Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Vet Microbiol ; 293: 110091, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38626624

RESUMO

Mastitis in dairy cows is mainly caused by bacteria, in which Staphylococcus aureus appears frequently. Epithelial cells, as a major physical barrier of mammary gland, play an important role in preventing mastitis in dairy cows. Our previous study reported that Rab11fip4 (an effector of Rab11) was significantly changed in response to stimulation by S. aureus. So, in this study, the role of Rab11A in phagocytosis of bovine mammary epithelial cells (MAC-T) against S. aureus was evaluated. First, changes of Rab11A and Rab11fip4 were analyzed in response to S. aureus by immunofluorescence and western blotting. Subsequently, the effects of Rab11A and Rab11fip4 on proliferation of S. aureus, as well as formation and function of late endosomes (LEs) and lysosomes (LYSs) were investigated. The results showed that, after infection, Rab11A and Rab11fip4 were recruited to phagosomes containing S. aureus. Rab11A promoted bacterial clearance and rescues the destruction of LEs and LYSs by S. aureus, whereas Rab11fip4 did the opposite. These findings provide new insights into phagocytosis and control of S. aureus in host cells, thus lay the foundation to elucidate the pathogenesis of S. aureus in bovine mastitis.


Assuntos
Células Epiteliais , Mastite Bovina , Fagocitose , Infecções Estafilocócicas , Staphylococcus aureus , Proteínas rab de Ligação ao GTP , Animais , Bovinos , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab de Ligação ao GTP/genética , Staphylococcus aureus/fisiologia , Feminino , Células Epiteliais/microbiologia , Infecções Estafilocócicas/veterinária , Infecções Estafilocócicas/microbiologia , Mastite Bovina/microbiologia , Glândulas Mamárias Animais/microbiologia , Endossomos/metabolismo , Endossomos/microbiologia , Lisossomos/metabolismo , Lisossomos/microbiologia , Linhagem Celular , Fagossomos/microbiologia
2.
Sci Total Environ ; 925: 171818, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508245

RESUMO

Hexavalent chromium [Cr(VI)] is an environmental pollutant known for its strong oxidizing and carcinogenic effects. However, its potential to induce ferroptosis in poultry remains poorly understood. This study aims to investigate the induction of ferroptosis by Cr(VI) in DF-1 cells and elucidate the underlying mechanisms. DF-1 cells exposed to Cr(VI) showed increased lipid reactive oxygen species and changes in ferroptosis marker genes (decreased expression of GPX4 and increased expression of COX2). Notably, the addition of the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) can reverse this effect. During the cell death process, Cr(VI) induced ferritinophagy, disrupting iron homeostasis and releasing labile iron ions. We predicted by docking that these iron ions would bind to mitochondrial membrane proteins through virtual docking. This binding was validated through colocalization analysis. In addition, Cr(VI) caused mitophagy, which releases additional ferrous ions. Therefore, Cr(VI) can induce the simultaneous release of ferrous ions through these pathways, thereby exacerbating lipid peroxidation and ultimately triggering ferroptosis in DF-1 cells. This study demonstrates that Cr(VI) can induce ferroptosis in DF-1 cells by disrupting intracellular iron homeostasis and providing valuable insights into the toxic effects of Cr(VI) in poultry and potentially other organisms.


Assuntos
Cromo , Ferroptose , Mitofagia , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Homeostase , Íons
3.
Ann Hematol ; 103(3): 999-1005, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38285081

RESUMO

Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare hematologic malignancy that is highly aggressive with a poor prognosis. There is no standard treatment for BPDCN. Although conventional chemotherapies are usually sensitive in the initial therapy, relapse and drug resistance are inevitable within a short duration. Targeted therapies have enlightened new prospects for the treatment of BPDCN, especially for those in a frail state and intolerable to standard chemotherapies or hematopoietic stem cell transplantation. Here, we report an 82-year-old man diagnosed with cutaneous-limited BPDCN. Considering the old age and limited involvement of the tumor, we reduced the dosage of venetoclax. His skin lesions subsided significantly after 1 cycle of azacytidine (100 mg d1-7) combined with reduced doses of venetoclax (200 mg d1-14). The reduction in the dose of venetoclax avoided severe myelosuppression while achieving satisfactory outcomes. The patient received 2 cycles of therapy with no skin lesions re-occurred for 7 months before relapsing.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes , Neoplasias Hematológicas , Transtornos Mieloproliferativos , Neoplasias Cutâneas , Sulfonamidas , Masculino , Humanos , Idoso de 80 Anos ou mais , Azacitidina/uso terapêutico , Células Dendríticas/patologia , Recidiva Local de Neoplasia/tratamento farmacológico , Neoplasias Cutâneas/patologia , Neoplasias Hematológicas/terapia , Transtornos Mieloproliferativos/patologia
4.
J Dermatolog Treat ; 34(1): 2246604, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37661936

RESUMO

THE PURPOSE OF THE ARTICLE: Nail psoriasis is a refractory disease that affects 50-79% skin psoriasis patients and up to 80% of patients with psoriatic arthritis (PsA). The pathogenesis of nail psoriasis is still not fully illuminated, although some peculiar inflammatory cytokines and chemokines seems to be the same as described in psoriatic skin lesions. Treatment of nail psoriasis still with challenge and should be individualized. Upadacitinib, an oral highly selective JAK1 inhibitor, has been approved for PsA treatment. Whether it has the therapeutic advantages for nail psoriasis. RESULTS: We report a case of a patient with nail psoriasis who responded well to upadacitinib therapy at a dose of 15mg once daily for 5 months. In addition, we reviewed the literature and compared the current treatment efficiency in the treatment of nail psoriasis. The therapeutic effects of JAK inhibitors for nail psoriasis may involve downstream cytokines, such as I IL-6, IL-10, and IL-23. CONCLUSION: Upadacitinib may be a promising therapeutic option for patients with severe nail psoriasis.


Assuntos
Artrite Psoriásica , Inibidores de Janus Quinases , Doenças da Unha , Psoríase , Humanos , Psoríase/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/uso terapêutico , Citocinas , Inibidores de Janus Quinases/uso terapêutico
5.
Clin Exp Dermatol ; 48(11): 1260-1265, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37710038

RESUMO

Epidermal growth factor receptor inhibitors (EGFRIs) are widely used to treat various types of malignancies. One of the common adverse reactions is cutaneous toxicity, mostly presenting as acneiform eruptions, paronychia and xerosis. Erosive pustular dermatosis of the scalp (EPDS) is a rare cutaneous adverse reaction that develops during treatment with EGFRIs. The pathogenesis of EGFRI-induced EPDS is poorly understood. Here we present three cases of EPDS induced by EGFRIs. The proteins LTA4H (leukotriene A-4 hydrolase), METAP1 (methionine aminopeptidase 1), BID (BH3-interacting domain death agonist), SMAD1 (mothers against decapentaplegic homologue), PRKRA (interferon-inducible double-stranded RNA-dependent protein kinase activator A), YES1 (tyrosine-protein kinase Yes) and EGFL7 (epidermal growth factor-like protein 7) were significantly upregulated in EGFRI-stimulated peripheral blood mononuclear cell cultures, and validated in the lesions. All of the proteins colocalized with CD4+ and CD8+ T-cell expression. Next-generation-based human leucocyte antigen (HLA) typing showed all patients carried HLA-C*15:02, and modelling studies showed that afatinib and erlotinib bound well within the E/F binding pockets of HLA-C*15:02. Moreover, T cells were preferentially activated by EGFRIs in individuals carrying HLA-C*15:02. The case series revealed that EGFRI-induced EPDS may be mediated by drug-specific T cells.


Assuntos
Exantema , Dermatopatias , Humanos , Couro Cabeludo , Antígenos HLA-C , Leucócitos Mononucleares/metabolismo , Receptores ErbB , Aminopeptidases/metabolismo , Proteínas de Ligação ao Cálcio , Família de Proteínas EGF/metabolismo
7.
Vet Sci ; 9(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893774

RESUMO

Bovine mastitis is an important disease affecting dairy farming, and it causes large economic losses to the dairy industry. Escherichia coli (E. coli) is considered to be a causative environmental pathogen and frequently enters into mammary glands, causing inflammation. Artemisinin is a highly effective malaria remedy and is not easy to develop drug resistance to. In recent years, other effects of artemisinin (including antitumor, anti-inflammatory, antifungal, etc.) have been increasingly discovered and applied. The current study aimed to investigate whether artemisinin could attenuate E. coli-induced inflammation. Through the E. coli mastitis model in MAC-T cells and mice, the protective effects of artemisinin were analyzed by CCK-8 (Cell Counting Kit-8), Western blot, and RT-qPCR. The results showed that artemisinin reversed the decrease of cell viability and upregulated TLR4 (toll-like receptor 4)/NF-κB (nuclear factor κB) and MAPK (mitogen activated protein kinase)/p38 signaling pathways, as well as restrained the expression of TNF-α, IL-6, and IL-1ß mRNA caused by E. coli. Meanwhile, artemisinin also alleviated mammary tissue damage, reduced inflammatory cells' infiltration, and decreased the levels of inflammatory factors in a mice mastitis model. This study demonstrated that artemisinin alleviated the inflammatory response of mouse mastitis and MAC-T cells induced by E. coli, thus providing a practical approach for the clinical control of mastitis.

8.
Int Immunopharmacol ; 109: 108940, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35700582

RESUMO

Many studies have shown that hydrogen has anti-inflammatory and anti-oxidant effects. Because of its ability to quickly pass through cell membranes, hydrogen has become a hot spot in the research of inflammatory diseases. Vitamin E glycerin (VEG) and hydrogen-rich Vitamin E glycerin (HR-VEG) were prepared, aiming to explore their anti-inflammatory activities in mice mastitis induced by Staphylococcus aureus (S. aureus). In the early part of this study, the prepared vitamin E medium (VEM) and hydrogen-rich vitamin E medium (HR-VEM) were added to mammary epithelial cells infected with S. aureus. HR-VEM was found to be more effective in reducing the phosphorylation of p65 and p38 and in reducing the production of interleukin-1 beta (IL-1ß) than VEM. Whereafter, the mice model of mastitis was established by injecting S. aureus from the mammary duct. Then VEG and HR-VEG were applied to the mammary gland for seven consecutive days. After that, the clinical symptoms, histopathology, bacterial load, inflammatory factors, as well as the related pathway were analyzed. The results showed that HR-VEG can more significantly alleviate the damage of mammary tissue than VEG, and reduce the production of tumor necrosis factor-alpha (TNF-α), IL-1ß and interleukin 6 (IL-6). In addition, HR-VEG inhibited the TLR2 and Nod2 signaling pathways and reduced the phosphorylation level of MAPK and NF-κB signaling pathways in S. aureus-induced murine mastitis. This study indicates that hydrogen helps to ameliorate S. aureus-induced mastitis in mice through attenuating TLR2 and Nod2 mediated NF-κB and MAPK activation.


Assuntos
Mastite , Infecções Estafilocócicas , Animais , Anti-Inflamatórios/uso terapêutico , Feminino , Glicerol/metabolismo , Glicerol/farmacologia , Glicerol/uso terapêutico , Humanos , Hidrogênio/farmacologia , Hidrogênio/uso terapêutico , Interleucina-6/metabolismo , Glândulas Mamárias Animais/patologia , Mastite/patologia , Camundongos , NF-kappa B/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/fisiologia , Receptor 2 Toll-Like/metabolismo , Vitamina E/uso terapêutico
9.
Vet Res ; 53(1): 10, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35123552

RESUMO

Cell death and inflammation are intimately linked during mastitis due to Staphylococcus aureus (S. aureus). Pyroptosis, a programmed necrosis triggered by gasdermin protein family, often occurs after inflammatory caspase activation. Many pathogens invade host cells and activate cell-intrinsic death mechanisms, including pyroptosis, apoptosis, and necroptosis. We reported that bovine mammary epithelial cells (MAC-T) respond to S. aureus by NOD-like receptor protein 3 (NLRP3) inflammasome activation through K+ efflux, leading to the recruitment of apoptosis-associated speck-like protein (ASC) and the activation of caspase-1. The activated caspase-1 cleaves gasdermin D (GSDMD) and forms a N-terminal pore forming domain that drives swelling and membrane rupture. Membrane rupture results in the release of the pro-inflammatory cytokines IL-18 and IL-1ß, which are activated by caspase-1. Can modulate GSDMD activation by NLRP3-dependent caspase-1 activation and then cause pyroptosis of bovine mammary epithelial cells.


Assuntos
Inflamassomos , Piroptose , Animais , Bovinos , Células Epiteliais/metabolismo , Feminino , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas NLR , Staphylococcus aureus/metabolismo
10.
J Dairy Res ; 88(3): 293-301, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34425921

RESUMO

Staphylococcus aureus is a common pathogen of bovine mastitis which can induce autophagy and inhibit autophagy flux, resulting in intracellular survival and persistent infection. The aim of the current study was to investigate the role of p38α in the autophagy induced by intracellular S. aureus in bovine mammary epithelial cells. An intracellular infection model of MAC-T cells was constructed, and activation of p38α was examined after S. aureus invasion. Through activating/inhibiting p38α by anisomycin/SB203580, the autophagosomes, LC3 and p62 level were analyzed by immunofluorescence and western blot. To further study the detailed mechanism of p38α, phosphorylation of ULK1ser757 was also detected. The results showed that intracellular S. aureus activated p38α, and the activation developed in a time-dependent manner. Inhibition of p38α promoted intracellular S. aureus-induced autophagy flow, up-regulated the ratio of LC3 II/I, reduced the level of p62 and inhibited the phosphorylation of ULK1ser757, whereas the above results were reversed after activation of p38α. The current study indicated that intracellular S. aureus can inhibit autophagy flow by activating p38α in bovine mammary epithelial cells.


Assuntos
Autofagia/fisiologia , Células Epiteliais/microbiologia , Mastite Bovina/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/fisiologia , Animais , Bovinos , Linhagem Celular , Ativação Enzimática , Células Epiteliais/fisiologia , Feminino , Glândulas Mamárias Animais/citologia , Mastite Bovina/fisiopatologia
11.
Environ Sci Pollut Res Int ; 28(31): 42353-42361, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33813707

RESUMO

The aim of this study is to determine whether Cr(VI) can induce inflammatory injury in chicken brain and influence mitophagy and related mechanisms. A total of 120 hyline brown chickens (1 day old, 20±3g) were selected and randomly divided into four groups and given different doses of Cr(VI) (0, 10, 30, and 50 mg/kg) every day at 45 days. Results showed that excessive intake of Cr(VI) led to increased tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) levels and decreased interferon-gamma (IF-γ) level. Cr(VI) increased the production of mitochondrial reactive oxygen species (ROS) in chicken brain cells, causing the decline of mitochondrial membrane potential (MMP) and formation of autophagosomes for mitophagy. In addition, Cr(VI) promoted the translocation of Parkin to the mitochondrial outer membrane, increased LC3-II protein level, and inhibited p62 and TOM20 protein expression. In conclusion, excessive Cr(VI) intake can induce inflammatory injury and mitophagy in chicken brain.


Assuntos
Galinhas , Mitofagia , Animais , Encéfalo , Cromo/toxicidade , Distribuição Aleatória , Espécies Reativas de Oxigênio
12.
J Clin Lab Anal ; 35(4): e23706, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33528039

RESUMO

BACKGROUND: Tuberculous pleural effusions (TBPEs) and malignant pleural effusions (MPEs) are two of the most common and severe forms of exudative effusions. Clinical differentiation is challenging; however, metabolomics is a collection of powerful tools currently being used to screen for disease-specific biomarkers. METHODS: 17 TBPE and 17 MPE patients were enrolled according to the inclusion criteria. The normalization gas chromatography-mass spectrometry (GC-MS) data were imported into the SIMCA-P + 14.1 software for multivariate analysis. The principal component analysis (PCA) and orthogonal partial least-squares discriminant analysis (OPLS-DA) were used to analyze the data, and the top 50 metabolites of variable importance projection (VIP) were obtained. Metabolites were qualitatively analyzed using the National Institute of Standards and Technology (NIST) databases. Pathway analysis was performed by MetaboAnalyst 4.0. The detection of biochemical indexes such as urea and free fatty acids in these pleural effusions was also verified, and significant differences were found between these two groups. RESULTS: 1319 metabolites were screened by non-targeted metabonomics of GC-MS. 9 small molecules (urea, L-5-oxoproline, L-valine, DL-ornithine, glycine, L-cystine, citric acid, stearic acid, and oleamide) were found to be significantly different (p < 0.05 for all). In OPLS-DA, 9 variables were considered significant for biological interpretation (VIP≥1). However, after the ROC curve was performed, it was found that the metabolites with better diagnostic value were stearic acid, L-cystine, citric acid, free fatty acid, and creatinine (AUC > 0.8), with good sensitivity and specificity. CONCLUSION: Stearic acid, L-cystine, and citric acid may be potential biomarkers, which can be used to distinguish between the TBPE and the MPE.


Assuntos
Biomarcadores/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metabolômica , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/metabolismo , Tuberculose/diagnóstico , Tuberculose/metabolismo , Idoso , Análise por Conglomerados , Diagnóstico Diferencial , Feminino , Humanos , Masculino , Redes e Vias Metabólicas , Metaboloma , Pessoa de Meia-Idade , Análise Multivariada , Análise de Componente Principal , Curva ROC , Reprodutibilidade dos Testes
13.
BMC Vet Res ; 17(1): 37, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468111

RESUMO

BACKGROUND: Klebsiella pneumoniae, an environmental pathogen causing mastitis in dairy cattle, is often resistant to antibiotics. K. pneumoniae was used as the host bacteria to support bacteriophage replication; 2 bacteriophages, CM8-1 and SJT-2 were isolated and considered to have therapeutic potential. In the present study, we determined the ability of these 2 bacteriophages to mitigate cytotoxicity, pathomorphological changes, inflammatory responses and apoptosis induced by K. pneumoniae (bacteriophage to K. pneumoniae MOI 1:10) in bovine mammary epithelial cells (bMECs) cultured in vitro. RESULTS: Bacteriophages reduced bacterial adhesion and invasion and cytotoxicity (lactate dehydrogenase release). Morphological changes in bMECs, including swelling, shrinkage, necrosis and hematoxylin and eosin staining of cytoplasm, were apparent 4 to 8 h after infection with K. pneumoniae, but each bacteriophage significantly suppressed damage and decreased TNF-α and IL-1ß concentrations. K. pneumoniae enhanced mRNA expression of TLR4, NF-κB, TNF-α, IL-1ß, IL-6, IL-8, caspase-3, caspase-9 and cyt-c in bMECs and increased apoptosis of bMECs, although these effects were mitigated by treatment with either bacteriophage for 8 h. CONCLUSIONS: Bacteriophages CM8-1 and SJT-2 mitigated K. pneumoniae-induced inflammation in bMECs cultured in vitro. Therefore, the potential of these bacteriophages for treating mastitis in cows should be determined in clinical trials.


Assuntos
Bacteriófagos , Células Epiteliais/microbiologia , Klebsiella pneumoniae/patogenicidade , Klebsiella pneumoniae/virologia , Animais , Apoptose , Bovinos , Linhagem Celular , Citocinas/metabolismo , Células Epiteliais/metabolismo , Feminino , Inflamação , L-Lactato Desidrogenase/metabolismo , Glândulas Mamárias Animais/microbiologia , Mastite Bovina/microbiologia
14.
Biol Trace Elem Res ; 199(2): 703-711, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32440992

RESUMO

Cr(VI) is a heavy metal environmental pollutant and carcinogen. Excessive Cr(VI) exposure injures kidneys. This study aimed to investigate mitophagy induced by mitochondrial function damage in chicken kidney exposed to Cr(VI). To explore the mechanism involved, we randomly divided 40 one-day-old Hy-line Brown cockerels into four groups, with each group exposed to different concentrations of Cr(VI), i.e., 0, 10, 30 and 50 mg kg-1, which were orally administered daily for 45 days. Excessive Cr(VI) increased tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and chemokine (C-X-C motif) ligand 1(CXCL1) expression and decreased Ca2+-adenosine triphosphatase (Ca2+-ATPase), Mg2+-ATPase and Na+/k+-ATPase activities in chicken kidney. Furthermore, Cr(VI) significantly increased reactive oxygen species (ROS) production and induced mitochondrial membrane potential (MMP) collapse and typical autophagosome formation. With the increase of Cr(VI) concentration, the Parkin translocation, value of LC3-II increased and decreased the content of p62/SQSTM1 and the translocase of outer mitochondrial membrane 20 (TOMM20). In summary, our findings explicated that mitochondrial function damage and mitophagy-related indicators were related to Cr(VI) concentration in chicken kidney.


Assuntos
Galinhas , Mitofagia , Animais , Cromo/toxicidade , Rim , Masculino , Mitocôndrias , Espécies Reativas de Oxigênio
15.
Front Microbiol ; 11: 1461, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733409

RESUMO

Inflammation is the hallmark of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli-induced bovine mastitis. Organic selenium can activate pivotal proteins in immune responses and regulate the immune system. The present study aimed to investigate whether selenomethionine (SeMet) attenuates ESBL E. coli-induced inflammation in bovine mammary epithelial cells (bMECs) and macrophages. Cells were treated with 0, 5/10, 10/20, 20/40, or 40/60 µM SeMet for 12 h and/or inoculated with ESBL-E. coli [multiplicity of infection (MOI) = 5] for 4/6 h, respectively. We assessed inflammatory responses, including selenoprotein S (SeS), Toll-like receptor 4 (TLR4), Ikappa-B (IκB), phospho-NF-κB p65 (Ser536), interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α), and lactate dehydrogenase (LDH) activities. Treatment with 40/60 µM SeMet promoted cell viability and inhibited LDH activities in both bMECs and macrophages. Inoculation with ESBL-E. coli reduced cell viability, which was attenuated by SeMet treatment in bMECs and macrophages. SeMet increased ESBL E. coli-induced downregulation of SeS and decreased LDH activities, TLR4, IκB, phospho-NF-κB p65 (Ser536), IL-1ß, and TNF-α protein expressions in bMECs and macrophages. In addition, knockdown of SeS promoted protein expression of TLR4-mediated nuclear factor-kappa (NF-κB) pathway and BAY 11-708 inhibited TNF-α and IL-1ß protein levels in bMECs and macrophages after ESBL-E. coli treatment. Moreover, ESBL-E. coli inoculation increased monocyte chemoattractant protein 1 (MCP-1), C-C motif ligand 3 (CCL-3), and CCL-5 mRNA expressions in bMECs. In conclusion, ESBL-E. coli induced expression of MCP-1, CCL-3, and CCL-5 in bMECs and then recruited and activated macrophages, whereas SeMet attenuated ESBL E. coli-induced inflammation through activated SeS-mediated TLR4/NF-κB signaling pathway in bMECs and macrophages.

16.
Front Immunol ; 11: 746, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32431700

RESUMO

In dairy herds, mastitis caused by Staphylococcus aureus is difficult to completely cure on the account that S. aureus can invade bovine mammary epithelial cells (BMECs) and result in persistent infection in the mammary gland. Recent studies have demonstrated that autophagy can participate in cell homeostasis by eliminating intracellular microorganisms. The aim of the study was to investigate why S. aureus can evade autophagy clearance and survive in BMECs. The intracellular infection model was first constructed; then, the bacteria in autophagosome was detected by transmission electron microscopy. The autophagy flux induced by the S. aureus was also evaluated by immunoblot analysis and fluorescent labeling method for autophagy marker protein LC3. In addition, lysosomal alkalization and degradation ability were assessed using confocal microscopy. Results showed that, after infection, a double-layer membrane structure around the S. aureus was observed in BMECs, indicating that autophagy occurred. The change in autophagy marker protein and fluorescent labeling of autophagosome also confirmed autophagy. However, as time prolonged, the autophagy flux was markedly inhibited, leading to obvious autophagosome accumulation. At the same time, the lysosomal alkalization and degradation ability of BMECs were impaired. Collectively, these results indicated that S. aureus could escape autophagic degradation by inhibiting autophagy flux and damaging lysosomal function after invading BMECs.


Assuntos
Autofagossomos/metabolismo , Autofagia/genética , Células Epiteliais/metabolismo , Lisossomos/metabolismo , Glândulas Mamárias Animais/citologia , Mastite Bovina/metabolismo , Infecções Estafilocócicas/metabolismo , Staphylococcus aureus/metabolismo , Animais , Autofagossomos/microbiologia , Bovinos , Linhagem Celular , Sobrevivência Celular , Células Epiteliais/microbiologia , Feminino , Lisossomos/microbiologia , Mastite Bovina/microbiologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Transdução de Sinais/genética , Infecções Estafilocócicas/microbiologia , Transfecção
17.
Environ Sci Pollut Res Int ; 27(18): 22980-22988, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32329004

RESUMO

Cr(VI) is a widely used chemical. Excessive Cr(VI) exposure not only causes inflammatory damage but also induces mitophagy. This study aimed to demonstrate the effect of Cr(VI) on inflammatory injury and mitophagy in chicken liver. A total of 120 Hyland Brown cockerels (1 day old) were randomly divided into four groups and orally treated with different Cr(VI) doses (10% median lethal dose, 6% median lethal dose, 2% median lethal dose, and 0% median lethal dose) daily for 45 days to explore the underlying mechanism. Results showed that excessive Cr(VI) increased tumor necrosis factor-α, interleukin-6, and heat shock protein but decreased interferon-γ expression and adenosine triphosphate content in chicken liver. Cr(VI) significantly increased reactive oxygen species production, induced mitochondrial membrane potential collapse, and promoted autophagosome formation. Cr(VI) treatment also caused an increase in LC3-II, stimulated Parkin translocation, and inhibited the expression of p62/SQSTM1 and translocase of outer mitochondrial membrane 20. Therefore, excessive Cr(VI) caused inflammatory damage and mitophagy in chicken liver.


Assuntos
Galinhas , Mitofagia , Animais , Cromo , Fígado , Masculino , Mitocôndrias , Espécies Reativas de Oxigênio
18.
J Microbiol ; 58(4): 320-329, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32103442

RESUMO

Bovine mastitis is a common disease in the dairy industry that causes great economic losses. As the primary pathogen of contagious mastitis, Staphylococcus aureus (S. aureus) can invade bovine mammary epithelial cells, thus evading immune defenses and resulting in persistent infection. Recently, autophagy has been considered an important mechanism for host cells to clear intracellular pathogens. In the current study, autophagy caused by S. aureus was detected, and the correlation between autophagy and intracellular S. aureus survival was assessed. First, a model of intracellular S. aureus infection was established. Then, the autophagy of MAC-T cells was evaluated by confocal microscopy and western blot. Moreover, the activation of the PI3K-Akt-mTOR and ERK1/2 signaling pathways was determined by western blot. Finally, the relationship between intracellular bacteria and autophagy was analyzed by using autophagy regulators (3-methyladenine [3-MA], rapamycin [Rapa] and chloroquine [CQ]). The results showed that S. aureus caused obvious induction of autophagosome formation, transformation of LC3I/II, and degradation of p62/SQSTM1 in MAC-T cells; furthermore, the PI3K-Akt-mTOR and ERK1/2 signaling pathways were activated. The number of intracellular S. aureus increased significantly with autophagy activation by rapamycin, whereas the number decreased when the autophagy flux was inhibited by chloroquine. Therefore, this study indicated that intracellular S. aureus can induce autophagy and utilize it to survive in bovine mammary epithelial cells.


Assuntos
Autofagia , Células Epiteliais/microbiologia , Mastite Bovina/microbiologia , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Bovinos , Linhagem Celular , Feminino , Interações entre Hospedeiro e Microrganismos , Viabilidade Microbiana , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/fisiologia
19.
Biol Trace Elem Res ; 194(2): 570-580, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31264128

RESUMO

This study aimed to investigate the role of purple tomato anthocyanin (PTA) in autophagy induced by chromium(VI) in a chicken hepatocellular carcinoma cell line (LMH cells). LMH cells were exposed to Cr(VI), PTA, and Cr(VI) + PTA. The changes in endoplasmic reticulum (ER) stress, autophagy, related proteins, and COX-2 were detected. Results showed that the cell viability was reduced after Cr(VI) treatment, and the decrease was also restrained by 3-MA or PTA. Levels of ER stress-related proteins (GRP78/Bip and PERK) and COX-2 increased after Cr(VI) treatment, which resulted in an increase in autophagy-related proteins (Beclin1 and LC3-II), inhibition of autophagy pathway protein mTOR, and degradation of autophagy-related protein p62, leading to excessive autophagy and cell damage. Meanwhile, the changes of these indicators induced by Cr(VI) were alleviated by PTA. In conclusion, our study suggested that Cr(VI) can induce excessive autophagy in LMH cells, while PTA can ameliorate Cr(VI)-induced autophagy by inhibiting ER stress.


Assuntos
Estresse do Retículo Endoplasmático , Solanum lycopersicum , Antocianinas/farmacologia , Apoptose , Autofagia , Cromo
20.
Front Immunol ; 10: 2299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632395

RESUMO

In this study, a novel oral vaccine of recombinant Lactobacillus plantarum (L. plantarum) containing the gp85 protein was explored, and the effects of this vaccine on the prevention of subgroup J Avian Leukosis Virus (ALV-J) infection were assessed. In the current study, the gp85 protein of ALV-J was expressed on the surface of L. plantarum with the surface-display motif, pgsA, by constructing a shuttle vector pMG36e:pgsA:gp85. Surface localization of the fusion protein was verified by western blotting and flow cytometry. Subsequently, Specific Pathogen Free Hy-Line Brown layer chickens were orally vaccinated with the recombinant L. plantarum and presented with high levels of serum immunoglobulin G (IgG) and secretory immunoglobulin A (sIgA) titers in bile and duodenal-mucosal fluid. After challenged with ALV-J of a 3 × 103 50% tissue culture infective dose (TCID50), serum samples of the chickens were collected and viremia was analyzed. Results showed that, compared to the L. plantarum and PBS control group, the recombinant L. plantarum group showed a significant rise in antibody levels after inoculation, and provide improved protection against ALV-J according to viremia detection. These results indicate that oral immunization with the recombinant L. plantarum provided an effective means for eliciting protective immune response against early ALV-J infection.


Assuntos
Vírus da Leucose Aviária/imunologia , Leucose Aviária , Galinhas , Lactobacillus plantarum , Microrganismos Geneticamente Modificados , Doenças das Aves Domésticas , Proteínas do Envelope Viral , Vacinas Virais , Administração Oral , Animais , Leucose Aviária/imunologia , Leucose Aviária/patologia , Leucose Aviária/prevenção & controle , Vírus da Leucose Aviária/genética , Galinhas/imunologia , Galinhas/virologia , Microrganismos Geneticamente Modificados/genética , Microrganismos Geneticamente Modificados/imunologia , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/patologia , Doenças das Aves Domésticas/prevenção & controle , Doenças das Aves Domésticas/virologia , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia , Vacinas Virais/genética , Vacinas Virais/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA