Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 12(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39195653

RESUMO

BACKGROUND: Ethylene oxide, a reactive epoxy compound, has been widely used in various industries for many years. However, evidence of the combined toxic effects of ethylene oxide exposure on the liver is still lacking. METHODS: We analyzed the merged data from the National Health and Nutrition Examination Survey (NHANES) from 2013 to 2016. Ultimately, 4141 adults aged 18 and over were selected as the sample. We used linear regression to explore the association between blood ethylene oxide and LFT indicators. RESULTS: The weighted linear regression model showed that HbEO is positively correlated with ALP (ß = 2.61, 95% CI 1.97, 3.24, p < 0.0001), GGT (ß = 5.75, 95% CI 4.46, 7/05, p < 0.0001), ALT (ß = 0.50, 95% CI 0.09, 0.90, p = 0.0158), and AST (ß = 0.71, 95% CI 0.44, 0.98, p < 0.0001) and negatively correlated with TBIL (ß = -0.30, 95% CI -0.43, -0.16, p < 0.0001). CONCLUSIONS: Ethylene oxide exposure is significantly associated with changes in liver function indicators among adults in the United States. Future work should further examine these relationships.

2.
Ann Surg Oncol ; 31(4): 2654-2655, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38273175

RESUMO

BACKGROUND: Duodenum-preserving pancreatic head resection (DPPHR) serves as a surgical intervention for managing benign and low-grade malignant neoplasms located in the head of the pancreas. This surgical approach enables the thorough excision of pancreatic head lesions, reducing the necessity for digestive tract reconstruction and enhancing the patient's quality of life.1 Performing a minimally invasive DPPHR is a complex surgical procedure, particularly when safeguarding the bile duct and the pancreaticoduodenal arterial arch. Robotic surgery is among the latest innovations in minimally invasive surgery and is widely used in many surgical specialties. It offers advantages such as rotatable surgical instruments, muscle tremor filters and up to 10-15 times three dimensional (3D) visual field,2 and achieves high flexibility and accuracy in surgical operations. Indocyanine green (ICG) fluorescence imaging technology is also applied to provide real-time intraoperative assessment of the biliary system and blood supply, which helps maintain the biliary system's integrity.3,4 We first report the complete procedure of ICG applied to the da Vinci robotic Xi system for preserving the DPPHR. METHODS: A 48-year-old female patient was diagnosed with pancreatic duct stones, chronic pancreatitis, and pancreatogenic diabetes. Enhanced computed tomography (CT) scans revealed pancreatic head stones, pancreatic atrophy, scattered calcifications, and a dilated pancreatic duct. An attempt at endoscopic retrograde cholangiopancreatography (ERCP) treatment was abandoned during hospitalization due to unsuccessful catheterization. Following informed consent from the patient and her family, a robotic DPPHR was conducted utilizing ICG fluorescence imaging technology. Approximately 60 min before the surgery, 2 mg of ICG was injected via the peripheral vein. The individual was positioned in a reclined posture with the upper part of the bed raised to an angle of 30° and a leftward tilt of 15°. Upon entering the abdominal cavity, existing adhesions were meticulously separated and the gastrocolic ligament was opened to expose the pancreas. The lower part of the pancreas was separated and the superior mesenteric vein (SMV) was identified at the inferior boundary of the pancreatic neck. The pancreas was cut upward and the pancreatic duct was severed using scissors. Dissection of the lateral wall of the portal vein-SMV in the pancreatic head segment was performed. Meticulous dissection was carried out along the pancreatic tissue, retracting the uncinate process of the pancreas in an upward and rightward direction. During the dissection, caution was exercised to protect the anterior and posterior pancreaticoduodenal arterial arch. By using ICG fluorescence imaging, the path of the common bile duct was identified and verified. Caution was exercised to avoid injuring the bile duct. After isolating the CBD, the head and uncinate process of the pancreas was entirely excised. Under the fluorescence imaging mode, the wholeness of the CBD was scrutinized for any potential seepage of the contrast agent. Ultimately, a Roux-en-Y end-to-side pancreaticojejunostomy (duct to mucosa) was executed. RESULTS: The surgery took 265 min and the estimated blood loss was about 150 mL. Without any postoperative complications, the patient was released from the hospital 13 days following the surgery. Postoperative pathology confirmed pancreatic duct stones and chronic pancreatitis. We have successfully performed four cases of robotic DPPHR using this technique, with only one patient experiencing a postoperative complication of pulmonary embolism. All patients were discharged successfully without any further complications. CONCLUSIONS: Employing ICG fluorescence imaging in a robotic DPPHR has been demonstrated to be both secure and achievable. This technique potentially provides novel therapeutic perspectives, particularly for patients with ambiguous delineation between pancreatic and biliary ductal structures.


Assuntos
Pancreatopatias , Neoplasias Pancreáticas , Pancreatite Crônica , Procedimentos Cirúrgicos Robóticos , Humanos , Feminino , Pessoa de Meia-Idade , Verde de Indocianina , Qualidade de Vida , Neoplasias Pancreáticas/patologia , Pancreatectomia/métodos , Pancreatite Crônica/diagnóstico por imagem , Pancreatite Crônica/cirurgia , Pancreatopatias/cirurgia , Duodeno/cirurgia
3.
J Am Chem Soc ; 145(32): 18029-18035, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37530761

RESUMO

Ferrocene is perhaps the most popular and well-studied organometallic molecule, but our understanding of its structure and electronic properties has not changed for more than 70 years. In particular, all previous attempts of chemically oxidizing pure ferrocene by binding directly to the iron center have been unsuccessful, and no significant change in structure or magnetism has been reported. Using a metal organic framework host material, we were able to fundamentally change the electronic and magnetic structure of ferrocene to take on a never-before observed physically stretched/bent high-spin Fe(II) state, which readily accepts O2 from air, chemically oxidizing the iron from Fe(II) to Fe(III). We also show that the binding of oxygen is reversible through temperature swing experiments. Our analysis is based on combining Mößbauer spectroscopy, extended X-ray absorption fine structure, in situ infrared, SQUID, thermal gravimetric analysis, and energy dispersive X-ray fluorescence spectroscopy measurements with ab initio modeling.

4.
Am J Transplant ; 23(3): 336-352, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36695693

RESUMO

Acute rejection (AR) is an important factor that leads to poor prognosis after liver transplantation (LT). Macrophage M1-polarization is an important mechanism in AR development. MicroRNAs play vital roles in disease regulation; however, their effects on macrophages and AR remain unclear. In this study, rat models of AR were established following LT, and macrophages and peripheral blood mononuclear cells were isolated from rats and humans, respectively. We found miR-449a expression to be significantly reduced in macrophages and peripheral blood mononuclear cells. Overexpression of miR-449a not only inhibited the M1-polarization of macrophages in vitro but also improved the AR of transplant in vivo. The mechanism involved inhibiting the noncanonical nuclear factor-kappaB (NF-κB) pathway. We identified procollagen-lysine1,2-oxoglutarate5-dioxygenase 1 (PLOD1) as a target gene of miR-449a, which could reverse miR-449a's inhibition of macrophage M1-polarization, amelioration of AR, and inhibition of the NF-κB pathway. Overall, miR-449a inhibited the NF-κB pathway in macrophages through PLOD1 and also inhibited the M1-polarization of macrophages, thus attenuating AR after LT. In conclusion, miR-449a and PLOD1 may be new targets for the prevention and mitigation of AR.


Assuntos
Transplante de Fígado , MicroRNAs , Animais , Humanos , Ratos , Leucócitos Mononucleares/metabolismo , Macrófagos/metabolismo , MicroRNAs/genética , NF-kappa B/metabolismo , Pró-Colágeno/metabolismo , Pró-Colágeno/farmacologia
5.
Front Immunol ; 13: 1054753, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36466888

RESUMO

Many end-stage liver disease etiologies are attributed to robust inflammatory cell recruitment. Neutrophils play an important role in inflammatory infiltration and neutrophil phagocytosis, oxidative burst, and degranulation. It has also been suggested that neutrophils may release neutrophil extracellular traps (NETs) to kill pathogens. It has been proven that neutrophil infiltration within the liver contributes to an inflammatory microenvironment and immune cell activation. Growing evidence implies that NETs are involved in the progression of numerous complications of liver transplantation, including ischemia-reperfusion injury, acute rejection, thrombosis, and hepatocellular carcinoma recurrence. NETs are discussed in this comprehensive review, focusing on their effects on liver transplantation complications. Furthermore, we discuss NETs as potential targets for liver transplantation therapy.


Assuntos
Doença Hepática Terminal , Armadilhas Extracelulares , Neoplasias Hepáticas , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Neutrófilos , Microambiente Tumoral
6.
Acta Biochim Biophys Sin (Shanghai) ; 54(8): 1148-1158, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35959879

RESUMO

The occurrence of acute rejection after liver transplantation seriously impairs the prognosis of patients. miRNA is involved in many physiological and pathological processes of the body, but the mechanism of miRNA action in liver transplantation is not completely clear. In this study, we discuss the role of miR-505-5p in acute rejection after liver transplantation and its putative regulating mechanism. We construct an allogeneic rat liver transplantation model, observe the morphological and pathological changes in liver tissue, detect the expression levels of Myd88, miR-505-5p, IL-10 and TNF-α, and confirm that Myd88 is one of the direct targets of miR-505. The effects of miR-505-5p on the Myd88/TRAF6/NF-κB and MAPK pathways are detected both in vitro and in vivo, and the standard markers of Kupffer cell M1/M2 polarization are also detected. The results of qRT-PCR experiments show that miR-505-5p has a downward trend in rats with acute rejection. Western blot analysis reveals that over-expression of miR-505-5p induces the reduction of NF-κB and MAPK pathways both in vitro and in vivo. The role of miR-505-5p in alleviating acute rejection after transplantation may be accomplished by inducing M2-type polarization of Kupffer cells. In conclusion, we find that miR-505-5p alleviates acute rejection of liver transplantation by inducing M2 polarization of macrophages via the Myd88/TRAF6 axis, which suggests a potential strategy based on miRNAs in the follow-up treatment of liver transplantation.


Assuntos
Transplante de Fígado , MicroRNAs , Animais , Interleucina-10/metabolismo , Células de Kupffer/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , NF-kappa B/metabolismo , Ratos , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
7.
Sci Rep ; 12(1): 13973, 2022 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978104

RESUMO

Salidroside has anti-inflammatory, antioxidant and hepatoprotective properties. However, its effect on hepatic ischemia-reperfusion injury (IRI), an unavoidable side effect associated with liver transplantation, remains undefined. Here, we aimed to determine whether salidroside alleviates hepatic IRI and elucidate its potential mechanisms. We used both in vivo and in vitro assays to assess the effect and mechanisms of salidroside on hepatic IRI. Hepatic IRI rat models were pretreated with salidroside (5, 10 or 20 mg/kg/day) for 7 days following liver transplantation while hypoxia/reoxygenation (H/R) model of RAW 264.7 macrophages were pretreated with salidroside (1, 10 or 50 µM). The effect of salidroside on hepatic IRI was assessed using hematoxylin-eosin staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling staining, qRT-PCR, immunosorbent assay and western blotting. Our in vivo assays showed that salidroside significantly reduced pathological liver damage, serum aminotransferase levels and serum levels of IL-1, IL-18 and TNF-α. Besides, salidroside reduced the expression of TLR-4/NF-κB/NLRP3 inflammatory pathway associated proteins (TLR-4, MyD88, p-IKKα, p-IKKß, p-IKK, p-IκBα, p-P65, NLRP3, ASC, Cleaved caspase-1, IL-1ß, IL-18, TNF-α and IL-6) in rats after liver transplantation. On the other hand, data from the in vitro analysis demonstrated that salidroside blocks expression of TLR-4/NF-κB/NLRP3 inflammatory pathway related proteins in the RAW264.7 cells treated with H/R. The salidroside-specific anti-inflammatory effects were partially inhibited by the TLR-4 agonist lipopolysaccharide. Taken together, our study showed that salidroside inhibits hepatic IRI following liver transplantation by modulating the TLR-4/NF-κB/NLRP3 inflammatory pathway.


Assuntos
Transplante de Fígado , Traumatismo por Reperfusão , Animais , Anti-Inflamatórios/farmacologia , Glucosídeos , Interleucina-18/metabolismo , Fígado/metabolismo , Transplante de Fígado/efeitos adversos , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fenóis , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/etiologia , Traumatismo por Reperfusão/prevenção & controle , Transdução de Sinais , Receptor 4 Toll-Like/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
8.
FEBS Open Bio ; 11(11): 2933-2942, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34110111

RESUMO

Choroidal neovascularization (CNV) is a key characteristic of wet age-related macular degeneration (AMD) that can lead to severe vision loss in the elderly. Anti-VEGF therapy is currently the premier strategy for wet AMD, but it has limited efficacy. Previous studies have shown that chitinase-3-like-1 (YKL-40) can promote microangiogenesis and inflammation, but its effect on CNV formation has not yet been studied. Here, we investigated the potential role of YKL-40 in wet AMD and the underlying mechanism(s). We report that the serum expression of YKL-40 in wet AMD patients was significantly higher than that in control patients and was positively correlated with VEGF expression, indicating that YKL-40 may participate in the development of wet AMD. In addition, YKL-40 and VEGF expression levels were observed to be increased and the ERK1/2 pathway activated in the neuroretinal (NR) and RPE/choroid tissues of mice with laser-induced CNV. The YKL-40 and phosphorylated protein levels of the ERK1/2 pathway were decreased after intravitreal injection with an anti-YKL-40 antibody, suggesting that anti-YKL-40 could inhibit the activation of the ERK1/2 pathway. These results indicate that YKL-40 may serve as a novel target for the diagnosis and treatment of wet AMD.


Assuntos
Proteína 1 Semelhante à Quitinase-3/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Degeneração Macular Exsudativa/genética , Idoso , Inibidores da Angiogênese/uso terapêutico , Animais , China , Proteína 1 Semelhante à Quitinase-3/sangue , Proteína 1 Semelhante à Quitinase-3/genética , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Feminino , Humanos , Inflamação , Sistema de Sinalização das MAP Quinases/genética , Degeneração Macular/genética , Degeneração Macular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Fatores de Crescimento do Endotélio Vascular/metabolismo , Degeneração Macular Exsudativa/metabolismo
9.
BMC Cancer ; 21(1): 436, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879119

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common and deadly malignant tumors, with a high rate of recurrence worldwide. This study aimed to investigate the mechanism underlying the progression of HCC and to identify recurrence-related biomarkers. METHODS: We first analyzed 132 HCC patients with paired tumor and adjacent normal tissue samples from the Gene Expression Omnibus (GEO) database to identify differentially expressed genes (DEGs). The expression profiles and clinical information of 372 HCC patients from The Cancer Genome Atlas (TCGA) database were next analyzed to further validate the DEGs, construct competing endogenous RNA (ceRNA) networks and discover the prognostic genes associated with recurrence. Finally, several recurrence-related genes were evaluated in two external cohorts, consisting of fifty-two and forty-nine HCC patients, respectively. RESULTS: With the comprehensive strategies of data mining, two potential interactive ceRNA networks were constructed based on the competitive relationships of the ceRNA hypothesis. The 'upregulated' ceRNA network consists of 6 upregulated lncRNAs, 3 downregulated miRNAs and 5 upregulated mRNAs, and the 'downregulated' network includes 4 downregulated lncRNAs, 12 upregulated miRNAs and 67 downregulated mRNAs. Survival analysis of the genes in the ceRNA networks demonstrated that 20 mRNAs were significantly associated with recurrence-free survival (RFS). Based on the prognostic mRNAs, a four-gene signature (ADH4, DNASE1L3, HGFAC and MELK) was established with the least absolute shrinkage and selection operator (LASSO) algorithm to predict the RFS of HCC patients, the performance of which was evaluated by receiver operating characteristic curves. The signature was also validated in two external cohort and displayed effective discrimination and prediction for the RFS of HCC patients. CONCLUSIONS: In conclusion, the present study elucidated the underlying mechanisms of tumorigenesis and progression, provided two visualized ceRNA networks and successfully identified several potential biomarkers for HCC recurrence prediction and targeted therapies.


Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Redes Reguladoras de Genes , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , RNA Neoplásico/genética , Carcinoma Hepatocelular/mortalidade , Biologia Computacional/métodos , Mineração de Dados , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/mortalidade , Masculino , MicroRNAs , Anotação de Sequência Molecular , Nomogramas , Prognóstico , RNA Longo não Codificante , RNA Mensageiro , Reprodutibilidade dos Testes
10.
Cell Death Dis ; 11(6): 455, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32532961

RESUMO

Hepatic ischemia/reperfusion injury (IRI) is an unavoidable course in liver transplantation, during which the immune response of inflammation plays a leading part. MicroRNA-450b-5p (miR-450b-5p), which has been reported to participate in several inflammatory diseases, was investigated in this study. The purpose of this study is to identify the potential function of miR-450b-5p toward remission of hepatic IRI and elucidate the specific mechanism. Herein we found that expression of miR-450b-5p, interleukin (IL)-1ß, tumor necrosis factor-α (TNF-α), and IL-6 was stimulated in hepatic IRI. Inhibition of miR-450b-5p could remarkably alleviate mouse hepatic IRI and improve liver function measured by hematoxylin-eosin (HE) staining, terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL), and enzyme-linked immunosorbent assay (ELISA). We further assessed protein expression undergoing Western blot and immunofluorescence, and discovered that miR-450b-5p suppressed alpha B-crystallin (CRYAB), thus restraining the inhibitory κB kinase (IKK) ß-mediated canonical nuclear factor-κB (NF-κB) signaling, instead of the noncanonical path guided by IKKα in hepatic IRI. In addition, we demonstrated CRYAB as an activator of M2 polarization through protein kinase B (Akt) 1/mammalian target of rapamycin (mTOR), thus resulting in relief of liver IRI. Combination treatment containing both paths revealed a better antidamage efficacy than adjusting either path alone, suggesting that the joint therapy might be a promising solution in hepatic IRI.


Assuntos
Fígado/patologia , MicroRNAs/antagonistas & inibidores , Traumatismo por Reperfusão/terapia , Cadeia B de alfa-Cristalina/metabolismo , Animais , Humanos , Camundongos
11.
Angew Chem Int Ed Engl ; 55(21): 6315-8, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27072872

RESUMO

An FeBr3 -catalyzed reductive coupling of various aldehydes with alkenes that proceeds through a direct hydride transfer pathway has been developed. With (i) PrOH as the hydrogen donor under mild conditions, previously challenging coupling reactions of unactivated alkyl and aryl aldehydes with simple alkenes, such as styrene derivatives and α-olefins, proceeded smoothly to furnish a diverse range of functionalized alcohols with complete linear regioselectivity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA