Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 53(8): 3579-3588, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38314620

RESUMO

Photodynamic therapy (PDT) is promising for cancer treatment but still suffers from some limitations. For instance, PDT based on 1O2 generation (in a type-II mechanism) is heavily dependent on high oxygen concentrations and will be significantly depressed in hypoxic tumors. In addition, the residual photosensitizers after PDT treatment may cause severe side-effects under light irradiation. To solve these problems, herein a BODIPY (boron dipyrromethene)-modified Ru(II) complex [Ru(dip)2(tpy-BODIPY)]2+ (complex 1, dip = 4,7-diphenyl-1,10-phenanthroline, tpy = 2,2':6',2''-terpyridine) was designed and synthesized. Complex 1 exhibited both high singlet oxygen quantum yield (Φ = 0.7 in CH3CN) and excellent superoxide radical (O2˙-) generation, and thus demonstrated efficient PDT activity under both normoxic and hypoxic conditions. Moreover, complex 1 is photo-degradable in water, and greatly loses its ROS generation ability after PDT treatment. These novel properties of complex 1 make it promising for efficient PDT under both normoxic and hypoxic conditions with reduced side-effects.


Assuntos
Fotoquimioterapia , Fármacos Fotossensibilizantes , Fármacos Fotossensibilizantes/farmacologia , Compostos de Boro/farmacologia , Superóxidos
2.
J Agric Food Chem ; 71(22): 8367-8380, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218180

RESUMO

Thionins are important antibacterial peptides in plants. However, the roles of plant thionins, especially the defensin-dissimilar thionins, in alleviating heavy-metal toxicity and accumulation remain unclear. Here, cadmium (Cd)-related functions and mechanisms of the defensin-dissimilar rice thionin OsThi9 were investigated. OsThi9 was significantly upregulated in response to Cd exposure. OsThi9 was localized to the cell wall and was shown to bind Cd; these characters help to increase Cd tolerance. In Cd-exposed rice plants, OsThi9 overexpression significantly increased cell wall Cd binding, decreasing upward Cd translocation and subsequent Cd accumulation in shoots and straw, while OsThi9 knockout had inverse effects. Importantly, in rice plants grown in Cd-contaminated soils, OsThi9 overexpression significantly reduced Cd accumulation in brown rice (decrease of ≥ 51.8%) without negatively impairing the crop yield and essential elements. Thus, OsThi9 plays an important role in the alleviation of Cd toxicity and accumulation and has significant potential for developing low-Cd rice.


Assuntos
Oryza , Poluentes do Solo , Tioninas , Cádmio/metabolismo , Tioninas/metabolismo , Oryza/genética , Oryza/metabolismo , Poluentes do Solo/metabolismo , Defensinas/genética , Defensinas/metabolismo , Solo
3.
J Environ Sci (China) ; 126: 138-152, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503743

RESUMO

The OsLCD gene, which has been implicated in cadmium (Cd) accumulation in rice, might be a useful target for CRISPR/Cas9 editing. However, the effects of OsLCD gene editing on Cd accumulation, plant growth, and yield traits remain unknown. Here, we used CRISPR/Cas9 to generate oslcd single mutants from indica and japonica rice cultivars. We also generated osnramp5 single mutants and oslcd osnramp5 double mutants in the indica background. When grown in Cd-contaminated paddy soils, all oslcd single mutants accumulated less Cd than the wild types (WTs). Consistent with this, oslcd single mutants grown in Cd-contaminated hydroponic culture accumulated significantly less Cd in the shoots as compared to WTs. This decrease in accumulation probably resulted from the reduction of Cd translocation under Cd stress. Oxidative damage also decreased, and plant growth increased in all oslcd single mutant seedlings as compared to WTs in the presence of Cd. Plant growth and most yield traits, as well essential element concentrations in rice seedling shoots, brown rice, and rice straw, were similar between oslcd single mutants and WTs. In the presence of Cd, Cd concentrations in the brown rice and shoots of oslcd osnramp5 double mutants were significantly decreased compared with WTs as well as osnramp single mutants. Our results suggested that OsLCD knockout may reduce Cd accumulation alone or in combination with other knockout mutations in a variety of rice genotypes; unlike OsNramp5 mutations, OsLCD knockout did not reduce essential element contents. Therefore, OsLCD knockout might be used to generate low-Cd rice germplasms.


Assuntos
Cádmio , Oryza , Cádmio/toxicidade , Oryza/genética , Sistemas CRISPR-Cas , Plântula , Hidroponia
4.
J Environ Sci (China) ; 115: 294-307, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34969457

RESUMO

Silicon (Si) has been shown to alleviate Cd stress in rice. Here, we investigated the beneficial effects of foliar Si in an indica rice Huanghuazhan (HHZ). Our results showed that foliar Si increases the dry weight and decreases Cd translocation in Cd-exposed rice at the grain-filling stage only, implying that the filling stage is critical for foliar Si to reduce Cd accumulation. We also investigated the transcriptomics in flag leaves (FLs), spikelets (SPs), and node Is (NIs) of Cd-exposed HHZ after foliar Si application at the filling stage. Importantly, the gene expression profiles associated with the Si-mediated alleviation of Cd stress were tissue specific, while shared pathways were mediated by Si in Cd-exposed rice tissues. Furthermore, after the Si treatment of Cd-exposed rice, the ATP-binding cassette (ABC)-transporters were mostly upregulated in FL and SP, while the bivalent cation transporters were mostly downregulated in FL and NI, possibly helping to reduce Cd accumulation. The genes associated with essential nutrient transporters, carbohydrate and secondary metabolite biosynthesis, and cytochrome oxidase activity were mostly upregulated in Cd-exposed FL and SP, which may help to alleviate oxidative stress and improve plant growth under Cd exposure. Interestingly, genes responsible for signal transduction were negatively regulated in FL, but positively regulated in SP, by foliar Si. Our results provide transcriptomic evidence that foliar Si plays an active role in alleviating the effects of Cd exposure in rice. In particular, foliar Si may alter the expression pattern of genes associated with transport, biosynthesis and metabolism, and oxidation reduction.


Assuntos
Oryza , Poluentes do Solo , Cádmio/análise , Cádmio/toxicidade , Oryza/genética , Silício , Poluentes do Solo/análise , Transcriptoma
5.
J Environ Sci (China) ; 109: 88-101, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34607677

RESUMO

The inessential heavy metal/loids cadmium (Cd) and arsenic (As), which often co-occur in polluted paddy soils, are toxic to rice. Silicon (Si) treatment is known to reduce Cd and As toxicity in rice plants. To better understand the shared mechanisms by which Si alleviates Cd and As stress, rice seedlings were hydroponically exposed to Cd or As, then treated with Si. The addition of Si significantly ameliorated the inhibitory effects of Cd and As on rice seedling growth. Si supplementation decreased Cd and As translocation from roots to shoots, and significantly reduced Cd- and As-induced reactive oxygen species generation in rice seedlings. Transcriptomics analyses were conducted to elucidate molecular mechanisms underlying the Si-mediated response to Cd or As stress in rice. The expression patterns of the differentially expressed genes in Cd- or As-stressed rice roots with and without Si application were compared. The transcriptomes of the Cd- and As-stressed rice roots were similarly and profoundly reshaped by Si application, suggesting that Si may play a fundamental, active role in plant defense against heavy metal/loid stresses by modulating whole genome expression. We also identified two novel genes, Os01g0524500 and Os06g0514800, encoding a myeloblastosis (MYB) transcription factor and a thionin, respectively, which may be candidate targets for Si to alleviate Cd and As stress in rice, as well as for the generation of Cd- and/or As-resistant plants. This study provides valuable resources for further clarification of the shared molecular mechanisms underlying the Si-mediated alleviation of Cd and As toxicity in rice.


Assuntos
Arsênio , Oryza , Poluentes do Solo , Arsênio/toxicidade , Cádmio/toxicidade , Oryza/genética , Raízes de Plantas , Plântula/genética , Silício/toxicidade , Poluentes do Solo/toxicidade , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA