Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
J Geriatr Cardiol ; 21(1): 64-80, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38440342

RESUMO

BACKGROUND: Left ventricular (LV) remodeling and diastolic function in people with heart failure (HF) are correlated with iron status; however, the causality is uncertain. This Mendelian randomization (MR) study investigated the bidirectional causal relationship between systemic iron parameters and LV structure and function in a preserved ejection fraction population. METHODS: Transferrin saturation (TSAT), total iron binding capacity (TIBC), and serum iron and ferritin levels were extracted as instrumental variables for iron parameters from meta-analyses of public genome-wide association studies. Individuals without myocardial infarction history, HF, or LV ejection fraction (LVEF) < 50% (n = 16,923) in the UK Biobank Cardiovascular Magnetic Resonance Imaging Study constituted the outcome dataset. The dataset included LV end-diastolic volume, LV end-systolic volume, LV mass (LVM), and LVM-to-end-diastolic volume ratio (LVMVR). We used a two-sample bidirectional MR study with inverse variance weighting (IVW) as the primary analysis method and estimation methods using different algorithms to improve the robustness of the results. RESULTS: In the IVW analysis, one standard deviation (SD) increased in TSAT significantly correlated with decreased LVMVR (ß = -0.1365; 95% confidence interval [CI]: -0.2092 to -0.0638; P = 0.0002) after Bonferroni adjustment. Conversely, no significant relationships were observed between other iron and LV parameters. After Bonferroni correction, reverse MR analysis showed that one SD increase in LVEF significantly correlated with decreased TSAT (ß = -0.0699; 95% CI: -0.1087 to -0.0311; P = 0.0004). No heterogeneity or pleiotropic effects evidence was observed in the analysis. CONCLUSIONS: We demonstrated a causal relationship between TSAT and LV remodeling and function in a preserved ejection fraction population.

2.
Front Pharmacol ; 15: 1343819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549669

RESUMO

Background: Kidney renal clear cell carcinoma (KIRC) is a common and clinically significant subtype of kidney cancer. A potential therapeutic target in KIRC is disulfidptosis, a novel mode of cell death induced by disulfide stress. The aim of this study was to develop a prognostic model to explore the clinical significance of different disulfidptosis gene typings from KIRC. Methods: A comprehensive analysis of the chromosomal localization, expression patterns, mutational landscape, copy number variations, and prognostic significance of 10 disulfide death genes was conducted. Patients were categorized into distinct subtypes using the Non-negative Matrix Factorization (NMF) typing method based on disulfidptosis gene expression patterns. Weighted Gene Co-expression Network Analysis (WGCNA) was used on the KIRC dataset to identify differentially expressed genes between subtype clusters. A risk signature was created using LASSO-Cox regression and validated by survival analysis. An interaction between risk score and immune cell infiltration, tumor microenvironment characteristics and pathway enrichment analysis were investigated. Results: Initial findings highlight the differential expression of specific DRGs in KIRC, with genomic instability and somatic mutation analysis revealing key insights into their role in cancer progression. NMF clustering differentiates KIRC patients into subgroups with distinct survival outcomes and immune profiles, and hierarchical clustering identifies gene modules associated with key biological and clinical parameters, leading to the development of a risk stratification model (LRP8, RNASE2, CLIP4, HAS2, SLC22A11, and KCTD12) validated by survival analysis and predictive of immune infiltration and drug sensitivity. Pathway enrichment analysis further delineates the differential molecular pathways between high-risk and low-risk patients, offering potential targets for personalized treatment. Lastly, differential expression analysis of model genes between normal and KIRC cells provides insights into the molecular mechanisms underlying KIRC, highlighting potential biomarkers and therapeutic targets. Conclusion: This study contributes to the understanding of KIRC and provides a potential prognostic model using disulfidptosis gene for personalized management in KIRC patients. The risk signature shows clinical applicability and sheds light on the biological mechanisms associated with disulfide-induced cell death.

4.
BMC Med Genomics ; 16(1): 316, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-38057864

RESUMO

OBJECTIVE: This study aimed to investigate the causal associations between several liver traits (liver iron content, percent liver fat, alanine transaminase levels, and liver volume) and colorectal cancer (CRC) risk using a Mendelian randomization (MR) approach to improve our understanding of the disease and its management. METHODS: Genetic variants were used as instrumental variables, extracted from genome-wide association studies (GWAS) datasets of liver traits and CRC. The Two-Sample MR package in R was used to conduct inverse variance weighted (IVW), MR Egger, Maximum likelihood, Weighted median, and Inverse variance weighted (multiplicative random effects) MR approaches to generate overall estimates of the effect. MR analysis was conducted with Benjamini-Hochberg method-corrected P values to account for multiple testing (P < 0.013). MR-PRESSO was used to identify and remove outlier genetic variants in Mendelian randomization (MR) analysis. The MR Steiger test was used to assess the validity of the assumption that exposure causes outcomes. Leave-one-out validation, pleiotropy, and heterogeneity testing were also conducted to ensure the reliability of the results. Multivariable MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias. RESULTS: The MR analysis suggested a causal effect between liver volume and a reduced risk of CRC (OR 0.60; 95% CI, 0.44-0.82; P = 0.0010) but did not provide evidence for causal effects of liver iron content, percent liver fat, or liver alanine transaminase levels. The MR-PRESSO method did not identify any outliers, and the MR Steiger test confirmed that the causal direction of the analysis results was correct in the Mendelian randomization analysis. MR results were consistent with heterogeneity and pleiotropy analyses, and leave-one-out analysis demonstrated the overall values obtained were consistent with estimates obtained when all available SNPs were included in the analysis. Multivariable MR was utilized for validation of our findings using the IVW method while also adjusting for potential confounding or pleiotropy bias. CONCLUSION: The study provides tentative evidence for a causal role of liver volume in CRC, while genetically predicted levels of liver iron content, percent liver fat, and liver alanine transaminase levels were not associated with CRC risk. The findings may inform the development of targeted therapeutic interventions for colorectal liver metastasis (CRLM) patients, and the study highlights the importance of MR as a powerful epidemiological tool for investigating causal associations between exposures and outcomes.


Assuntos
Neoplasias Colorretais , Fígado , Análise da Randomização Mendeliana , Humanos , Alanina Transaminase/análise , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Estudo de Associação Genômica Ampla , Ferro/análise , Fígado/anatomia & histologia , Fígado/química , Fígado/patologia , Reprodutibilidade dos Testes , Tecido Adiposo/patologia , Tamanho do Órgão , Risco
5.
Discov Med ; 35(178): 887-896, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37811627

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) patients who suffer from acute exacerbation of idiopathic pulmonary fibrosis (AE-IPF) are at increased risk of respiratory deterioration and death. Non-coding RNAs (ncRNAs) play a vital role in AE-IPF, but studies of crosstalk between transcripts of IPF based on Traditional Chinese Medicine (TCM) syndrome type are relatively few. The construction of long non-coding RNAs (lncRNA)/circular RNAs (circRNA)-microRNAs (miRNA)-mRNA interaction networks can promote understanding RNA interaction in different syndrome types of AE-IPF. The study aimed to identify the difference in RNA transcription expression between IPF patients with "lung heat and collateral stasis (LHCS)" and "lung deficiency with collateral stasis (LDCS)" syndromes, further to construct the potential RNA networks. METHODS: Five IPF patients with LHCS and five IPF patients with LDCS were recruited in this study to perform RNA sequencing and miRNA sequencing. Further analysis was carried out on the differential expression profiles of lncRNAs, circRNAs, miRNAs, and mRNAs among patients with LHCS and LDCS. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed. The lncRNA/circRNA-miRNA-mRNA competing endogenous RNAs (ceRNAs) network was constructed, and the key regulatory molecules were analyzed. RESULTS: For LHCS and LDCS, we identified 69 lncRNAs, 150 circRNAs, 27 miRNAs, and 56 mRNAs. Differential expression analysis through GO and KEGG highlights that differentially expressed mRNAs have significant associations with pathways such as tight junction and Hepatitis C. Within the ceRNA network, all nodes have a direct or indirect association with LHCS progression. The hsa-miR-150-5p core sub-network is composed of 1 lncRNA, 6 circRNAs, 1 miRNA, and 5 mRNAs. From the ceRNA sub-network analysis, NR_120628/hsa-miR-150-5p/E2F3 and hsa-circ-0053515/hsa-miR-150-5p/E2F3 emerged as the pivotal ceRNA pairs. CONCLUSIONS: This study highlights that the NR_120628/hsa-miR-150-5p/E2F3 and hsa-circ-0053515/hsa-miR-150-5p/E2F3 axes could be central in the regulation of LHCS, providing valuable insights into potential directions for subsequent research on LHCS. TRIAL REGISTRATION: Chinese clinical trial registry (CHiCTR23007405). Registered on July 27, 2023. https://www.chictr.org.cn/.


Assuntos
Fibrose Pulmonar Idiopática , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Circular/genética , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Transcriptoma/genética , MicroRNAs/genética , Fibrose Pulmonar Idiopática/genética
6.
Scand J Gastroenterol ; 58(12): 1466-1473, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525405

RESUMO

BACKGROUND: Recent studies have suggested a potential causal association between Interleukins (ILs) and Colorectal Cancer (CRC), and thus, it is important to examine the causal relationship between them using a Mendelian randomization (MR) approach. METHODS: The instrumental variables were extracted for IL-1ra, IL-6, IL-6ra, IL-8, IL-16, IL-18, IL-27 from genome-wide association studies of European ancestry. Summary statistics of CRC were also retrieved. An inverse variance-weighted MR approach was implemented as the primary method to compute overall effects from multiple instruments. Additional MR approaches and sensitivity and heterogeneity pleiotropy analyses were also conducted respectively. RESULTS: Our analysis suggested a causal effect between an increase of IL-8 and a reduced risk of CRC (odds ratio 0.65; 95% confidence interval, 0.43-0.98; p = 0.041) and did not provide evidence for causal effects of IL-1ra, IL-6, IL-6ra, IL-16, IL-18, IL-27. Sensitivity analyses suggested the robustness of MR results and that they were unlikely to be affected by unbalanced pleiotropy or significant heterogeneity. CONCLUSIONS: This study investigated the role of ILs in the development of CRC and we found a causal effect between an increase of IL-8 and a reduced risk of CRC but not found evidence for causal effects of IL-1ra, IL-6, IL-6ra, IL-16, IL-18, IL-27. Sensitivity analyses suggested the robustness of MR results and that they were unlikely to be affected by unbalanced pleiotropy or significant heterogeneity.


Assuntos
Neoplasias Colorretais , Interleucina-27 , Humanos , Interleucina-18/genética , Interleucina-16 , Proteína Antagonista do Receptor de Interleucina 1 , Estudo de Associação Genômica Ampla , Interleucina-6/genética , Interleucina-8/genética , Análise da Randomização Mendeliana , Interleucinas/genética , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética
7.
Brain Behav ; 13(5): e2917, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37002649

RESUMO

PURPOSE: Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss and cognitive dysfunction. Quinone oxidoreductase 1 (NQO1) is an antioxidant enzyme that plays an important role in controlling cellular redox state, whose expression is altered in the brain tissues of AD patients. In addition to its traditional antioxidant effects, NQO1 also acts as a multifunctional RNA-binding protein involved in posttranscriptional regulation. Whether the RNA-binding activity of NQO1 influences AD pathology has not been investigated yet. METHODS: The RNA-binding functions of NQO1 in rat pheochromocytoma (PC12) cells were investigated using siRNA knockdown followed by total RNA sequencing. Reverse transcription quantitative polymerase chain reaction was performed to explore the impact of NQO1 on the transcription and alternative splicing of apoptotic genes. RESULTS: NQO1 knockdown led to a significant increase in cellular apoptosis. Genes involved in certain apoptosis pathways, such as positive regulation of apoptotic processes and mitogen-activated protein kinase signaling, were under global transcriptional and alternative splicing regulation. NQO1 regulated the transcription of apoptotic genes Cryab, Lgmn, Ngf, Apoe, Brd7, and Stat3, as well as the alternative splicing of apoptotic genes BIN1, Picalm, and Fyn. CONCLUSION: Our findings suggest that NQO1 participates in the pathology of AD by regulating the expression and alternative splicing of the genes involved in apoptosis. These results extend our understanding of NQO1 in apoptotic pathways at the posttranscriptional level in AD.


Assuntos
Processamento Alternativo , Doença de Alzheimer , Ratos , Animais , Células PC12 , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Antioxidantes , RNA , NAD(P)H Desidrogenase (Quinona)/genética
8.
Front Immunol ; 13: 936689, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36505466

RESUMO

Background: Interleukin-6 (IL-6) is essential for maintaining intestinal epithelial homeostasis. Although cold water-immersion restraint (CWIR) stress is commonly used to induce in vivo gastric injury, it also affects intestinal epithelial permeability. Although IL-6 is increased in response to acute physiological and psychological stress, its exact effects on the pathophysiology of the intestinal epithelium in response to acute CWIR stress remain unknown. Methods: We used IL-6 knockout (KO) mice with acute CWIR modeling to investigate the effect of IL-6 deficiency on intestinal epithelial morphology and pathological damage using histological staining assays under the acute stress. We detected jejunal epithelial apoptosis using TUNEL and standard molecular experiments. Results: CWIR caused intestinal epithelial damage, which was alleviated by the absence of IL-6, as evidenced by morphological changes and goblet cell and intestinal permeability alteration. IL-6 KO also reduced CWIR-mediated inflammatory levels and improved stress defense. Meanwhile, IL-6 deficiency decreased the intestinal epithelial apoptosis induced by CWIR administration. This IL-6 KO-led effect depended more on mitochondrial AIF signaling rather than the traditional caspase pathway. Conclusion: As a result, we concluded that acute CWIR-induced severe intestinal damage and jejunal epithelium apoptosis could be alleviated by IL-6 deficiency, implying a protective effect of IL-6 deficiency on the intestines under acute stress. The findings shed new light on treating CWIR-induced intestinal disorders by inhibiting IL-6 signaling.


Assuntos
Desidratação , Interleucina-6 , Camundongos , Animais , Camundongos Knockout , Interleucina-6/genética , Apoptose/genética , Água
9.
Genes (Basel) ; 13(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35627238

RESUMO

Although genetic transformation has opened up a new era for cotton molecular breeding, it still suffers from the limitation problem of long transformation periods, which slows down the generation of new cotton germplasms. In this study, LT gene (SV40 large T antigen), which promotes the transformation efficiency of animal cells, was codon-optimized. Its overexpression vector was transformed into cotton. It was observed that EC (embryogenic callus) formation period was 33% shorter and transformation efficiency was slightly higher in the LT T0 generation than that of control. RNA-seq data of NEC (non-embryonic callus) and EC from LT and control revealed that more DEGs (differential expression genes) in NEC were identified than that of EC, indicating LT mainly functioned in NEC. Further KEGG, GO, and transcription factor analyses showed that DEGs were significantly enriched in brassinosteroid biosynthesis pathways and that bHLH, MYB, and AP2/ERF were the top three gene families, which are involved in EC formation. In addition, the key genes related to the auxin pathway were differentially expressed only in LT overexpression NEC, which caused early response, biosynthesis, and transportation of the hormone, resulting in EC earlier formation. In summary, the results demonstrated that LT can promote somatic embryogenesis in cotton, which provides a new strategy for improving cotton transformation and shortening EC formation time.


Assuntos
Regulação da Expressão Gênica de Plantas , Polyomavirus , Fibra de Algodão , Desenvolvimento Embrionário , Regulação da Expressão Gênica de Plantas/genética , Ácidos Indolacéticos/metabolismo , Proteínas Oncogênicas/genética , Polyomavirus/metabolismo
10.
Cytokine ; 153: 155841, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35276634

RESUMO

Interleukin-6 (IL-6) in mucosal immune cells is involved in post-injury intestinal regeneration, inflammation responses, and gastric homeostasis. However, the interaction between IL-6 and the dynamic balance of gut microbiota (GM) remains unexplored. Intestinal pathology was assessed by hematoxylin and eosin and periodic acid-Schiff staining in wild-type (WT) and IL-6 gene knockout (KO) C57BL/6J mice. GM profiles were established via high-throughput sequencing of the fecal bacterial 16S rRNA gene. Intestinal α- and ß-defensins were measured by quantitative real-time PCR; further, flow cytometry was performed to analyze isolated intraepithelial lymphocytes (IELs). Compared with the WT, IL-6 KO did not obviously change gut structures, but significantly reduced GM diversity, resulting in reduced metabolic pathways with decreased gram-positive but elevated gram-negative bacteria. More taxa alterations included differences at the phyla (e.g., increased Verrucomicrobia and decreased Firmicutes) and genera (e.g., increased Akkermansia and decreased Lactobacillus) levels. Absence of IL-6 also significantly increased intestinal expression of defensins α3 and α4 (Defa3 and Defa4) and the percentage of natural TCRγδ+ IELs, providing a molecular basis for triggering mucosal immune response. Therefore, IL-6 loss remodels GM composition and alters IEL maintenance, identifying IL-6 as a crucial cytokine for GM dysbiosis and mucosal immunity.


Assuntos
Disbiose , Microbioma Gastrointestinal , Animais , Disbiose/genética , Disbiose/metabolismo , Imunidade nas Mucosas , Interleucina-6/metabolismo , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
11.
Front Cell Infect Microbiol ; 11: 706849, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34722327

RESUMO

Growing evidence has demonstrated that stress triggers gastrointestinal (GI) disorders. This study aimed to investigate how the acute cold water-immersion restraint (CWIR) stress affects intestinal injury and gut microbiota (GM) distribution. Male C57BL/6 mice were used to establish a CWIR animal model. Hematoxylin-eosin and periodic acid-Schiff staining were performed to assess intestinal histopathological changes. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis and immunofluorescence staining were used to evaluate the expression of inflammatory cytokines and immune cell infiltration in the intestinal tissues. The gut permeability and intestinal occludin protein expression were determined through fluorescein isothiocyanate-dextran detection and western blot, respectively. GM profiles were analyzed via high-throughput sequencing of the fecal bacterial 16S rRNA genes. Results showed that CWIR induced more severe intestinal mucosal injury compared to the control, leading to a significant increase in tumor necrosis factor-α expression, but no infiltration of neutrophil and T cells. CWIR also resulted in GI disruption and increased the permeability of the intestinal mucosa. GM profiles showed that CWIR reduced GM diversity of mice compared with the control group. Specifically, aerobic and gram-negative bacteria significantly increased after CWIR, which was associated with the severity of gut injury under stress. Therefore, acute CWIR leads to severe intestinal damage with inflammation and disrupts the GM homeostasis, contributing to decreased GM diversity. Our findings provide the theoretical basis for the further treatment of intestinal disorders induced by CWIR.


Assuntos
Resposta ao Choque Frio , Microbioma Gastrointestinal , Animais , Imersão , Mucosa Intestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Ribossômico 16S/genética , Água
12.
Front Oncol ; 11: 601982, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33816232

RESUMO

BACKGROUND: Osteosarcoma (OS) is a highly malignant and aggressive bone tumor. This study was performed to explore the mechanisms of HuR (human antigen R) in the progression of OS. METHODS: HuR expression levels in OS tissues and cells were detected by immunohistochemistry and western blotting. HuR siRNA was transfected into SJSA-1 OS cells to downregulate HuR expression, and then cell proliferation, migration, and epithelial-mesenchymal transition (EMT) were evaluated. RNA immunoprecipitation was performed to determine the association of the long non-coding RNA (lncRNA) XIST and argonaute RISC catalytic component (AGO) 2 with HuR. Fluorescence in situ hybridization analysis was performed to detect the expression of lncRNA XIST. Western blotting and immunofluorescence assays were performed to observe AGO2 expression after HuR or/and lncRNA XIST knockdown. RESULTS: Knockdown of HuR repressed OS cell migration and EMT. AGO2 was identified as a target of HuR and silencing of HuR decreased AGO2 expression. The lncRNA XIST was associated with HuR-mediated AGO2 suppression. Moreover, knockdown of AGO2 significantly inhibited cell proliferation, migration, and EMT in OS. CONCLUSION: Our findings indicate that HuR knockdown suppresses OS cell EMT by regulating lncRNA XIST/AGO2 signaling.

13.
Oncol Lett ; 20(4): 50, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32802170

RESUMO

Several previous studies have shown that mutations in B-Raf proto-oncogene (BRAF) and telomerase reverse transcriptase (TERT) can be used for the diagnosis and prognosis of papillary thyroid carcinoma (PTC). However, whether mutations in BRAF and the TERT promoter may improve the accurate identification and risk stratification of high-risk patients in the early stage of PTC remains unclear and requires further investigation. In the present study, mutations in BRAF and the TERT promoter were examined in 205 patients using PCR and Sanger DNA sequencing. The potential association between mutations in these two genes and the clinicopathological characteristics of patients with PTC was then analyzed. BRAF mutations were identified in 169/205 (82.4%) patients, whereas only 8/205 (3.9%) patients presented mutations in the TERT promoter, seven patients exhibited a C228T mutation, and the remaining one had a C250T mutation. There were 6/205 (2.9%) patients with mutations in both BRAF and the TERT promoter. Importantly, compared with patients with no mutations, patients with mutations in BRAF were more likely to exhibit mutations in the TERT promoter. A significant difference in lymph node metastasis was found between the BRAF V600E mutation group and the group without mutations in BRAF. Mutations in the TERT promoter were significantly correlated with older age, extrathyroidal invasion, tumor multifocality and advanced tumor/node/metastasis stage, which are associated with the aggressiveness of PTC. Moreover, compared with patients exhibiting mutations in BRAF, mutations in the TERT promoter were found to be significantly associated with aggressive clinicopathological features and higher risk of recurrence or distant metastasis. Collectively, mutations in the TERT promoter were not frequent, but were significantly correlated with more aggressive clinicopathological features of PTC. Therefore, mutations in the TERT promoter may be an important factor in the genetic background of PTC, and detection of such mutations may help the accurate identification and management of high-risk patients with recurrent or distant metastasis.

14.
Circ Res ; 127(6): 796-810, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32507058

RESUMO

RATIONALE: Cardiotoxic ß1 adrenergic receptor (ß1AR)-CaMKII (calmodulin-dependent kinase II) signaling is a major and critical feature associated with development of heart failure. SAP97 (synapse-associated protein 97) is a multifunctional scaffold protein that binds directly to the C-terminus of ß1AR and organizes a receptor signalosome. OBJECTIVE: We aim to elucidate the dynamics of ß1AR-SAP97 signalosome and its potential role in chronic cardiotoxic ß1AR-CaMKII signaling that contributes to development of heart failure. METHODS AND RESULTS: The integrity of cardiac ß1AR-SAP97 complex was examined in heart failure. Cardiac-specific deletion of SAP97 was developed to examine ß1AR signaling in aging mice, after chronic adrenergic stimulation, and in pressure overload hypertrophic heart failure. We show that the ß1AR-SAP97 signaling complex is reduced in heart failure. Cardiac-specific deletion of SAP97 yields an aging-dependent cardiomyopathy and exacerbates cardiac dysfunction induced by chronic adrenergic stimulation and pressure overload, which are associated with elevated CaMKII activity. Loss of SAP97 promotes PKA (protein kinase A)-dependent association of ß1AR with arrestin2 and CaMKII and turns on an Epac (exchange protein directly activated by cAMP)-dependent activation of CaMKII, which drives detrimental functional and structural remodeling in myocardium. Moreover, we have identified that GRK5 (G-protein receptor kinase-5) is necessary to promote agonist-induced dissociation of SAP97 from ß1AR. Cardiac deletion of GRK5 prevents adrenergic-induced dissociation of ß1AR-SAP97 complex and increases in CaMKII activity in hearts. CONCLUSIONS: These data reveal a critical role of SAP97 in maintaining the integrity of cardiac ß1AR signaling and a detrimental cardiac GRK5-CaMKII axis that can be potentially targeted in heart failure therapy. Graphical Abstract: A graphical abstract is available for this article.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Proteína 1 Homóloga a Discs-Large/metabolismo , Quinase 5 de Receptor Acoplado a Proteína G/metabolismo , Insuficiência Cardíaca/enzimologia , Miócitos Cardíacos/enzimologia , Receptores Adrenérgicos beta 1/metabolismo , Animais , Apoptose , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteína 1 Homóloga a Discs-Large/genética , Modelos Animais de Doenças , Acoplamento Excitação-Contração , Quinase 5 de Receptor Acoplado a Proteína G/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/patologia , Insuficiência Cardíaca/fisiopatologia , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Contração Miocárdica , Miócitos Cardíacos/patologia , beta-Arrestina 1/metabolismo
15.
World J Surg Oncol ; 18(1): 136, 2020 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-32563267

RESUMO

BACKGROUND: Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a collagen receptor belonging to the immunoglobulin superfamily. Although previous studies have evaluated the biological role of LAIR in solid tumors, the precise mechanisms underlying the functions of LAIR-1 as a regulator of tumor biological functions remain unclear. METHODS: LAIR-1 expression was evaluated by immunohistochemical analysis using an osteosarcoma (OS) tissue microarray. Wound healing and transwell migration assays were performed to evaluate tumor cell migration. Quantitative real-time polymerase chain reaction (qPCR) and western blotting were conducted to detect the expression of epithelial-mesenchymal transition (EMT)-related molecules. RNA-sequencing (RNA-seq) was conducted to evaluate the mRNA expression profiles after overexpressing LAIR-1 in OS cells. Glucose transporter (Glut)1 expression in OS cells was evaluated by western blotting. RESULTS: LAIR-1 expression was significantly different between the T1 and T2 stages of OS tumors, and it inhibited OS cell migration. LAIR-1 expression was inversely correlated with the expression of Twist1, an EMT-associated transcription factor, via the Forkhead box O1 signal transduction pathway. Furthermore, RNA-seq and qPCR demonstrated that the expression of EMT energy metabolism-related molecules was significantly reduced after LAIR-1 overexpression. CONCLUSIONS: LAIR-1 overexpression decreased the expression of Glut1 and inhibited the expression of EMT-related molecules in OS cells. These findings provide new insights into the molecular mechanism underlying OS progression.


Assuntos
Neoplasias Ósseas/patologia , Metabolismo Energético , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Transportador de Glucose Tipo 1/metabolismo , Osteossarcoma/patologia , Receptores Imunológicos/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Masculino , Osteossarcoma/genética , Osteossarcoma/metabolismo , Prognóstico , Receptores Imunológicos/genética , Transdução de Sinais , Taxa de Sobrevida , Adulto Jovem
16.
FASEB J ; 34(5): 6871-6887, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248623

RESUMO

This study used constitutive CD226 gene knockout (KO) mice as a model to investigate the functions and mechanisms of CD226 in megakaryocyte (MK) maturation and platelet activation. Although CD226 deficiency did not cause MK polyploidization or platelet granule abnormalities, increased MK counts were detected in the femora bone marrow (BM) and spleen of CD226 KO mice. Particularly, CD226 KO mice have a more extensive membrane system in MKs and platelets than wild-type (WT) mice. We also demonstrated that CD226 KO mice displayed increased platelet counts, shortened bleeding time, and enhanced platelet aggregation. CD226 KO platelets had an increased mature platelet ratio compared to the control platelets. In addition, the observed reduction in bleeding time may be due to decreased nitric oxide (NO) production in the platelets. Platelet-specific CD226-deficient mice showed similar increased MK counts, shortened bleeding time, enhanced platelet aggregation, and decreased NO production in platelets. Furthermore, we performed middle cerebral artery occlusion-reperfusion surgery on WT and CD226 KO mice to explore the potential effect of CD226 on acute ischemia-reperfusion injury; the results revealed that CD226 deficiency led to significantly increased infarct area. Thus, CD226 is a promising candidate for the treatment of thrombotic disorders.


Assuntos
Antígenos de Diferenciação de Linfócitos T/sangue , Megacariócitos/citologia , Megacariócitos/fisiologia , Ativação Plaquetária/fisiologia , Animais , Antígenos de Diferenciação de Linfócitos T/genética , Plaquetas/fisiologia , Plaquetas/ultraestrutura , Isquemia Encefálica/sangue , Isquemia Encefálica/genética , Isquemia Encefálica/patologia , Modelos Animais de Doenças , Feminino , Integrina beta3/sangue , Masculino , Megacariócitos/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Ativação Plaquetária/genética , Adesividade Plaquetária/genética , Adesividade Plaquetária/fisiologia , Agregação Plaquetária/genética , Agregação Plaquetária/fisiologia , Contagem de Plaquetas , Trombopoese/genética , Trombopoese/fisiologia
17.
Mol Cytogenet ; 13: 13, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32308740

RESUMO

BACKGROUND: Chromosomal rearrangements in addition to t(15;17) have been reported in 25-40% of APL patients, with a large predominance of trisomy 8. Other abnormalities are far less frequent, particularly as ider(17), and the prognostic significance is still unclear. CASE PRESENTATION: We present the case of a patient with t(15;17)(q22;q21), der(15)t(15;17) and ider(17)(q10)t(15;17)(q22;q21). In particular, the RT-PCR result for PML-RARA of this patient was a false negative and mutational analysis of AML-related genes showed SNP rs2454206 in the TET2 gene and yielded negative findings in other genes including AML1, ASXL1, CEBPA, DNMT3A, FLT3, KIT, NPM1, TP53, and U2AF1. After the early usage of arsenic trioxide combinated with ATRA and vigorous supportive treatment to maintain PLT ≥30×109/L and FIB >1500 mg/L, this patient was under MMR and HCR without any clinical symptoms or signs until now. CONCLUSION: False negative reslults of RT-PCR analysis for PML-RARA are rare in APL and ider(17) is even more infrequent. To our knowledge, this is the first reported case of APL with ider(17) and false negative RT-PCR analysis results. The role of ider(17) in APL is still an ongoing investigation and limited by the small number of published cases. The patient reported here benefited from vigorous supportive treatment during the combination of ATRA and arsenic trioxide in induction chemotherapy and the clinical outcome was favorable.

18.
Mater Sci Eng C Mater Biol Appl ; 110: 110697, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204009

RESUMO

Thrombotic complications turn into the second leading cause of death in colon cancer patients due to the hypercoagulable state caused by malignancy. Therefore, it is necessary to treat colon cancer and its thrombosis complications simultaneously. Herein, a nano polymer conjugate based on disulfide cross-linked low-generation peptide dendrimers was developed to treat colon cancer and its thrombotic complications. First, two-generation polyglutamic acid dendrimer was bonded to nattokinase (NK) and then cross-linkers containing disulfide linkages were used to obtain polymer conjugates (NK-G2)n. Then doxorubicin (Dox) was encapsulated. The system can release drugs sequentially due to the dissociation of the polymer conjugates. In vitro thrombolytic experiments exhibited a significant thrombolysis ability of (NK-G2)n. The toxicity and cellular uptake tests on HCT116 cells showed that Dox loaded polymer conjugates had good endocytosis ability and anti-cancer effect. Therefore, this drug delivery system will be a promising strategy to the combined treatment of colon cancer and thrombotic complications.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Nanopartículas/química , Polímeros/química , Trombose/induzido quimicamente , Animais , Linhagem Celular Tumoral , Terapia Combinada/métodos , Dendrímeros/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/química , Liberação Controlada de Fármacos/efeitos dos fármacos , Endocitose/efeitos dos fármacos , Fibrinolíticos/química , Fibrinolíticos/farmacologia , Células HCT116 , Humanos , Camundongos , Ácido Poliglutâmico/química , Células RAW 264.7 , Subtilisinas/química
19.
J Leukoc Biol ; 107(4): 573-587, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31802539

RESUMO

In this study, we observed that deletion of CD226 on regulatory T cells (Tregs) precedes renal fibrosis in a mouse unilateral ureteral obstruction (UUO) model. First, we generated Treg-specific CD226 gene knockout mice (CD226fl/fl Foxp3YFP-Cre ). Next, CD226fl/fl Foxp3YFP-Cre mice and Foxp3YFP-Cre control mice were subjected to UUO surgery. Pathologic analysis and Sirius red and Masson's trichrome staining showed that the kidneys of CD226fl/fl Foxp3YFP-Cre mice following UUO showed much more severe interstitial fibrosis than Foxp3YFP-Cre control mice at days 10 and 20. Additionally, CD226fl/fl Foxp3YFP-Cre mice showed increased fibronectin expression, as demonstrated by immunohistochemistry (IHC) staining. Although Treg cell-restricted CD226 deficiency showed increased Foxp3+ expression, expression of the cell surface functional molecule CD103 was significantly reduced, indicating impaired homeostasis in the Tregs of CD226fl/fl Foxp3YFP-Cre mice. To better understand CD226 function, RNA sequencing (RNA-Seq) analysis was conducted in Tregs isolated from CD226fl/fl Foxp3YFP-Cre and Foxp3YFP-Cre mice. RNA-Seq data showed that the helper T cell (Th) 2-related cytokines IL-4 and IL-10 were significantly up-regulated in CD226 deficient Tregs. In addition, mRNA analysis of kidney samples from the mice following UUO by qPCR also showed increased IL-4 and IL-10 expression in CD226fl/fl Foxp3YFP-Cre mice, as well as elevated TGF-ß1 levels, indicating that CD226 deficiency in Tregs resulted in the acquisition of the ability to produce Th2 cytokines. Finally, we found that microRNA-340 (miR-340), which was down-regulated in Tregs isolated from CD226fl/fl Foxp3YFP-Cre mice, directly regulated IL-4 gene expression in vitro. These data suggest that the promotion of CD226 signaling on Tregs is a therapeutic target for renal disease.


Assuntos
Antígenos de Diferenciação de Linfócitos T/metabolismo , Citocinas/metabolismo , Rim/patologia , MicroRNAs/metabolismo , Linfócitos T Reguladores/metabolismo , Células Th2/metabolismo , Regulação para Cima , Animais , Sequência de Bases , Sítios de Ligação , Regulação para Baixo , Fibrose , Fatores de Transcrição Forkhead/metabolismo , Homeostase , Inflamação/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Fenótipo , RNA-Seq , Células Th1 , Obstrução Ureteral/patologia
20.
Nanoscale ; 11(33): 15530-15536, 2019 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-31393497

RESUMO

Accurate analysis of prostate cancer specific biomarkers plays an important role in the early diagnosis of prostate cancer. Traditional colorimetric lateral flow assay (LFA) has the limitations of low detection sensitivity and qualitative or semiquantitative detection. In this study, we developed a novel surface-enhanced Raman scattering (SERS)-based competitive LFA for the rapid and highly sensitive quantitative evaluation of prostate cancer antigen 3 (PCA3) mimic DNA. Herein, the competitive hybridization interaction with capture DNA between target PCA3 mimic DNA and reporter DNA-labeled SERS nanotags results in a change in the amount of SERS nanotags on the test line. The quantitative analysis of target PCA3 mimic DNA was realized by monitoring the Raman peak intensity of SERS nanotags on the test line. The limit of detection of PCA3 mimic DNA was estimated to be 3 fM, which is about three orders of magnitude more sensitive than that of a commercially available kit. By combining the outstanding characteristics of the well-established SERS-based competitive strategy and LFA platform, our design has strong potential for the early diagnosis of prostate cancer and other diseases.


Assuntos
Antígenos de Neoplasias/genética , Técnicas Biossensoriais/métodos , DNA/análise , Análise Espectral Raman , Linhagem Celular Tumoral , DNA/química , DNA/metabolismo , Sondas de DNA/química , Sondas de DNA/metabolismo , Ouro/química , Humanos , Limite de Detecção , Masculino , Nanopartículas Metálicas/química , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA