising candidates for quality control of clinical laboratory and in vitro diagnostic reagents.

2.
Heliyon ; 10(17): e36809, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39263168

RESUMO

Objective: The aim of this study was to investigate the epidemiological trend of respiratory pathogens infections among children after the Coronavirus Disease 2019 (COVID-19) pandemic. Methods: This study enrolled 575,373 children who came to our hospital for relevant respiratory pathogen antigen/antibody testing due to respiratory symptoms such as fever and cough. The demographic and laboratory data, including age, gender, testing time, and influenza A virus (IAV), influenza B virus (IBV), respiratory syncytial virus (RSV), adenovirus (ADV), and Mycoplasma pneumonia (MP) results, were collected from electronic medical records. SPSS (version 21.0) and GraphPad Prism 9 software were used for statistical analysis and figure creation. Results: 79,746 children tested positive for IAV IgM, and 3196 children tested positive for IBV IgM, with an overall positive rate of 28.5 % for IAV and 1.1 % for IBV. IAV infections peaked at 21,502 cases in March 2023. 80,699 children underwent RSV IgM testing from April to October 2023, with 5726 (7.1 %) testing positive. The apex of RSV infections occurred in May 2023, with 2140 cases. Regarding ADV, 100,460 children underwent testing from April to October 2023, with 1981 (11.9 %) testing positive. The pinnacle of ADV infections reached 4546 cases in November 2023. Concerning MP, 474,913 children underwent MP testing, with 73,833 (15.5 %) testing positive. The zenith of MP infections occurred in November 2023, with 25,291 cases. Further analysis revealed that the outbreaks of these pathogens are occurring earlier than in previous years. Additionally, our data showed that children aged >3 years accounted for 79.6 %, 87.8 %, 88.6 %, and 77.8 % of the total IAV-positive, IBV-positive, ADV-positive, and MP-positive children, respectively. Conversely, RSV primarily infected children <6 years. Conclusion: Various respiratory pathogens showed an epidemic trend in children among children post-COVID-19. These results indicated that we should pay timely attention to the epidemiological trends and characteristics of respiratory pathogens in children after the COVID-19 pandemic and provide relevant information for society and clinical practice.

3.
Viruses ; 16(5)2024 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-38793587

RESUMO

A massive mortality event concerning farmed Chinese tongue soles occurred in Tianjin, China, and the causative agent remains unknown. Here, a novel Cynoglossus semilaevis papillomavirus (CsPaV) and parvovirus (CsPV) were simultaneously isolated and identified from diseased fish via electron microscopy, virus isolation, genome sequencing, experimental challenges, and fluorescence in situ hybridization (FISH). Electron microscopy showed large numbers of virus particles present in the tissues of diseased fish. Viruses that were isolated and propagated in flounder gill cells (FG) induced typical cytopathic effects (CPE). The cumulative mortality of fish given intraperitoneal injections reached 100% at 7 dpi. The complete genomes of CsPaV and CsPV comprised 5939 bp and 3663 bp, respectively, and the genomes shared no nucleotide sequence similarities with other viruses. Phylogenetic analysis based on the L1 and NS1 protein sequences revealed that CsPaV and CsPV were novel members of the Papillomaviridae and Parvoviridae families. The FISH results showed positive signals in the spleen tissues of infected fish, and both viruses could co-infect single cells. This study represents the first report where novel papillomavirus and parvovirus are identified in farmed marine cultured fish, and it provides a basis for further studies on the prevention and treatment of emerging viral diseases.


Assuntos
Doenças dos Peixes , Linguados , Genoma Viral , Papillomaviridae , Infecções por Parvoviridae , Parvovirus , Filogenia , Animais , Doenças dos Peixes/virologia , Doenças dos Peixes/mortalidade , China , Linguados/virologia , Infecções por Parvoviridae/veterinária , Infecções por Parvoviridae/virologia , Parvovirus/genética , Parvovirus/isolamento & purificação , Parvovirus/classificação , Papillomaviridae/genética , Papillomaviridae/isolamento & purificação , Papillomaviridae/classificação , Infecções por Papillomavirus/virologia , Infecções por Papillomavirus/veterinária , Hibridização in Situ Fluorescente
4.
J Ovarian Res ; 16(1): 173, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620938

RESUMO

Some major challenges of ovarian tissue vitrification and transplantation include follicle apoptosis induced by cryopreservation and ischemia-reperfusion injury, as well as ovarian follicle loss during post-transplantation. This research aimed to investigate the protective effects and underlying mechanisms of follicle-stimulating hormone (FSH) and Sphingosine-1-phosphate (S1P) on vitrified and post-transplantation ovaries. Ovaries from 21-day-old mice were cryopreservation by vitrification with 0.3 IU/mL FSH, 2 µM S1P, and 0.3 IU/mL FSH + 2 µM S1P, respectively, for follicle counting and detection of apoptosis-related indicators. The results demonstrated that FSH and S1P co-intervention during the vitrification process could preserve the primordial follicle pool and inhibit follicular atresia by suppressing cell apoptosis. The thawed ovaries were transplanted under the renal capsule of 6-8 week-old ovariectomized mice and removed 24 h or 7 days after transplantation. The results indicated that FSH and S1P co-intervention can inhibit apoptosis and autophagy in ovaries at 24 h after transplantation, and promote follicle survival by up-regulating Cx37 and Cx43 expression, enhanced angiogenesis in transplanted ovaries by promoting VEGF expression, as well as increased the E2 levels to restore ovarian endocrine function at 7 days after transplantation. The hypoxia and ischemia cell model was established by CoCl2 treatment for hypoxia in human granulosa-like tumor cell line (KGN), as well as serum-free culture system was used for ischemia. The results confirmed that ischemia-hypoxia-induced apoptosis in ovarian granulosa cells was reduced by FSH and S1P co-intervention, and granulosa cell autophagy was inhibited by up-regulating the AKT/mTOR signaling pathway. In summary, co-administration of FSH and S1P can maintain ovarian survival during ovarian vitrification and increase follicle survival and angiogenesis after transplantation.


Assuntos
Hormônio Foliculoestimulante , Vitrificação , Humanos , Feminino , Animais , Camundongos , Atresia Folicular , Hormônio Foliculoestimulante Humano
5.
Front Neurol ; 14: 1172860, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37426439

RESUMO

Glioblastoma is the most common and aggressive primary tumor in the central nervous system. There is no standard of care for patients with recurrent GBM. Honokiol is a pleiotropic lignan and has the potential to be a potent and safe anticancer agent in human GBM when it is encapsulated by liposomes. We report an efficient and safe response to three phases of treatment with liposomal honokiol in a patient with recurrent glioblastoma.

6.
Artigo em Inglês | MEDLINE | ID: mdl-37259209

RESUMO

BACKGROUND: Currently, cancer is still a significant disease that seriously endangers human health. Therefore, advanced diagnostic technology and treatment protocols are urgently needed. The rapid development of nanotechnology is expected to provide new ideas for cancer diagnosis and treatment. OBJECTIVE: The research aims to comprehensively demonstrate the hotspots of nanotechnology applications in cancer. METHODS: In this study, an International Patent Classification codes co-occurrence network is constructed to visualize the technology landscape by simultaneously locating and ranking technologies that play an integral role in nanotechnology diffusion and bridging in the field of cancer. In addition, community identification and topic modeling highlight the latent topics in patent documents. RESULTS: The visualization results of the patent network yield five main clusters: Cluster 0 is a nanoparticle composition delivery system with liposomes as the primary carrier. Cluster 1 is mainly represented by nano-immunotherapy with immune checkpoint inhibitors. Cluster 2 is nano phototherapy based on photodynamic therapy and photothermal therapy. Cluster 3 is diagnostic imaging involving nanotechnology. Cluster 4 is a drug delivery system with nanovesicles and albumin nanoparticles as carriers. CONCLUSION: It was found that carriers represented by liposomes, vesicles, and albumin nanoparticles are essential nanomaterials in the current anticancer drug delivery systems. Integrating next-generation immunosuppressants and nanotechnology will become an important development direction for future immunotherapy. Organic/inorganic nanomaterials are pivotal in cancer imaging diagnosis and phototherapy.

7.
Environ Sci Technol ; 57(23): 8691-8700, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37259829

RESUMO

Black carbon (BC) plays a vital role in Arctic warming. Extensive investigations have been conducted to elucidate the source-receptor relationships of BC between the Arctic and mid-/high-latitude sources. However, it is unclear to what extent source relocation under globalization could disturb Arctic BC contamination and climate forcing from anthropogenic BC emissions. Here, we show that the global supply chain (GSC) relocation featured by the southward shift of industries from high-latitude developed countries to low-latitude developing countries markedly reduces the BC burden in the Arctic using a global chemical transport model (GEOS-Chem) and a multiregional input-output analysis (MRIO). We find that Arctic annual mean BC concentration associated with the GSC relocation drops by ∼15% from the case without the GSC relocation. The total net BC level declines 7% over the entire Arctic and 16% in the European Arctic. We also observed markedly declining BC deposition as well as direct and snow albedo radiative forcing in the Arctic. We show that the Arctic BC burden would be further reduced by decreasing BC emissions in China, attributable to its emission reduction and ongoing shift of the GSC from China to southern and southeastern Asia.


Assuntos
Clima , Modelos Químicos , China , Fuligem/análise , Carbono
8.
RSC Adv ; 13(15): 9933-9944, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006363

RESUMO

The oil spreading technique relies on biosurfactant to reduce the surface tension of an oil film and form an oil spreading ring in the center, and then judges the content of biosurfactant according to the diameter of the spreading ring. However, the instability and large errors of the traditional oil spreading technique limit its further application. In this paper, we modified the traditional oil spreading technique by optimizing the oily material, image acquisition and calculation method, which improves the accuracy and stability of the quantification of biosurfactant. We screened lipopeptides and glycolipid biosurfactants for rapid and quantitative analysis of biosurfactant concentrations. By selecting areas by color done by the software to modify image acquisition, the results showed that the modified oil spreading technique has a good quantitative effect, reflected in the concentration of biosurfactant being proportional to the diameter of the sample droplet. More importantly, using the pixel ratio method instead of the diameter measurement method to optimize the calculation method, the region selection was more exact, and the accuracy of the data results was high, and the calculation efficiency was improved significantly. Finally, the contents of rhamnolipid and lipopeptide in oilfield water samples were judged by the modified oil spreading technique, the relative errors were analyzed according to the different substances as the standard, and the quantitative measurement and analysis of oilfield water samples (the produced water of Zhan 3-X24 and the injected water of the estuary oil production plant) were realized. The study provides a new perspective on the accuracy and stability of the method in the quantification of biosurfactant, and provided some theoretical and data support for the study of the microbial oil displacement technology mechanism.

9.
Nanomedicine ; 50: 102673, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37044193

RESUMO

Herein, we fabricated gold surface-coated iron titanium core-shell (FeTi@Au) nanoparticles (NPs) with conjugation of angiopep-2 (ANG) (FeTi@Au-ANG) NPs for targeted delivery and improved NPs penetration by receptor-mediated endocytosis to achieve hyperthermic treatment of gliomas. The synthesized "core-shell" FeTi@Au-ANG NPs exhibited spherical in shape with around 16 nm particle size and increased temperature upon alternating magnetic field (AMF) stimulation, rendering them effective for localized hyperthermic therapy of cancer cells. Effective targeted delivery of FeTi@Au-ANG NPs was demonstrated in vitro by improved transport and cellular uptake, and increased apoptosis in glioma cells (C6) compared with normal fibroblast cells (L929). FeTi@Au-ANG NPs exhibited higher deposition in brain tissues and a superior therapeutic effect in an orthotopic intracranial xenograft mouse model. Taken together, our data indicate that FeTi@Au-ANG NPs hold significant promise as a targeted delivery strategy for glioma treatment using hyperthermia.


Assuntos
Glioma , Hipertermia Induzida , Nanopartículas , Humanos , Camundongos , Animais , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Ouro/uso terapêutico
10.
Ann Med ; 55(1): 920-925, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36908271

RESUMO

BACKGROUND: It is possible that neonates with pneumonia also have unrecognized sepsis. Identifying sepsis in neonates with pneumonia may cause some trouble for clinicians. This study aimed to evaluate the clinical value of the procalcitonin-to-albumin ratio (PAR) in identifying sepsis in neonates with pneumonia. METHODS: We retrospectively included 912 neonates with pneumonia from January 2016 to July 2021. Clinical and laboratory data were collected from electronic medical records. Among neonates with pneumonia, 561 neonates were diagnosed with sepsis, according to the International Pediatric Sepsis Consensus. Neonates were divided into a sepsis group and a pneumonia group. A multivariate logistic regression analysis was used to evaluate whether PAR was a potential independent indicator for identifying sepsis in neonates with pneumonia. Receiver operating characteristic (ROC) curve analysis was performed to evaluate the diagnostic value of PAR in sepsis. RESULTS: Neonates with sepsis have a higher PAR (p < 0.001). Correlation analysis showed that PAR was positively correlated with the level of C-reactive protein (r = 0.446, p < 0.001). Multiple logistic regression analysis showed that PAR was an independent predictor of the presence of sepsis in neonates with pneumonia. ROC curve analysis revealed that PAR had good power in identifying sepsis in neonates with pneumonia (area under curve (AUC) = 0.72, 95% confidence interval (CI), 0.68-0.75, p < 0.001). CONCLUSION: PAR can be used as a new biomarker to identify sepsis in neonates with pneumonia.


Compared with neonates with pneumonia, neonates with both pneumonia and sepsis had a higher PAR.PAR was a useful biomarker in distinguishing septic neonates from neonates with pneumonia.


Assuntos
Pneumonia , Sepse , Humanos , Recém-Nascido , Proteína C-Reativa/metabolismo , Pró-Calcitonina , Prognóstico , Estudos Retrospectivos , Curva ROC , Sepse/diagnóstico
11.
Front Endocrinol (Lausanne) ; 14: 1070264, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755918

RESUMO

Background and objective: PCOS is a common metabolic disorder in women of reproductive age, which pathogenesis is very complex. The role of ferroptosis in PCOS is a novel finding, and the mechanistic studies are not clear. Metformin is a commonly used drug of PCOS but few studies on whether metformin can improve the follicle development and ovarian function in PCOS. We aims to use PCOS mouse model to study the effect of metformin on PCOS based on the ovarian function and explored the regulation of metformin in PCOS mice by intervening in ferroptosis pathway. Materials and methods: C57 BL/6J female mice aged 4-5 weeks were purchased and gavaged with letrozole (1 mg/kg/day) combined with high-fat diet for 21days to establish PCOS model, and control group was set up. After modeling, the mice were divided into PCOS model group and metformin treatment group (Met) (n=6).The Met group were gavaged metformin (200 mg/kg/day) for 28 days. The body weight, estrous cycle, glucose tolerance test (OGTT)and insulin resistance test (ITT) were monitored. Then, The mice were euthanized to collect serum and ovaries. Elisa was used to detect changes in related serum hormones (E2, LH, FSH, TP). Ovaries used for molecular biology experiments to detect changes in GPX4, SIRT3, AMPK/p-AMPK, and mTOR/p-mTOR by Western blot and qPCR. Results: Compared with the model group mice, body weight was significantly reduced, and their estrous cycle was restored in Met group. The results of OGTT and ITT showed an improvment of glucose tolerance and insulin resistance. Morphological results showed that after metformin treatment, polycystic lesions in ovaries were reduced, the ovarian function was restored, and the expressions of SIRT3 and GPX4 were elevated. WB results demonstrated that the expressions of p-mTOR and p-AMPK in ovaries were significantly reduced in Model group, but reversed in MET group. Conclusion: Our study confirmed metformin could not only improve body weight and metabolism disorders, but also improve ovarian dysfunction in PCOS mice.In addition, we explored metformin could regulate ferroptosis to improve PCOS via the SIRT3/AMPK/mTOR pathway. Our study complements the mechanisms by which metformin improves PCOS.


Assuntos
Ferroptose , Resistência à Insulina , Metformina , Síndrome do Ovário Policístico , Sirtuína 3 , Humanos , Feminino , Camundongos , Animais , Síndrome do Ovário Policístico/metabolismo , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP/metabolismo , Peso Corporal , Serina-Treonina Quinases TOR
12.
Eur J Pharm Sci ; 180: 106319, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36328086

RESUMO

Glioblastoma (GBM) is a common malignant tumor in brain, and the treatment is still a challenge owing to the high invasiveness and the existence of blood-brain barrier (BBB). Although temozolomide (TMZ) is the first line medication, its efficacy is not ideal, which is related to the defect of dose distribution and drug resistance. It is urgent to develop a novel BBB-permeable nanoagent with multiple therapeutic modalities for improving the treatment effect of GBM. In this work, we constructed an intelligent BBB-permeable nanoplatform (CTHG-Lf NPs) with hollow mesoporous copper sulfide nanoparticles (HM-CuS NPs) as temozolomide (TMZ) carrier and hyaluronic acid (HA) as gatekeeper, as well as further modification with glucose oxidase (GOx) and lactoferrin (Lf) for highly efficient synergistic therapy of orthotopic GBM. The modification of Lf endows CTHG-Lf NPs with good target and BBB-permeable ability. HA not only prevents the TMZ leakage during circulation, but also achieves responsive drug release at tumor site for effective chemotherapy (CT). GOx provides high hydrogen peroxide (H2O2) and gluconic acid for improving the treatment effect of chemodynamic therapy (CDT), and realizes the starvation therapy (ST) by consuming glucose. The good photothermal effect of CTHG-Lf NPs achieves the "mild" photothermal therapy (PTT), while enhancing the efficiency of Fenton-like reaction. The synergistic strategy with CT/CDT/PTT/ST can not only promote brain drug delivery, but also realize the combination of multiple mechanisms for effective tumor growth suppression in vivo.


Assuntos
Glioma , Nanopartículas , Neoplasias , Humanos , Fototerapia , Barreira Hematoencefálica , Terapia Fototérmica , Peróxido de Hidrogênio , Ácido Hialurônico/farmacologia , Glioma/tratamento farmacológico , Neoplasias/patologia , Temozolomida , Linhagem Celular Tumoral
13.
Nanoscale ; 14(39): 14789-14800, 2022 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-36184995

RESUMO

The poor permeability of therapeutic agents across the blood-brain barrier and blood-tumor barrier is a significant barrier in glioma treatment. Low-density lipoprotein receptor-related protein (LRP-1) recognises a dual-targeting ligand, angiopep-2, which is overexpressed in the BBB and gliomas. Here, we have synthesized Ti@FeAu core-shell nanoparticles conjugated with angiopep-2 (Ti@FeAu-Ang nanoparticles) to target glioma cells and treat brain cancer via hyperthermia produced by a magnetic field. Our results confirmed that Ti@FeAu core-shell nanoparticles were superparamagnetic, improved the negative contrast effect on glioma, and exhibited a temperature elevation of 12° C upon magnetic stimulation, which implies potential applications in magnetic resonance imaging (MRI) and hyperthermia-based cancer therapy. Angiopep-2-decorated nanoparticles exhibited higher cellular uptake by C6 glioma cells than by L929 fibroblasts, demonstrating selective glioma targeting and improved cytotoxicity up to 85% owing to hyperthermia produced by a magnetic field. The in vivo findings demonstrated that intravenous injection of Ti@FeAu-Ang nanoparticles exhibited a 10-fold decrement in tumor volume compared to the control group. Furthermore, immunohistochemical analysis of Ti@FeAu-Ang nanoparticles showed that coagulative necrosis of tumor tissues and preliminary safety analysis highlighted no toxicity to the haematological system, after Ti@FeAu-Ang nanoparticle-induced hyperthermia treatment.


Assuntos
Neoplasias Encefálicas , Glioma , Nanopartículas de Magnetita , Nanopartículas , Ligas , Barreira Hematoencefálica/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Linhagem Celular Tumoral , Diagnóstico por Imagem , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Glioma/terapia , Humanos , Ligantes , Lipoproteínas LDL , Peptídeos , Nanomedicina Teranóstica , Titânio/farmacologia
14.
Cell Death Dis ; 13(9): 810, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36130933

RESUMO

Migration and invasion inhibitory protein (MIIP) has been identified as a tumor suppressor in various cancer types. Although MIIP is reported to exert tumor suppressive functions by repressing proliferation and metastasis of cancer cells, the detailed mechanism is poorly understood. In the present study, we found MIIP is a favorable indicator of prognosis in triple-negative breast cancer. MIIP could inhibit tumor angiogenesis, proliferation, and metastasis of triple-negative breast cancer cells in vivo and in vitro. Mechanistically, MIIP directly interacted with ITGB3 and suppressed its downstream signaling. As a result, ß-catenin was reduced due to elevated ubiquitin-mediated degradation, leading to downregulated VEGFA production and epithelial mesenchymal transition. More importantly, we found RGD motif is essential for MIIP binding with ITGB3 and executing efficient tumor-suppressing effect. Our findings unravel a novel mechanism by which MIIP suppresses tumorigenesis in triple-negative breast cancer, and MIIP is thus a promising molecular biomarker or therapeutic target for the disease.


Assuntos
Neoplasias de Mama Triplo Negativas , beta Catenina , Carcinogênese/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transformação Celular Neoplásica , Transição Epitelial-Mesenquimal/genética , Humanos , Integrina beta3/genética , Integrina beta3/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Neoplasias de Mama Triplo Negativas/genética , Ubiquitinas/metabolismo , beta Catenina/metabolismo
15.
Cells ; 11(15)2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35954210

RESUMO

The positive regulatory role of lncFAM200B in differentiation and lipid deposition in yak intramuscular preadipocytes has been demonstrated in our previous study. However, the regulatory mechanisms remain unclear. In this study, we aimed to produce complete mRNA and microRNA (miRNA) profiles after adenovirus-mediated lncFAM200B overexpression in yak preadipocytes using high-throughput sequencing. We constructed a competing endogenous RNA (ceRNA) network with lncFAM200B as the core and identified the functions of the selected target miRNA during cell proliferation and differentiation. We obtained 118 differentially expressed genes (DEGs) after lncFAM200B overexpression, 76 of which were up-regulated, including Notch signaling members NOTCH3, DTX3L, and HES4, and 42 DEGs were down-regulated, including genes related to the cell cycle (CCNA2, BUB1, CDC20, TOP2A, and KIF20A). Additionally, many ubiquitin-mediated proteolysis pathway members were also significantly up-regulated (BUA7, PML, TRIM21, and TRIM25). MiRNA sequencing showed that 13 miRNAs were significantly up-regulated, and 12 miRNAs were down-regulated. Among them, 29 targets of 10 differentially expressed miRNAs (DEMs) were differentially expressed, including miR-152-FBXO33, miR-6529a-TRIM21, miR-148c-NOTCH3, and the miR-6529b-HES4 axis. We further verified that overexpression and inhibition of miR-6529a can inhibit and promote, respectively, the proliferation and differentiation of preadipocytes. Taken together, our study not only revealed the regulatory network of lncFAM200B during yak preadipocytes differentiation but also laid a foundation for elucidating the cause for lower intramuscular fat content in yaks at the molecular level.


Assuntos
MicroRNAs , RNA Longo não Codificante , Animais , Bovinos , Diferenciação Celular/genética , Proliferação de Células/genética , Redes Reguladoras de Genes , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética
16.
Cells ; 11(11)2022 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-35681525

RESUMO

Automatic extraction of cerebral vessels and cranial nerves has important clinical value in the treatment of trigeminal neuralgia (TGN) and hemifacial spasm (HFS). However, because of the great similarity between different cerebral vessels and between different cranial nerves, it is challenging to segment cerebral vessels and cranial nerves in real time on the basis of true-color microvascular decompression (MVD) images. In this paper, we propose a lightweight, fast semantic segmentation Microvascular Decompression Network (MVDNet) for MVD scenarios which achieves a good trade-off between segmentation accuracy and speed. Specifically, we designed a Light Asymmetric Bottleneck (LAB) module in the encoder to encode context features. A Feature Fusion Module (FFM) was introduced into the decoder to effectively combine high-level semantic features and underlying spatial details. The proposed network has no pretrained model, fewer parameters, and a fast inference speed. Specifically, MVDNet achieved 76.59% mIoU on the MVD test set, has 0.72 M parameters, and has a 137 FPS speed using a single GTX 2080Ti card.


Assuntos
Aprendizado Profundo , Espasmo Hemifacial , Cirurgia de Descompressão Microvascular , Nervos Cranianos/cirurgia , Espasmo Hemifacial/diagnóstico por imagem , Espasmo Hemifacial/cirurgia , Humanos , Cirurgia de Descompressão Microvascular/métodos , Semântica
17.
Sheng Li Xue Bao ; 74(3): 370-380, 2022 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-35770635

RESUMO

Polycystic ovary syndrome (PCOS) is a common disease caused by complex endocrine and metabolic abnormalities in women of childbearing age. Metformin is the most widely used oral hypoglycemic drug in clinic. In recent years, metformin has been used in the treatment of PCOS, but its mechanism is not clear. In this study, we aimed to investigate the effect of metformin on PCOS and its mechanism through PCOS mouse model. Female C57BL/6J mice aged 4-5 weeks were intragastrically given letrozole (1 mg/kg daily) combined with a high-fat diet (HFD) for 21 days to establish the PCOS model. After modeling, metformin (200 mg/kg daily) was intragastrically administered. One month later, the body weight and oral glucose tolerance test (OGTT) were measured. Hematoxylin eosin (H&E) staining was used to detect the pathological changes of ovary. The serum levels of anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), E2 and testosterone (T) were measured by ELISA. The expression of DDX4/MVH was detected by immunohistochemistry. DDX4/MVH and PCNA were co-labeled by immunofluorescence. The protein levels of DDX4/MVH, PCNA, cyclin D2, AMPK and mTOR were detected by Western blot. The results showed that after metformin treatment, the body weights of PCOS mice were gradually returned to normal, glucose tolerance was significantly improved, serum E2 levels were increased, while AMH, LH, T levels and LH/FSH ratio were decreased. Ovarian polycystic lesions were reduced with reduced atresia follicles. Furthermore, the number of proliferative female germline stem cells (FGSCs) and levels of proliferation related proteins (PCNA, cyclin D2) were significantly increased, and the p-mTOR and p-AMPK levels were markedly up-regulated. These results suggest that metformin treatment not only improves hyperandrogenemia, glucose intolerance and polycystic ovarian lesions in PCOS, but also activates the function of FGSCs. The underlying mechanism may be related to the phosphorylation of AMPK and mTOR. These findings provide new evidence to use metformin in the treatment of PCOS and follicular development disorder.


Assuntos
Metformina , Células-Tronco de Oogônios , Cistos Ovarianos , Neoplasias Ovarianas , Síndrome do Ovário Policístico , Proteínas Quinases Ativadas por AMP , Animais , Ciclina D2 , Feminino , Hormônio Foliculoestimulante/uso terapêutico , Humanos , Hormônio Luteinizante/uso terapêutico , Metformina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco de Oogônios/metabolismo , Cistos Ovarianos/tratamento farmacológico , Síndrome do Ovário Policístico/tratamento farmacológico , Antígeno Nuclear de Célula em Proliferação/uso terapêutico , Serina-Treonina Quinases TOR
19.
Front Neurosci ; 15: 702353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646116

RESUMO

Diffusion Tensor Imaging (DTI) tractography has been widely used in brain tumor surgery to ensure thorough resection and minimize functional damage. However, due to enhanced anisotropic uncertainty in the area with peritumoral edema, diffusion tractography is generally not practicable leading to high false-negative results in neural tracking. In this study, we evaluated the usefulness of the neurite orientation dispersion and density imaging (NODDI) derived tractography for investigating structural heterogeneity of the brain in patients with brain tumor. A total of 24 patients with brain tumors, characterized by peritumoral edema, and 10 healthy counterparts were recruited from 2014 to 2021. All participants underwent magnetic resonance imaging. Moreover, we used the images obtained from the healthy participants for calibrating the orientation dispersion threshold for NODDI-derived corticospinal tract (CST) reconstruction. Compared to DTI, NODDI-derived tractography has a great potential to improve the reconstruction of fiber tracking through regions of vasogenic edema. The regions with edematous CST in NODDI-derived tractography demonstrated a significant decrease in the intracellular volume fraction (VFic, p < 0.000) and an increase in the isotropic volume fraction (VFiso, p < 0.014). Notably, the percentage of the involved volume of the concealed CST and lesion-to-tract distance could reflect the motor function of the patients. After the tumor resection, four patients with 1-5 years follow-up were showed subsidence of the vasogenic edema and normal CST on DTI tractography. NODDI-derived tractography revealed tracts within the edematous area and could assist neurosurgeons to locate the neural tracts that are otherwise not visualized by conventional DTI tractography.

20.
Mater Sci Eng C Mater Biol Appl ; 126: 112187, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34082986

RESUMO

A composite coating of polyelectrolyte multilayers (PEMs) consisting of collagen, a chitosan barrier, and poly-γ-glutamic acid was fabricated using a spin coating technique to investigate and overcome the limited osseointegration capacity of 316 L stainless steel (316 L SS). To further enhance the biocompatibility, bone morphogenetic protein 2 (BMP-2) and basic fibroblast growth factor-2 (FGF-2) were loaded separately as dual growth factors, allowing for progressive drug release following the natural process of bone regeneration. The first burst release of FGF-2 triggered the proliferation of surrounding cells, and the subsequent release of BMP-2 stimulated their differentiation. The microstructure, surface potential, hardness, reduced Young's modulus, and wettability were assessed using scanning electron microscopy, nanoindentation, and water contact angle. The formation of apatite layers after immersion in simulated body fluid confirmed the bioactivity of this PEM. PEMs loaded with BMP-2 and FGF-2 showed a long sustained release of growth factors for up to 48 days. The biological properties were studied in vitro with rat bone mesenchymal stem cells (rBMSCs) and in vivo using a rat critical-sized calvarial defect model. PEMs loaded with growth factors further stimulated the proliferation and osteogenic differentiation of rBMSCs and the histology results indicated that new bone tissues could directly grow onto the PEMs. These findings suggest that PEM composite coating possesses significant potential for surface modification and long-term drug release of metallic implants to assist with bone restoration.


Assuntos
Osteogênese , Aço Inoxidável , Animais , Proteína Morfogenética Óssea 2 , Regeneração Óssea , Preparações de Ação Retardada/farmacologia , Polieletrólitos , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA