Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 702: 149652, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38341922

RESUMO

Prostatic acid phosphatase (PAP) is a glycoprotein that plays a crucial role in the hydrolysis of phosphate ester present in prostatic exudates. It is a well-established indicator for prostate cancer due to its elevated serum levels in disease progression. Despite its abundance in semen, PAP's influence on male fertility has not been extensively studied. In our study, we report a significantly optimized method for purifying human endogenous PAP, achieving remarkably high efficiency and active protein recovery rate. This achievement allowed us to better analyze and understand the PAP protein. We determined the cryo-electron microscopic (Cryo-EM) structure of prostatic acid phosphatase in its physiological state for the first time. Our structural and gel filtration analysis confirmed the formation of a tight homodimer structure of human PAP. This functional homodimer displayed an elongated conformation in the cryo-EM structure compared to the previously reported crystal structure. Additionally, there was a notable 5-degree rotation in the angle between the α domain and α/ß domain of each monomer. Through structural analysis, we revealed three potential glycosylation sites: Asn94, Asn220, and Asn333. These sites contained varying numbers and forms of glycosyl units, suggesting sugar moieties influence PAP function. Furthermore, we found that the active sites of PAP, His44 and Asp290, are located between the two protein domains. Overall, our study not only provide an optimized approach for PAP purification, but also offer crucial insights into its structural characteristics. These findings lay the groundwork for further investigations into the physiological function and potential therapeutic applications of this important protein.


Assuntos
Neoplasias da Próstata , Sêmen , Humanos , Masculino , Sêmen/química , Sêmen/metabolismo , Microscopia Crioeletrônica , Próstata/metabolismo , Fosfatase Ácida/metabolismo
2.
Angew Chem Int Ed Engl ; 61(37): e202208772, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35862137

RESUMO

This study used light-mediated comparative transcriptomics to identify the biosynthetic gene cluster of beticolin 1 in Cercospora. It contains an anthraquinone moiety and an unusual halogenated xanthone moiety connected by a bicyclo[3.2.2]nonane. During elucidation of the biosynthetic pathway of beticolin 1, a novel non-heme iron oxygenase BTG13 responsible for anthraquinone ring cleavage was discovered. More importantly, the discovery of non-heme iron oxygenase BTG13 is well supported by experimental evidence: (i) crystal structure and the inductively coupled plasma mass spectrometry revealed that its reactive site is built by an atypical iron ion coordination, where the iron ion is uncommonly coordinated by four histidine residues, an unusual carboxylated-lysine (Kcx377) and water; (ii) Kcx377 is mediated by His58 and Thr299 to modulate the catalytic activity of BTG13. Therefore, we believed this study updates our knowledge of metalloenzymes.


Assuntos
Ferro , Oxigenases , Antraquinonas , Vias Biossintéticas , Compostos Heterocíclicos de 4 ou mais Anéis , Ferro/metabolismo , Micotoxinas , Oxigenases/metabolismo
3.
Molecules ; 25(22)2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198166

RESUMO

Non-proteinogenic amino acids have attracted tremendous interest for their essential applications in the realm of biology and chemistry. Recently, rising C-H functionalization has been considered an alternative powerful method for the direct synthesis of non-proteinogenic amino acids. Meanwhile, photochemistry has become popular for its predominant advantages of mild conditions and conservation of energy. Therefore, C-H functionalization and photochemistry have been merged to synthesize diverse non-proteinogenic amino acids in a mild and environmentally friendly way. In this review, the recent developments in the photo-mediated C-H functionalization of proteinogenic amino acids derivatives for the rapid synthesis of versatile non-proteinogenic amino acids are presented. Moreover, postulated mechanisms are also described wherever needed.


Assuntos
Aminoácidos/química , Carbono/química , Química Orgânica/métodos , Hidrogênio/química , Aminas , Bromo/química , Técnicas de Química Sintética , Cloro/química , Peptídeos/química , Fotoquímica/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA