Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38437070

RESUMO

A near-field galvanic coupled transdural telemetry ASICs for intracortical brain-computer interfaces is presented. The proposed design features a two channels transmitter and three channels receiver (2TX-3RX) topology, which introduces spatial diversity to effectively mitigate misalignments (both lateral and rotational) between the brain and the skull and recovers the path loss by 13 dB when the RX is in the worst-case blind spot. This spatial diversity also allows the presented telemetry to support the spatial division multiplexing required for a high-capacity multi-implant distributed network. It achieves a signal-to-interference ratio of 12 dB, even with the adjacent interference node placed only 8 mm away from the desired link. While consuming only 0.33 mW for each channel, the presented RX achieves a wide bandwidth of 360 MHz and a low input referred noise of 13.21 nV/√Hz. The presented telemetry achieves a 270 Mbps data rate with a BER<10-6 and an energy efficiency of 3.4 pJ/b and 3.7 pJ/b, respectively. The core footprint of the TX and RX modules is only 100 and 52 mm2, respectively, minimizing the invasiveness of the surgery. The proposed transdural telemetry system has been characterized ex-vivo with a 7-mm thick porcine tissue.

2.
IEEE Trans Biomed Circuits Syst ; 14(6): 1218-1229, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33170783

RESUMO

This paper presents a millimeter-scale crystal-less wireless transceiver for volume-constrained insertable pills. Operating in the 402-405 MHz medical implant communication service (MICS) band, the phase-tracking receiver-based over-the-air carrier recovery has a ±160 ppm coverage. A fully integrated adaptive antenna impedance matching solution is proposed to calibrate the antenna impedance variation inside the body. A tunable matching network (TMN) with single inductor performs impedance matching for both transmitter (TX) and receiver (RX) and TX/RX mode switching. To dynamically calibrate the antenna impedance variation over different locations and diet conditions, a loop-back power detector using self-mixing is adopted, which expands the power contour up to 4.8 VSWR. The transceiver is implemented in a 40-nm CMOS technology, occupying 2 mm2 die area. The transceiver chip and a miniature antenna are integrated in a 3.5 × 15 mm2 area prototype wireless module. It has a receiver sensitivity of -90 dBm at 200 kbps data rate and delivers up to - 25 dBm EIRP in the wireless measurement with a liquid phantom.


Assuntos
Eletrônica Médica/instrumentação , Gastroscopia/instrumentação , Tecnologia sem Fio/instrumentação , Desenho de Equipamento , Humanos , Modelos Biológicos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador/instrumentação , Estômago/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA