Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ultrason Sonochem ; 109: 106996, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39032371

RESUMO

Extraction of coconut paring oil (CPO) from processing by-products adds value to the product and reduces resource wastage. This study aims to assess the impact of 20 kHz, 20/80 kHz and 20/40/80 kHz of multi-frequency ultrasonic-assisted enzymatic extraction (MFUAEE) on the yield, physicochemical properties, fatty acid composition, total phenolic content, antioxidant activity, and emulsion stability of CPO derived from wet coconut parings (WCP). Results revealed that the CPO extraction yield with MFUAEE was 32.58 % - 43.31 % higher compared to AEE. The tri-frequency 20/40/80 kHz mode of multi-frequency ultrasound pretreatment exhibited the highest CPO extraction yield (70.08 %). The oil extracted through MFUAEE displayed similar fatty acid profiles to AEE, but had lower peroxide value, K232 and K270 values. Particularly, MFUAEE oil contained higher total phenolic content and exhibited potent DPPH free radical scavenging capacity. Results observed by SEM indicated that the pretreatment with multi-frequency ultrasound more efficiently disrupts the cellular structure of the WCP. Additionally, MFUAEE enhanced emulsion stability through the cavitation effect of ultrasound. These findings suggest that MFUAEE is a valuable approach for method for obtaining CPO with elevated extraction yield and superior quality, thereby enhancing the utilization of coconut by-products.

2.
Water Res ; 258: 121740, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38749185

RESUMO

Although two-stage anaerobic digestion (TSAD) technology has been investigated, the mechanisms regarding the impact of acidogenic off-gas (AOG) on successive methane production have not been well addressed. In this study, a novel TSAD system was designed. Food waste, as the main substrate, was co-digested with chicken manure and corn straw. The acidogenic gas beyond atmospheric pressure was introduced into the bottom of the methanogenesis reactor through a stainless steel diffuser. Results showed the addition of AOG increased the methane yield from 435.2 to 597.1 mL/g VSin in successive methanogenesis stage, improved by 37.2 %, and increased the energy yield from 9.0 to 11.3 kJ/g VSsubstrate. However, the theoretical contribution of hydrogenotrophic methanogenesis using H2 contained in AOG was only 15.2 % of the increased methane yield. After the addition of AOG, the decreased levels of ammonia nitrogen and butyrate indicate that the stability of the AD system was improved. The electron transfer system and co-enzyme F420 activity were enhanced; however, the decrease in acetate kinase activity indicates aceticlastic methanogenesis may have been weakened. The microbial diversity and species richness were improved by the added AOG. Methanosarcina was more competitive than Methanothermobacter, enhancing the syntrophic effect. The relative abundance of protein degradation bacteria norank_f_Anaerolineaceae and lipid degradation bacteria Syntrophomonas was increased. Metabolite analysis confirmed that the addition of AOG promoted amino acid metabolism, the biosynthesis of other secondary metabolism and lipid metabolism. The improved degradation of recalcitrant organic components (lipids and proteins) in food waste was responsible for the increased methane yield. This study provides an in-depth understanding of the impact of AOG utilization on successive methane production and has practical implications for the treatment of food waste.


Assuntos
Biocombustíveis , Reatores Biológicos , Metano , Anaerobiose , Metano/metabolismo , Microbiota , Esterco
3.
Food Chem ; 453: 139568, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38754353

RESUMO

Starch retrogradation is of great importance to the quality of starch-based food. This study investigated the effect of partial gelatinization (PG) synergizing with polyphenol (epicatechin, EC; epigallocatechin gallate, EGCG) on the multi-scale structure and short/long-term retrogradation of corn starch (CS). The PG synergizing with EC/EGCG substantially suppressed the short/long-term retrogradation properties of CS. These could be confirmed by the decreased storage modulus and viscosity, the relative crystallinity (1.54%, 3.56%), and the retrogradation degree (9.99%, 20.18%) of CS during storage for 1, 14 days after PG synergizing with EGCG and EC, respectively. This is because PG treatment promoted the hydrogen bond interaction between disordered starch molecules and EC/EGCG. These were proven by the larger aggregation, more and brighter fluorescents, and the reduced long/short-range order structures in CS after PG synergizing with EC/EGCG. This study is helpful for the development of foods with enhanced nutrition and low-retrogradation.


Assuntos
Catequina , Amido , Zea mays , Catequina/química , Catequina/análogos & derivados , Amido/química , Zea mays/química , Viscosidade
4.
Food Funct ; 15(9): 4818-4831, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38606579

RESUMO

Gamma-aminobutyric acid (GABA) is the predominant amino acid in litchi pulp, known for its neuroregulatory effects and anti-inflammatory properties. Although previous research has highlighted the pro-inflammatory characteristics of litchi thaumatin-like protein (LcTLP), interplay between GABA and LcTLP in relation to inflammation remains unclear. This study aims to explore the hepatoprotective effects of the litchi pulp-derived GABA extract (LGE) against LcTLP-induced liver inflammation in mice and LO2 cells. In vivo experiments demonstrated that LGE significantly reduced the levels of aspartate transaminase and alanine transaminase, and protected the liver against infiltration of CD4+ and CD8+ T cells and histological injury induced by LcTLP. Pro-inflammatory cytokines including interleukin-6, interleukin-1ß, and tumor necrosis factor-α were also diminished by LGE. The LGE appeared to modulate the mitogen-activated protein kinase (MAPK) signaling pathway to exert its anti-inflammatory effects, as evidenced by a reduction of 47%, 35%, and 31% in phosphorylated p38, JNK, and ERK expressions, respectively, in the liver of the high-dose LGE group. Additionally, LGE effectively improved the translocation of gut microbiota by modulating its microbiological composition and abundance. In vitro studies have shown that LGE effectively counteracts the increase in reactive oxygen species, calcium ions, and pro-inflammatory cytokines induced by LcTLP. These findings may offer new perspectives on the health benefits and safety of litchi consumption.


Assuntos
Litchi , Extratos Vegetais , Ácido gama-Aminobutírico , Animais , Camundongos , Litchi/química , Extratos Vegetais/farmacologia , Masculino , Ácido gama-Aminobutírico/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Citocinas/metabolismo , Anti-Inflamatórios/farmacologia , Proteínas de Plantas/farmacologia , Inflamação/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Camundongos Endogâmicos C57BL , Frutas/química , Aspartato Aminotransferases
5.
Small ; 20(31): e2400141, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38431944

RESUMO

Seawater electrolysis holds tremendous promise for the generation of green hydrogen (H2). However, the system of seawater-to-H2 faces significant hurdles, primarily due to the corrosive effects of chlorine compounds, which can cause severe anodic deterioration. Here, a nickel phosphide nanosheet array with amorphous NiMoO4 layer on Ni foam (Ni2P@NiMoO4/NF) is reported as a highly efficient and stable electrocatalyst for oxygen evolution reaction (OER) in alkaline seawater. Such Ni2P@NiMoO4/NF requires overpotentials of just 343 and 370 mV to achieve industrial-level current densities of 500 and 1000 mA cm-2, respectively, surpassing that of Ni2P/NF (470 and 555 mV). Furthermore, it maintains consistent electrolysis for over 500 h, a significant improvement compared to that of Ni2P/NF (120 h) and Ni(OH)2/NF (65 h). Electrochemical in situ Raman spectroscopy, stability testing, and chloride extraction analysis reveal that is situ formed MoO4 2-/PO4 3- from Ni2P@NiMoO4 during the OER test to the electrode surface, thus effectively repelling Cl- and hindering the formation of harmful ClO-.

6.
Int J Biol Macromol ; 260(Pt 1): 129408, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228203

RESUMO

This study aimed to investigate the role of amylose and amylopectin in the formation of starch-polyphenol complex and elucidate the interaction mechanisms. Gallic acid (GA) was used to complex with maize starch with various amylose contents. Results showed GA formed V-type crystals with normal maize starch (NMS) and high amylose maize starch (HAMS), while higher relative crystallinity was exhibited in HAMS-GA complexes than NMS counterparts. Molecular structure analysis revealed more amylose in GA-starch complexes than in treated starch counterparts without GA, and this was more apparent in HAMS than NMS, implying amylose is preferred to complex with GA than amylopectin. FTIR detected higher R1047/1022 value in starch-GA complexes than their starch counterparts without GA, suggesting increased short-range ordered structrure of complexes. Typical signatures of hydrophobic interactions were further revealed by isothermal titration calorimetry, indicating the complexation of GA to starch is mainly through hydrophobic bonds. More binding sites were observed for HAMS (72.50) than NMS (11.33), which proves the preferences of amylose to bind with GA. Molecular dynamics simulated the complexation of GA to amylose, and confirmed hydrophobic bond is the main interaction force. These findings would provide guidance for precise design and utilization of starch-polyphenol complexes in functional foods.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Amilopectina/química , Ácido Gálico/metabolismo , Zea mays/química , Interações Hidrofóbicas e Hidrofílicas , Polifenóis/metabolismo
7.
Crit Rev Food Sci Nutr ; : 1-39, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37584238

RESUMO

Proanthocyanidins (PAs) are a class of polymers composed of flavan-3-ol units that have a variety of bioactivities, and could be applied as natural biologics in food, pharmaceuticals, and cosmetics. PAs are widely found in fruit and vegetables (F&Vegs) and are generally extracted from their flesh and peel. To reduce the cost of extraction and increase the number of commercially viable sources of PAs, it is possible to exploit the by-products of plants. Leaves are major by-products of agricultural production of F&Vegs, and although their share has not been accurately quantified. They make up no less than 20% of the plant and leaves might be an interesting resource at different stages during production and processing. The specific structural PAs in the leaves of various plants are easily overlooked and are notably characterized by their stable content and degree of polymerization. This review examines the existing data on the effects of various factors (e.g. processing conditions, and environment, climate, species, and maturity) on the content and structure of leaf PAs, and highlights their bioactivity (e.g. antioxidant, anti-inflammatory, antibacterial, anticancer, and anti-obesity activity), as well as their interactions with gut microbiota and other biomolecules (e.g. polysaccharides and proteins). Future research is also needed to focus on their precise extraction, bioactivity of high-polymer native or modified PAs and better application type.


The Leaf proanthocyanidins (LPAs) are mostly oligomeric procyanidins, with a small proportion of leaves containing A-type procyanidins.Foliage is a sustainable source of PAs.LPAs are a potential source of valuable bioactive compounds.The content, structure, extraction and identification and bio-activity of LPAs are discussed.Processing improvement is beneficial to enhance the production of LPA.

8.
Front Cardiovasc Med ; 10: 1150657, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37288269

RESUMO

Background: Arrhythmogenic cardiomyopathy (ACM) is an inherited cardiomyopathy that is rarely diagnosed in infants or young children. However, some significant homozygous or compound heterozygous variants contribute to more severe clinical manifestations. In addition, inflammation of the myocardium and ventricular arrhythmia might lead to misdiagnosis with myocarditis. Here, we describe an 8-year-old patient who had been misdiagnosed with myocarditis. Timely genetic sequencing helped to identify this case as ACM induced by a homozygous variant of DSG2. Case presentation: The proband of this case was an 8-year-old boy who initially presented with chest pain with an increased level of cardiac Troponin I. In addition, the electrocardiogram revealed multiple premature ventricular beats. Cardiac magnetic resonance revealed myocardial edema in the lateral ventricular wall and apex, indicating localized injuries of the myocardium. The patient was primarily suspected to have acute coronary syndrome or viral myocarditis. Whole-exome sequencing confirmed that the proband had a homozygous variation, c.1592T > G, of the DSG2 gene. This mutation site was regulated by DNA modification, which induced amino acid sequence changes, protein structure effects, and splice site changes. According to MutationTaster and PolyPhen-2 analyses, the variant was considered a disease-causing mutation. Next, we used SWISS-MODEL to illustrate the mutation site of p.F531C. The ensemble variance of p.F531C indicated the free energy changes after the amino acid change. Conclusion: In summary, we reported a rare pediatric case initially presenting as myocarditis that transitioned into ACM during follow-up. A homozygous genetic variant of DSG2 was inherited in the proband. This study expanded the clinical feature spectrum of DSG2-associated ACM at an early age. Additionally, the presentation of this case emphasized the difference between homozygous and heterozygous variants of desmosomal genes in disease progression. Genetic sequencing screening could be helpful in distinguishing unexplained myocarditis in children.

9.
Ultrason Sonochem ; 95: 106355, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36898250

RESUMO

The pro-inflammation activity of litchi thaumatin-like protein (LcTLP) led to be responsible for the occurrence of adverse reactions after excessive consumption of litchi. This study aimed to characterize the changes in the structure and inflammatory activity of LcTLP induced by ultrasound treatment. Significant molecular structure of LcTLP changes occured at 15 min ultrasound treatment, and then tended to recover with subsequent treatment. Secondary structure (α-helices decreased from 17.3% to 6.3%), tertiary structure (the maximum endogenous fluorescence intensity decreased), and microstructure (mean hydrodynamic diameter reduced from 4 µm to 50 nm) of the LcTLP treated for 15 min (LT15) were significantly affected, which led to the inflammatory epitope of LcTLP (domain II and V-cleft) unfolded. In vitro, LT15 had a significant anti-inflammatory response, which inhibited NO production and had the best effect at 50 ng/mL in RAW264.7 macrophages (73.24%). Moreover, proinflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) secretion and mRNA expression levels were also significantly lower compared with untreated LcTLP (p < 0.05). Western blot further confirmed that the expressions of IκB-α, p65, p38, ERK and JNK reduced markedly (p < 0.05), which indicated LT15 inhibited the inflammatory response through NF-κB and MAPK transduction pathways. Overall, it can be hypothesized that LT15 exposed to low frequency ultrasonic fields have a direct effect on the protein surface structure and thus on the entry of LT15 into cells, making 15-minute ultrasound treatment potentially useful in reducing the pro-inflammatory properties of litchi or related liquid products.


Assuntos
Litchi , NF-kappa B , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Transdução de Sinais , Anti-Inflamatórios/metabolismo , Anti-Inflamatórios/farmacologia , Ultrassom , Macrófagos , Citocinas/metabolismo , Citocinas/farmacologia
10.
Antioxidants (Basel) ; 12(2)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36829977

RESUMO

Non-extractable phenolic compounds (NEPs), or bound phenolic compounds, represent a crucial component of polyphenols. They are an essential fraction that remains in the residual matrix after the extraction of extractable phenolic compounds (EPs), making them a valuable resource for numerous applications. These compounds encompass a diverse range of phenolic compounds, ranging from low molecular weight phenolic to high polymeric polyphenols attached to other macro molecules, e.g., cell walls and proteins. Their status as natural, green antioxidants have been well established, with numerous studies showcasing their anti-inflammatory, anti-aging, anti-cancer, and hypoglycemic activities. These properties make them a highly desirable alternative to synthetic antioxidants. Fruit and vegetable (F&Veg) wastes, e.g., peels, pomace, and seeds, generated during the harvest, transport, and processing of F&Vegs, are abundant in NEPs and EPs. This review delves into the various types, contents, structures, and antioxidant activities of NEPs and EPs in F&Veg wastes. The relationship between the structure of these compounds and their antioxidant activity is explored in detail, highlighting the importance of structure-activity relationships in the field of natural antioxidants. Their potential applications ranging from functional food and beverage products to nutraceutical and cosmetic products. A glimpse into their bright future as a valuable resource for a greener, healthier, and more sustainable future, and calling for researchers, industrialists, and policymakers to explore their full potential, are elaborated.

11.
Carbohydr Polym ; 281: 119086, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35074113

RESUMO

During processing of plant-based foods, cell wall polysaccharides and polyphenols, such as procyanidins, interact extensively, thereby affecting their physicochemical properties along with their potential health effects. Although hemicelluloses are second only to pectins in affinity for procyanidins in cell walls, a detailed study of their interactions lacks. We investigated the interactions between representative xylose-containing water-soluble hemicelluloses and procyanidins. Turbidity, ITC and DLS were used to determine the relative affinities, and theoretical calculations further ascertained the interactions mechanisms. Xyloglucan and xylan exhibited respectively the strongest and weakest interactions with procyanidins. The different arabinoxylans interacted with procyanidins in a similar strength, intermediate between xyloglucans and xylans. Therefore, the strength of the interaction depended on the structure itself rather than on some incidental properties, e.g., viscosity and molar mass. The arabinose side-chain of arabinoxylan did not inhibit interactions. The computational investigation corroborated the experimental results in that the region of interaction between xyloglucan and procyanidins was significantly wider than that of other hemicelluloses.


Assuntos
Proantocianidinas , Parede Celular/química , Pectinas/química , Polissacarídeos/química , Proantocianidinas/química , Xilanos/química , Xilose/análise
12.
Compr Rev Food Sci Food Saf ; 20(5): 4841-4880, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288366

RESUMO

Flavanols, a subgroup of polyphenols, are secondary metabolites with antioxidant properties naturally produced in various plants (e.g., green tea, cocoa, grapes, and apples); they are a major polyphenol class in human foods and beverages, and have recognized effect on maintaining human health. Therefore, it is necessary to evaluate their changes (i.e., oxidation, polymerization, degradation, and epimerization) during various physical processing (i.e., heating, drying, mechanical shearing, high-pressure, ultrasound, and radiation) to improve the nutritional value of food products. However, the roles of flavanols, in particular for their polymerized forms, are often underestimated, for a large part because of analytical challenges: they are difficult to extract quantitatively, and their quantification demands chemical reactions. This review examines the existing data on the effects of different physical processing techniques on the content of flavanols and highlights the changes in epimerization and degree of polymerization, as well as some of the latest acidolysis methods for proanthocyanidin characterization and quantification. More and more evidence show that physical processing can affect content but also modify the structure of flavanols by promoting a series of internal reactions. The most important reactivity of flavanols in processing includes oxidative coupling and rearrangements, chain cleavage, structural rearrangements (e.g., polymerization, degradation, and epimerization), and addition to other macromolecules, that is, proteins and polysaccharides. Some acidolysis methods for the analysis of polymeric proanthocyanidins have been updated, which has contributed to complete analysis of proanthocyanidin structures in particular regarding their proportion of A-type proanthocyanidins and their degree of polymerization in various plants. However, future research is also needed to better extract and characterize high-polymer proanthocyanidins, whether in their native or modified forms.


Assuntos
Cacau , Polifenóis , Antioxidantes , Manipulação de Alimentos , Humanos , Chá
13.
Int J Biol Macromol ; 168: 105-115, 2021 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-33309654

RESUMO

A chitosan-based (CS) film was developed with nanosized TiO2 and red apple pomace extract (APE). The intermolecular interactions of CS, TiO2 and APE were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray diffraction. TiO2 nanoparticles remarkably improved the water vapor and UV-Vis light barrier properties, mechanical strength and thermal stability of CS-APE films. The strong antioxidant abilities of CS-APE and CS-TiO2-APE films were characterized. Nano-TiO2 and APE showed a synergistic enhancement of the antimicrobial activity in CS matrix. The addition of TiO2 nano-particles into CS-APE films resulted the sensitive color variations, which applied successfully as an indicator to monitor the freshness of salmon fillets. Consequently, the development of CS-APE-TiO2 film provides a new solution to convert rad apple pomace to an active and multifunctional food packaging material with considerable mechanical, antibacterial, antioxidant and pH-responsive color-changing properties.


Assuntos
Quitosana/química , Manipulação de Alimentos/métodos , Malus/química , Antibacterianos/química , Antioxidantes/química , Embalagem de Alimentos/métodos , Frutas/química , Nanopartículas Metálicas/química , Extratos Vegetais/química , Polifenóis/química , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Titânio/química , Difração de Raios X/métodos
14.
Compr Rev Food Sci Food Saf ; 19(6): 3574-3617, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33337054

RESUMO

Cell wall polysaccharides (CPSs) and polyphenols are major constituents of the dietary fiber complex in plant-based foods. Their digestion (by gut microbiota) and bioefficacy depend not only on their structure and quantity, but also on their intermolecular interactions. The composition and structure of these compounds vary with their dietary source (i.e., fruit or vegetable of origin) and can be further modified by food processing. Various components and structures of CPSs and polyphenols have been observed to demonstrate common and characteristic behaviors during interactions. However, at a fundamental level, the mechanisms that ultimately drive these interactions are still not fully understood. This review summarizes the current state of knowledge on the internal factors that influence CPS-polyphenol interactions, describes the different ways in which these interactions can be mediated by molecular composition or structure, and introduces the main methods for the analysis of these interactions, as well as the mechanisms involved. Furthermore, a comprehensive overview is provided of recent key findings in the area of CPS-polyphenol interactions. It is becoming clear that these interactions are shaped by a multitude of factors, the most important of which are the physicochemical properties of the partners: their morphology (surface area and porosity/pore shape), chemical composition (sugar ratio, solubility, and non-sugar components), and molecular architecture (molecular weight, degree of esterification, functional groups, and conformation). An improved understanding of the molecular mechanisms that drive interactions between CPSs and polyphenols may allow us to better establish a bridge between food processing and the bioavailability of colonic fermentation products from CPSs and antioxidant polyphenols, which could ultimately lead to the development of new guidelines for the design of healthier and more nutritious foods.


Assuntos
Parede Celular/química , Polifenóis/química , Polissacarídeos/química , Fibras na Dieta , Manipulação de Alimentos , Estrutura Molecular , Células Vegetais/química
15.
J Interferon Cytokine Res ; 40(6): 320-330, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32460595

RESUMO

The study aimed to investigate whether recombinant human elafin can prevent hyperoxia-induced pulmonary inflammation in newborn mice, and to explore the mechanism underlying the inhibitory effects of elafin on nuclear factor-kappa B (NF-κB) signaling pathway. Neonatal C57BL/6J mice were exposed to 85% O2 for 1, 3, 7, 14, or 21 days. Then, elafin was administered daily for 20 days through intraperitoneal injection. After treatment, morphometric analysis, quantitative real-time polymerase chain reaction, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, and Western blotting were carried out to determine the key markers involved in inflammatory process and the potential signaling pathways in hyperoxia-exposed newborn mice treated with elafin. In neonatal bronchopulmonary dysplasia (BPD) mice, hyperoxia induced apoptosis by increasing Bcl-2-associated X protein expression, and triggered inflammation by upregulating the expression levels of interleukin (IL)-1ß, IL-6, IL-8, and tumor necrosis factor-α. Moreover, hyperoxia activated NF-κB signaling pathway by promoting the nuclear translocation of p65 in lung tissue. However, all these changes could be inhibited or reversed by elafin at least partially. Elafin reduced apoptosis, suppressed inflammation cytokines, and improved NF-κB p65 nuclear accumulation in hyperoxia-exposed neonatal mice, indicating that this recombinant protein can serve as a novel target for the treatment of BPD.


Assuntos
Elafina/metabolismo , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , NF-kappa B/metabolismo , Animais , Animais Recém-Nascidos , Humanos , Lesão Pulmonar/patologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/metabolismo , Transdução de Sinais
16.
Biochem Biophys Res Commun ; 525(2): 528-535, 2020 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-32113683

RESUMO

Glutaredoxin 1 (Grx1) is an important thiol transferase that catalyses the deglutathionylation of proteins through its active site. Deletion of Grx1 increases levels of glutathione-protein adducts and improves ischaemic revascularization. In this study, we investigated whether the absence of Grx1 ameliorates pathological changes in blood vessels and alveoli in a mouse model exposed to hyperoxic conditions. High oxygen exposure for three consecutive weeks increased the levels of Grx1 in the lungs of hyperoxic mice from control levels, while Grx1 levels in Grx1 knockout (KO) mice were significantly reduced under high oxygen conditions. Exposure to 85% oxygen for 21 days reduced alveolarization in wild-type (WT) mice but increased the numbers of alveoli and the survival rate of Grx1 KO littermates. Importantly, vascular endothelial growth factor receptor 2 (VEGFR2) and vascular endothelial growth factor A (VEGFA) expressions were increased in Grx1 KO mice after hyperoxia treatment, and these effects were probably attributable to increased hypoxia-inducible factor (HIF)-1α expression. On the other hand, in response to nuclear factor (NF)-κB inhibition by Grx1 ablation, chemokine and caspase-3 levels were reduced, although the Bcl-2:Bax ratio was increased. Here, we provide evidence that Grx1 plays an important role in regulating pathological damage under hyperoxic conditions by promoting HIF-1α stability and inhibiting the NF-κB pathway in vivo. Our study highlights the functional importance of the Grx1/protein S-glutathionylation (PSSG) redox module in the regulation of ischaemic revascularization, indicating potential clinical and therapeutic applications.


Assuntos
Glutarredoxinas/genética , Hiperóxia/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Pulmão/irrigação sanguínea , Pulmão/patologia , NF-kappa B/metabolismo , Animais , Deleção de Genes , Glutarredoxinas/metabolismo , Hiperóxia/genética , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Fisiológica , Estabilidade Proteica , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA