Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Curr Med Chem ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38213178

RESUMO

BACKGROUND: Tirabrutinib is an orally effective, approved, and highly selective second-generation Bruton's tyrosine kinase (BTK) inhibitor for the treatment of recurrent or refractory primary central nervous system lymphoma (PCNSL). OBJECTIVE: This study aimed to develop an ultra-high performance liquid chromatography- tandem mass spectrometry (UPLC-MS/MS) method for the determination of tirabrutinib concentration in rat plasma, where zanubrutinib was used as an internal standard (IS). This method was also applied to study whether tirabrutinib would interact with voriconazole, itraconazole, and fluconazole in rats, providing a reference value for clinical medication guidance. METHODS: In the current study, the organic solvent protein precipitation method was used to treat plasma samples, which is simple and reproducible. Tirabrutinib (m/z 455.32 → 320.21) and zanubrutinib (m/z 472.13 → 455.04) were separated on a Waters Acquity BEH C18 column (2.1 × 50 mm, 1.7 µm) and detected by multiple reaction monitoring (MRM) in positive ionization mode. RESULTS: The method showed good linearity in the range of 5-3000 ng/mL for tirabrutinib with the lower limit of quantification (LLOQ) of 5 ng/mL. The recovery and matrix effects were 85.7-91.0% and 102.0-113.3%, respectively. The accuracy, precision, stability, and carry-over effect were also acceptable. The method could also be used for determining the pharmacokinetic interaction of tirabrutinib in rats. The results showed AUC0→∞ of tirabrutinib to be increased by 139.3% and 83.9% in the presence of voriconazole and fluconazole, respectively, while itraconazole had little effect. CONCLUSION: It is necessary to monitor the concentration of tirabrutinib in patients when it is combined with voriconazole and fluconazole to achieve a better therapeutic effect and reduce the risk of adverse reaction. Further research should be conducted in the future.

2.
Front Pharmacol ; 14: 1292354, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38094891

RESUMO

As a broad-spectrum antiviral, and especially as a popular drug for treating coronavirus disease 2019 (COVID-19) today, arbidol often involves drug-drug interactions (DDI) when treating critical patients. This study established a rapid and effective ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method to detect arbidol and its metabolite arbidol sulfoxide (M6-1) levels in vivo and in vitro. In this study, a 200 µL incubation system was used to study the inhibitory effect of the antitumor drug napabucasin on arbidol in vitro, with IC50 values of 2.25, 3.91, and 67.79 µM in rat liver microsomes (RLMs), human liver microsomes (HLMs), and CYP3A4.1, respectively. In addition, we found that the mechanism of inhibition was non-competitive inhibition in RLM and mixed inhibition in HLM. In pharmacokinetic experiments, it was observed that after gavage administration of 48 mg/kg napabucasin and 20 mg/kg arbidol, napabucasin inhibited the metabolism of arbidol in vivo and significantly changed the pharmacokinetic parameters of arbidol, such as AUC(0-t) and AUC(0-∞), in rats. We also found that napabucasin increased the AUC(0-t) and AUC(0-∞) of M6-1, the main metabolite of arbidol. This study provides a reference for the combined use of napabucasin and arbidol in clinical practice.

3.
World J Gastrointest Oncol ; 15(10): 1739-1755, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37969408

RESUMO

BACKGROUND: As an active ingredient derived from Dioscorea zingiberensis C.H. Wright, deltonin has been reported to show anti-cancer effects in a variety of malignancies. AIM: To investigate the role and mechanism of action of deltonin in promoting gastric carcinoma (GC) cell apoptosis and chemosensitivity to cisplatin. METHODS: The GC cell lines AGS, HGC-27, and MKN-45 were treated with deltonin and then subjected to flow cytometry and 3-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide assays for cell apoptosis and viability determination. Western blot analysis was conducted to examine alterations in the expression of apoptosis-related proteins (Bax, Bid, Bad, and Fas), DNA repair-associated proteins (Rad51 and MDM2), and phosphatidylinositol 3-kinase/protein kinase B/mammalian target of the rapamycin (PI3K/AKT/mTOR) and p38-mitogen-activated protein kinase (MAPK) axis proteins. Additionally, the influence of deltonin on GC cell chemosensitivity to cisplatin was evaluated both in vitro and in vivo. RESULTS: Deltonin treatment weakened viability, enhanced apoptosis, and dampened DNA repair in GC cell lines in a dose-dependent pattern. Furthermore, deltonin mitigated PI3K, AKT, mTOR, and p38-MAPK phosphorylation. HS-173, an inhibitor of PI3K, attenuated GC cell viability and abolished deltonin inhibition of GC cell viability and PI3K/AKT/mTOR and p38-MAPK pathway activation. Deltonin also promoted the chemosensitivity of GC cells to cisplatin via repressing GC cell proliferation and growth and accelerating apoptosis. CONCLUSION: Deltonin can boost the chemosensitivity of GC cells to cisplatin via inactivating p38-MAPK and PI3K/AKT/mTOR signaling.

4.
Biomed Pharmacother ; 168: 115833, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37935069

RESUMO

The aim of this study was to investigate the impacts of 24 variants of recombinant human CYP3A4 and drug interactions on the metabolism of lurasidone. In vitro, enzymatic reaction incubation system of CYP3A4 was established to determine the kinetic parameters of lurasidone catalyzed by 24 CYP3A4 variants. Then, we constructed rat liver microsomes (RLM) and human liver microsomes (HLM) incubation system to screen potential anti-tumor drugs that could interact with lurasidone and studied its inhibitory mechanism. In vivo, Sprague-Dawley (SD) rats were applied to study the interaction between lurasidone and olmutinib. The concentrations of the analytes were detected by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). As the results, we found that compared with the wild-type CYP3A4, the relative intrinsic clearances vary from 355.77 % in CYP3A4.15 to 14.11 % in CYP3A4.12. A series of drugs were screened based on the incubation system, and compared to without olmutinib, the amount of ID-14283 (the metabolite of lurasidone) in RLM and HLM were reduced to 7.22 % and 7.59 %, and its IC50 were 18.83 ± 1.06 µM and 16.15 ± 0.81 µM, respectively. At the same time, it exerted inhibitory effects both through a mixed mechanism. When co-administration of lurasidone with olmutinib in rats, the AUC(0-t) and AUC(0-∞) of lurasidone were significantly increased by 73.52 % and 69.68 %, respectively, while CLz/F was observably decreased by 43.83 %. In conclusion, CYP3A4 genetic polymorphism and olmutinib can remarkably affect the metabolism of lurasidone.


Assuntos
Citocromo P-450 CYP3A , Cloridrato de Lurasidona , Animais , Humanos , Ratos , Cromatografia Líquida , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Interações Medicamentosas , Cloridrato de Lurasidona/farmacocinética , Microssomos Hepáticos , Polimorfismo Genético , Ratos Sprague-Dawley , Espectrometria de Massas em Tandem
6.
J Anal Methods Chem ; 2023: 3678599, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37469971

RESUMO

Oprozomib, as a second-generation orally bioavailable protease inhibitor (PI), is undergoing clinical evaluation for the treatment of haematological malignancies. In relapsed refractory multiple myeloma (RRMM) patients, oprozomib has shown good efficacy as a single agent or combination therapy. In this experiment, our purpose was to validate a sensitive and rapid method for the determination of oprozomib concentration in rat plasma by ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). The samples were treated with acetonitrile as the precipitant and separated by gradient elution using a Waters Acquity UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 µm). Using the selective reaction monitoring (SRM) method, the measurement was finished with the ion transitions of m/z 533.18 ⟶ 199.01 for oprozomib and m/z 493.03 ⟶ 112.03 for tepotinib (internal standard, IS), respectively. Meanwhile, acetonitrile and 0.1% formic acid aqueous solution were used as the mobile phase, and the flow rate was 0.3 mL/min. The lower limit of quantification (LLOQ) of the method was 1.0 ng/mL, and the linear relationship was good in the range of 1.0-100 ng/mL. In addition, the precision of four concentration levels was determined with the values of 3.1-7.3% and the accuracy was from -14.9% to 12.9%. Moreover, the recovery was determined to be from 85.1% to 96.1%, and the values of matrix effect were no more than 110.4%. The optimized UPLC-MS/MS method was also suitable for the pharmacokinetic study of rats after a single oral administration of 21 mg/kg oprozomib.

7.
J Infect Dis ; 228(7): 944-956, 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37166078

RESUMO

Leptospirosis is a recurring but neglected zoonotic disease caused by pathogenic Leptospira. The explicit underlying mechanism of necroptosis and its role in Leptospira infection have not yet been elucidated. Here we reported that leptospiral pathogen-associated molecular patterns, lipopolysaccharide, and glycolipoprotein activate the necroptotic RIPK1-RIPK3-MLKL cascade through the TLR4 signaling pathway in mouse macrophages. Using the murine acute leptospirosis model, we reveal that abolition of necroptosis exhibited significantly improved outcomes in acute phases, with enhanced eradication of Leptospira from liver, mild clinical symptoms, and decreased cytokine production. RIPK3 was also found to exert a necroptosis-independent function in CXCL1 production and neutrophil recruitment, with the consequence of improved Leptospira control. These findings improve our understanding of the mechanism of Leptospira-macrophage interactions, indicating potential therapeutic values by targeting necroptosis signaling pathways.


Assuntos
Leptospira , Leptospirose , Camundongos , Animais , Lipopolissacarídeos , Necroptose , Leptospirose/patologia , Leptospira/metabolismo , Macrófagos/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores
8.
Front Pharmacol ; 14: 1168852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37214442

RESUMO

As the validated agent for the treatment of chronic myelogenous leukemia (CML), flumatinib is a novel oral tyrosine kinase inhibitor (TKI) with higher potency and selectivity for BCR-ABL1 kinase compared to imatinib. Many patients experience aspergillosis infection and they may start using isavuconazole, which is an inhibitor of CYP3A4. However, there is no study on their interaction in vitro and in vivo. In the present study, the concentrations of flumatinib and its major metabolite M1 were rapidly determined using an stable ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. The half-maximal inhibitory concentration (IC50) was 6.66 µM in human liver microsomes (HLM), while 0.62 µM in rat liver microsomes (RLM) and 2.90 µM in recombinant human CYP3A4 (rCYP3A4). Furthermore, the mechanisms of inhibition of flumatinib in human liver microsomes, rat liver microsomes and rCYP3A4 by isavuconazole were mixed. Moreover, ketoconazole, posaconazole, and isavuconazole showed more potent inhibitory effects than itraconazole, fluconazole, and voriconazole on HLM-mediated flumatinib metabolism. In pharmacokinetic experiments of rats, it was observed that isavuconazole could greatly change the pharmacokinetic parameters of flumatinib, including AUC(0-t), AUC(0-∞), Cmax and CLz/F, but had no effect on the metabolism of M1. According to the results of in vitro and in vivo studies, the metabolism of flumatinib was inhibited by isavuconazole, suggesting that isavuconazole may raise the plasma concentration of flumatinib. Thus, it is important to take special care of the interactions between flumatinib and isavuconazole in clinical applications.

9.
Pharm Biol ; 61(1): 514-519, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36891628

RESUMO

CONTEXT: Derazantinib-an orally bioavailable, ATP competitive, multikinase inhibitor-has strong activity against fibroblast growth factor receptors (FGFR)2, FGFR1, and FGFR3 kinases. It has preliminary antitumor activity in patients with unresectable or metastatic FGFR2 fusion-positive intrahepatic cholangiocarcinoma (iCCA). OBJECTIVE: This experiment validates a novel sensitive and rapid method for the determination of derazantinib concentration in rat plasma by ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS), and applies it to the study of drug-drug interaction between derazantinib and naringin in vivo. MATERIALS AND METHODS: A Xevo TQ-S triple quadrupole tandem mass spectrometer was used for mass spectrometry monitoring in selective reaction monitoring (SRM) mode with transitions of m/z 468 96 → 382.00 for derazantinib and m/z 488.01 → 400.98 for pemigatinib, respectively. The pharmacokinetics of derazantinib (30 mg/kg) was investigated in Sprague-Dawley (SD) rats divided into two groups (with the oral pretreatment of 50 mg/kg naringin or not). RESULTS: The newly optimized UPLC-MS/MS method was suitable for the determination of derazantinib in rat plasma. It was also successfully employed to evaluate the effect of naringin on derazantinib metabolism in rats. After pretreatment with naringin, there was no significant difference in the pharmacokinetic parameters (AUC0→t, AUC0→∞, t1/2, CLz/F, and Cmax) of derazantinib when compared with derazantinib alone. CONCLUSION: Co-administration of naringin with derazantinib was not associated with significant changes in pharmacokinetic parameters. Thus, this study suggests that the combination of derazantinib with naringin can safely be administered concomitantly without dose adjustment.


Assuntos
Espectrometria de Massas em Tandem , Ratos , Animais , Ratos Sprague-Dawley , Cromatografia Líquida , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes
10.
Chem Biol Interact ; 368: 110239, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36309139

RESUMO

Polypharmacology has become a new paradigm in drug discovery and plays an increasingly vital role in discovering multi-target drugs. In this context, multi-target drugs are a promising approach to treating polygenic diseases. Many in-silico prediction methods have been developed to screen active molecules acting on multiple targets. The relationship between the action of multiple targets and the drug's overall efficacy is significant for developing multi-target drugs. So, the prediction method for this relationship urgently needs to be developed. This paper introduces multi-target-based polypharmacology prediction (mTPP), an approach using virtual screening and machine learning to explore the relationship. To predict the activity of the potential hepatoprotective components, the data on the binding strength of a single ingredient with multiple targets and the proliferation rate of the compounds against acetaminophen (APAP)-induced injury L02 cells were all used to construct the mTPP model by Multi-layer Perceptron (MLP), Support Vactor Regression (SVR), Decision Tree Regressor (DTR), and Gradient Boost Regression (GBR) algorithms. Compared with MLP, SVR, and DTR algorithms, GBR algorithms showed the best performance with R2test = 0.73 and EVtest = 0.75. In addition, 20 candidates with potential effects against drug-induced liver injury (DILI) were predicted by the mTPP model. Furthermore, 2 of the 20 candidates, Chelerythrine and Biochanin A, were applied to evaluate the model's accuracy. The results showed that Chelerythrine and Biochanin A could improve the viability of APAP-induced injury cells. Thus, the mTPP model is hoped to help develop polypharmacology and discover multi-target drugs.


Assuntos
Acetaminofen , Polifarmacologia , Acetaminofen/farmacologia , Descoberta de Drogas/métodos , Aprendizado de Máquina , Algoritmos
11.
World J Gastroenterol ; 28(28): 3644-3665, 2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36161055

RESUMO

BACKGROUND: Ulcerative colitis (UC) is a chronic, nonspecific intestinal inflammatory disease. Acupuncture and moxibustion is proved effective in treating UC, but the mechanism has not been clarified. Proteomic technology has revealed a variety of biological markers related to immunity and inflammation in UC, which provide new insights and directions for the study of mechanism of acupuncture and moxibustion treatment of UC. AIM: To investigate the mechanism of electroacupuncture (EA) and herb-partitioned moxibustion (HM) on UC rats by using proteomics technology. METHODS: Male Sprague-Dawley rats were randomly divided into the normal (N) group, the dextran sulfate sodium (DSS)-induced UC model (M) group, the HM group, and the EA group. UC rat model was prepared with 3% DSS, and HM and EA interventions at the bilateral Tianshu and Qihai acupoints were performed in HM or EA group. Haematoxylin and eosin staining was used for morphological evaluation of colon tissues. Isotope-labeled relative and absolute quantification (iTRAQ) and liquid chromatography-tandem mass spectrometry were performed for proteome analysis of the colon tissues, followed by bioinformatics analysis and protein-protein interaction networks establishment of differentially expressed proteins (DEPs) between groups. Then western blot was used for verification of selected DEPs. RESULTS: The macroscopic colon injury scores and histopathology scores in the HM and EA groups were significantly decreased compared to the rats in the M group (P < 0.01). Compared with the N group, a total of 202 DEPs were identified in the M group, including 111 up-regulated proteins and 91 down-regulated proteins, of which 25 and 15 proteins were reversed after HM and EA interventions, respectively. The DEPs were involved in various biological processes such as biological regulation, immune system progression and in multiple pathways including natural killer cell mediated cytotoxicity, intestinal immune network for immunoglobulin A (IgA) production, and FcγR-mediated phagocytosis. The Kyoto Encyclopedia of Genes and Genomes pathways of DEPs between HM and M groups, EA and M groups both included immune-associated and oxidative phosphorylation. Network analysis revealed that multiple pathways for the DEPs of each group were involved in protein-protein interactions, and the expression of oxidative phosphorylation pathway-related proteins, including ATP synthase subunit g (ATP5L), ATP synthase beta subunit precursor (Atp5f), cytochrome c oxidase subunit 4 isoform 1 (Cox4i1) were down-regulated after HM and EA interventions. Subsequent verification of selected DEPs (Synaptic vesicle glycoprotein 2A; nuclear cap binding protein subunit 1; carbamoyl phosphate synthetase 1; Cox4i1; ATP synthase subunit b, Atp5f1; doublecortin like kinase 3) by western blot confirmed the reliability of the iTRAQ data, HM and EA interventions can significantly down-regulate the expression of oxidative phosphorylation-associated proteins (Cox4i1, Atp5f1) (P < 0.01). CONCLUSION: EA and HM could regulate the expression of ATP5L, Atp5f1, Cox4i1 that associated with oxidative phosphorylation, then might regulate immune-related pathways of intestinal immune network for IgA production, FcγR-mediated phagocytosis, thereby alleviating colonic inflammation of DSS-induced UC rats.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Moxibustão , Pontos de Acupuntura , Trifosfato de Adenosina , Animais , Carbamoil-Fosfato , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/terapia , Sulfato de Dextrana/toxicidade , Proteínas do Domínio Duplacortina , Complexo IV da Cadeia de Transporte de Elétrons , Amarelo de Eosina-(YS) , Glicoproteínas , Imunoglobulina A , Inflamação , Ligases , Masculino , Proteoma , Proteômica , Proteínas de Ligação ao Cap de RNA , Ratos , Ratos Sprague-Dawley , Receptores de IgG , Reprodutibilidade dos Testes
12.
Front Pharmacol ; 13: 955263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160432

RESUMO

As multi-targeted tyrosine kinase inhibitors, sorafenib, regorafenib and cabozantinib are widely used in hepatocellular carcinoma (HCC) for systemic therapies with anti-proliferative and anti-angiogenic effects. Nevertheless, adverse effects or insufficient efficacy appear frequently due to the plasma concentration with individual variability of these drugs. To ensure the curative effect and safety by therapeutic drug monitoring (TDM), this study developed a high throughput method to quantify sorafenib, regorafenib, cabozantinib and their active metabolites in plasma simultaneously. The chromatographic separation analysis achievement was performed on a Waters-ACQUITY UPLC BEH C18 column by UPLC-MS/MS system using a gradient elution of solvent A (acetonitrile) and solvent B (water with 0.1% formic acid) in 3.0 min. This method presented satisfactory results of specificity, precision (the intra-day coefficient of variation was between 2.5% and 6.6%, and the inter-day coefficient of variation was between 4.0% and 11.1%) and accuracy (within ±15% for intra-day and inter-day), as well as the stability under certain conditions, the matrix effect in plasma, and extraction recovery (75.6%-94.4%). The linearity of each analyte in the proper concentration scope indicated excellent. This study strictly complied with the performance rules of assay validation in biological medium proposed by FDA and was successfully applied to the pharmacokinetic study in rats. Thus, it would be an advantageous option to research the relationship between concentration-efficacy and concentration-toxic in HCC patients who were supposed to take these medications.

13.
J Nanobiotechnology ; 20(1): 421, 2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36153522

RESUMO

Light-mediated nanotherapeutics have recently emerged as promising strategies to precisely control the activation of therapeutic reagents and imaging probe both in vitro and in vivo, largely ascribed to their unique properties, including minimally invasive capabilities and high spatiotemporal resolution. Nanoscale metal-organic frameworks (NMOFs), a new family of hybrid materials consisting of metal attachment sites and bridging ligands, have been explored as a new platform for enhanced cancer diagnosis and therapy due to their tunable size, modifiable surface, good biocompatibility, high agent loading and, most significantly, their ability to be preferentially deposited in tumors through enhanced permeability and retention (EPR). Especially the light-driven NMOF-based therapeutic platform, which not only allow for increased laser penetration depth and enhanced targeting, but also enable imaging-guided or combined treatments. This review provides up-to-date developments of NMOF-based therapeutic platforms for cancer treatment with emphasis on light-triggered therapeutic strategies and introduces their advances in cancer diagnosis and therapy in recent years.


Assuntos
Estruturas Metalorgânicas , Neoplasias , Terapia Combinada , Portadores de Fármacos , Humanos , Estruturas Metalorgânicas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/patologia , Neoplasias/terapia
15.
Front Pharmacol ; 13: 874973, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35784757

RESUMO

Relugolix, a gonadotropin-releasing hormone (GnRH) receptor antagonist, has been well studied in the treatment of endometriosis symptomatic. It is mainly metabolized by the CYP3A subfamily of P450 enzymes, while minorly metabolized by CYP2C8. Daidzein in different dose groups exhibited a certain induction on the mRNA expression level of CYP3A4 and resulted in the potent induction of CYP3A4. However, it is still unknown whether daidzein and relugolix interact. We developed an effective ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method to study the effect of daidzein on the pharmacokinetics of relugolix in rats after oral administration of 12 mg/kg relugolix in a single or mixed of 50 mg/kg daidzein. The results showed that the method had respectable linearity (r 2 > 0.999) on the scale of 0.7-1000 ng/mL. The intra-day precision was between 3.0% and 8.4% in this assay, and the inter-day was between 4.0% and 11.7%. The intra-day accuracy was from -4.3% to 6.1%, and the inter-day was 2.9% to 12.1%. Another three key indicators, including the stability, the recovery rate of extraction and the new technique's matrix effect, were perfectly in accord with the test verification rule in the biological medium by the United States Food and Drug Administration. Meanwhile, treatment with daidzein led to a decrease in Cmax and AUC0-t of relugolix by about 15.56% and 21.36%, respectively. Although there was no statistical difference in pharmacokinetic parameters, it reflected the induction trend of daidzein on relugolix metabolism for food-drug interaction. It would provide reference and improvement value for subsequent experiments.

16.
Front Pharmacol ; 13: 914733, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35774599

RESUMO

Voxtalisib, is a specific, effective, and reversible dual inhibitor, which inhibits both pan-class I phosphoinositide 3-kinase (PI3K) and mechanistic target of rapamycin (mTOR). To date, voxtalisib has been studied in trials for melanoma, lymphoma, glioblastoma, breast cancer, and other cancers. In this study, a highly sensitive and rapid ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) technology was applied to the quantitative methodology and pharmacokinetic analysis of voxtalisib in rat plasma. After protein precipitation of the analyte by acetonitrile, the chromatographic separation was performed by gradient elution on an Acquity BEH C18 column (2.1 mm × 50 mm, 1.7 µm) with acetonitrile (solvent A) and 0.1% formic acid (solvent B) as the mobile phase. In the positive ion mode, the mass transfer detection of the analyte and IS was m/z 270.91 > 242.98 and m/z 572.30 > 246.10, respectively. In the concentration range of 1-2000 ng/ml, a good linear relationship of voxtalisib was successfully established by the UPLC-MS/MS technology, and the lower limit of quantification (LLOQ) of the analyte was identified as 1 ng/ml. Intra-day and inter-day precisions for voxtalisib were 7.5-18.7% and 13.0-16.6%, respectively, and the accuracies were in the ranges of -14.0-2.0% and -7.2-3.1%, respectively. The matrix effect, extraction recovery, carryover and stability of the analyte were all in compliance with the acceptance criteria of bioassays recommended by FDA. Finally, the pharmacokinetic profile of the analyte had been availably studied by the UPLC-MS/MS bio-analytical method after rats were treated by intragastric administration with voxtalisib (5 mg/kg). The results indicated that the UPLC-MS/MS technology can effectively and quickly quantify the analyte, and this method can also be used for the pharmacokinetic study of voxtalisib, which can provide reference for the optimization of clinical drug management in the later period.

17.
Front Pharmacol ; 13: 888054, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571101

RESUMO

This study aimed to explore the effect of baicalein on the pharmacokinetics of cilostazol (CLZ) and its two metabolites 3,4-dehydro cilostazol (3,4-CLZ) and 4'-trans-hydroxy cilostazol (4'-CLZ) in rats using a newly established ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method. Ticagrelor was used as an internal standard (IS), then cilostazol and its two metabolites were separated by means of a UPLC BEH C18 column (2.1 mm × 50 mm, 1.7 µm) using gradient elution method with 0.4 ml/min of flow rate. Acetonitrile as organic phase and water with 0.1% formic acid as aqueous phase constructed the mobile phase. Selective reaction monitoring (SRM) mode and positive ion mode were preferentially chosen to detect the analytes. Twelve SD rats were divided into two groups (n = 6) when CLZ was administered orally (10 mg/kg) with or without oral baicalein (80 mg/kg). The selectivity, linearity, recovery, accuracy, precision, matrix effect and stability of UPLC-MS/MS assay were satisfied with the standards of United States Food and Drug Administration guidelines. In control group, AUC0-∞ and Cmax of CLZ were 2,169.5 ± 363.1 ng/ml*h and 258.9 ± 82.6 ng/ml, respectively. The corresponding results were 3,767.6 ± 1,049.8 ng/ml*h and 308.6 ± 87.9 ng/ml for 3, 4-CLZ, 728.8 ± 189.9 ng/ml*h and 100.3 ± 51.3 ng/ml for 4'-CLZ, respectively. After combination with baicalein, AUC0-∞ and Cmax of CLZ were 1.48, 1.38 times higher than the controls. Additionally, AUC0-∞ and Cmax were separately decreased by 36.12 and 19.54% for 3,4-CLZ, 13.11 and 44.37% for 4'-CLZ. Baicalein obviously alters the pharmacokinetic parameters of CLZ, 3,4-CLZ and 4'-CLZ in rats. These results suggested that there was a potential drug-drug interaction between baicalein and CLZ. Therefore, it must raise the awareness when concomitant use of CLZ with baicalein, the dosage regimen of CLZ should be taken into consideration, if this result is confirmed in clinical studies.

18.
Zhongguo Zhong Yao Za Zhi ; 47(8): 2200-2210, 2022 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-35531737

RESUMO

Dachaihu Decoction is a classical Chinese herbal prescription that is effective in harmonizing lesser yang and purging internal accumulated heat. At present, it has been widely used in clinical practice, and the resulting outcomes are satisfactory. However, its quality indicators and action mechanism are still not clear. Therefore, this paper explored the efficacy markers of Dachaihu Decoction and its action mechanism based on literature mining, molecular biology, and network pharmacology, so as to better control its quality and ensure its clinical efficacy. The efficacy markers of Dachaihu Decoction were predicted and analyzed according to the "five principles" for Q-markers of Chinese herbs. Then the anti-inflammatory activity of the efficacy markers of Dachaihu Decoction was evaluated with Griess reagent after the establishment of RAW264.7 cell inflammation model in vitro with lipopolysaccharide(LPS). The potential targets of efficacy markers were predicted by Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform(TCMSP), ChEMBL, and SwissTargetPrediction, followed by the construction of the protein-protein interaction(PPI) network of the efficacy markers of Dachaihu Decoction. Topological, GO, and KEGG enrichment analysis was carried out to construct the "key target-signaling pathway-biological process" network, thus elucidating the action mechanism of the efficacy markers of Dachaihu Decoction. Saikosaponin B_2, baicalin, baicalein, wogonoside, neohesperidin, naringin, hesperidin, and paeoniflorin were considered as the potential efficacy markers of Dachaihu Decoction. The anti-inflammatory activity evaluation showed that the potential efficacy markers effectively inhibited the release of NO, exhibiting good anti-inflammatory activities. As demonstrated by network pharmacology, the efficacy markers of Dachaihu Decoction regulated the inflammatory response by acting on MAPK and NF-κB signaling pathways, the carbohydrate metabolism by HIF-1 and PI3 K-AKT signaling pathways, and the lipid metabolism by AMPK and PI3 K-AKT signaling pathways. This study discovered the efficacy markers of Dachaihu Decoction based on literature mining combined with molecular biological experiments and explored its action mechanism at the molecular level based on network pharmacology, which would provide reference for the quality control of Dachaihu Decoction and scientific basis for its clinical application.


Assuntos
Medicamentos de Ervas Chinesas , Biomarcadores , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Simulação de Acoplamento Molecular , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais
19.
Pharm Biol ; 60(1): 621-626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35289238

RESUMO

CONTEXT: Tucatinib (CYP2C8 substrate) and quercetin (CYP2C8 inhibitor) are two common drugs for the treatment of cancer. However, the effect of quercetin on the metabolism of tucatinib remains unknown. OBJECTIVE: We validated a sensitive method to quantify tucatinib levels in rat plasma based on ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), which was successfully employed to explore the effect of quercetin on tucatinib pharmacokinetics in rats. MATERIALS AND METHODS: An Acquity UPLC BEH C18 column was applied to achieve the separation of tucatinib and internal standard (IS) talazoparib after protein precipitation with acetonitrile. Then, we used this assay to investigate the effect of different doses of quercetin (25, 50 and 100 mg/kg) on the exposure of orally administered tucatinib (30 mg/kg) in 24 Sprague-Dawley (SD) rats, which were randomly divided into three quercetin pre-treated groups and one control group (n = 6). RESULTS: Our developed assay was verified in all aspects of bioanalytical method validation, involving lower limit of quantification (LLOQ), selectivity, accuracy and precision, calibration curve, extraction recovery, matrix effect and stability. After pre-treatment with 100 mg/kg quercetin, AUC0→t, AUC0→∞ and Cmax of tucatinib were remarkably increased by 75.4%, 75.8% and 59.1% (p < 0.05), respectively, while CLz/F was decreased significantly by 47.3% (p < 0.05) when compared with oral administration of 30 mg/kg tucatinib alone. This change is dose-dependent. CONCLUSIONS: This study will help better understand the pharmacokinetic properties of tucatinib with concurrent use with quercetin, and more clinical verifications were inspired to confirm whether this interaction has clinical significance in humans.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Oxazóis/farmacocinética , Piridinas/farmacocinética , Quercetina/farmacologia , Quinazolinas/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/análise , Antineoplásicos/farmacocinética , Área Sob a Curva , Relação Dose-Resposta a Droga , Interações Medicamentosas , Limite de Detecção , Masculino , Oxazóis/administração & dosagem , Oxazóis/análise , Piridinas/administração & dosagem , Piridinas/análise , Quercetina/administração & dosagem , Quinazolinas/administração & dosagem , Quinazolinas/análise , Ratos , Ratos Sprague-Dawley
20.
Appl Biochem Biotechnol ; 194(2): 801-812, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34542824

RESUMO

Stroke remains a highly deadly and disabling disease with limited treatment tragedies due to the limitations of available treatments; novel therapies for stroke are needed. In this article, the synergistic results of dual bone marrow mesenchymal stem cells (BMSC) and fasudil treatment in rat models of ischemic stroke still require further identification. Sprague-Dawley rats were used to construct the middle cerebral artery, occlusion models. BMSCs were incubated with fasudil, and MTT was performed to evaluate cell proliferation. The rats were treated with fasudil + BMSC, BMSC, fasudil, and saline. Blood samples were collected for complete blood count analysis and measurement of serum TNF-α levels. The neurological functions were evaluated. After the rats were sacrificed, immunohistochemical staining and TTC staining was performed. Fasudil promoted the proliferation of BMSCs and induced their differentiation into neuron-like cells. BMSCs increased the proportion of neutrophils; nevertheless, fasudil counteracted the neutrophil increase. The TUJ-1/MAP2/VIII factor expression in the fasudil + BMSC group was significantly higher than that in the other groups. The number of GFAP-positive cells decreased in the fasudil + BMSC and BMSC alone groups. The infarct volume in the fasudil + BMSC and BMSC alone groups was significantly lower than in the fasudil alone and control groups. Both BMSCs and fasudil exert neurorestorative effects in rat models of cerebral ischemia. Fasudil neutralizes the pro-inflammatory effects of BMSCs, while BMSCs and fasudil together had synergistic effects promoting neurovascular remodeling and neurological function recovery in stroke. A combination of BMSCs and fasudil provides a promising method for the treatment of ischemic stroke.


Assuntos
Acidente Vascular Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA