Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
J Orthop Surg Res ; 19(1): 270, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689328

RESUMO

BACKGROUND: Rotator cuff tears (RCTs) are a common musculoskeletal disorder, and arthroscopic rotator cuff repair (ARCR) is widely performed for tendon repair. Handgrip strength correlates with rotator cuff function; however, whether preoperative grip strength can predict functional outcomes in patients undergoing ARCR remains unknown. This study aimed to investigate the correlation between preoperative grip strength and postoperative shoulder function following ARCR. METHODS: A total of 52 patients with full-thickness repairable RCTs were prospectively enrolled. Baseline parameters, namely patient characteristics and intraoperative findings, were included for analysis. Postoperative shoulder functional outcomes were assessed using the Quick Disabilities of the Arm, Shoulder, and Hand (QDASH) questionnaire and Constant-Murley scores (CMSs). Patients were followed up and evaluated at three and six months after ARCR. The effects of baseline parameters on postoperative outcomes were measured using generalized estimating equations. RESULTS: At three and six months postoperatively, all clinical outcomes evaluated exhibited significant improvement from baseline following ARCR. Within 6 months postoperatively, higher preoperative grip strength was significantly correlated with higher CMSs (ß = 0.470, p = 0.022), whereas increased numbers of total suture anchors were significantly correlated with decreased CMSs (ß = - 4.361, p = 0.03). Higher body mass index was significantly correlated with higher postoperative QDASH scores (ß = 1.561, p = 0.03) during follow-up. CONCLUSIONS: Higher baseline grip strength predicts more favorable postoperative shoulder function following ARCR. A preoperative grip strength test in orthopedic clinics may serve as a predictor for postoperative shoulder functional recovery in patients undergoing ARCR.


Assuntos
Artroscopia , Força da Mão , Lesões do Manguito Rotador , Humanos , Masculino , Feminino , Pessoa de Meia-Idade , Artroscopia/métodos , Força da Mão/fisiologia , Lesões do Manguito Rotador/cirurgia , Lesões do Manguito Rotador/fisiopatologia , Idoso , Estudos Prospectivos , Período Pré-Operatório , Período Pós-Operatório , Resultado do Tratamento , Valor Preditivo dos Testes , Recuperação de Função Fisiológica/fisiologia , Manguito Rotador/cirurgia , Manguito Rotador/fisiopatologia , Seguimentos , Adulto , Ombro/cirurgia , Ombro/fisiopatologia
3.
Ultrasound Med Biol ; 50(4): 610-616, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38290910

RESUMO

OBJECTIVE: Neonatal hypoxic-ischemic brain damage (HIBD) can have long-term implications on patients' physical and mental health, yet the available treatment options are limited. Recent research has shown that low-intensity pulsed ultrasound (LIPUS) holds promise for treating neurodegenerative diseases and traumatic brain injuries. Our objective was to explore the therapeutic potential of LIPUS for HIBD. METHODS: Due to the lack of a suitable animal model for neonatal HIBD, we will initially simulate the therapeutic effects of LIPUS on neuronal cells under oxidative stress and neuroinflammation using cell experiments. Previous studies have investigated the biologic responses following intracranial injection of 6-hydroxydopamine (6-OHDA). In this experiment, we will focus on the biologic effects produced by LIPUS treatment on neuronal cells (specifically, SH-SY5Y cells) without the presence of other neuroglial cell assistance after stimulation with 6-OHDA. RESULTS: We found that (i) pulsed ultrasound exposure, specifically three-intermittent sonication at intensities ranging from 0.1 to 0.5 W/cm², did not lead to a significant decrease in viability among SH-SY5Y cells; (ii) LIPUS treatment exhibited a positive effect on cell viability, accompanied by an increase in glial cell-derived neurotrophic factor (GDNF) levels and a decrease in caspase three levels; (iii) the administration of 6-OHDA had a significant impact on cell viability, resulting in a decrease in both brain cell-derived neurotrophic factor (BDNF) and GDNF levels, while concurrently elevating caspase three and matrix metalloproteinase-9 (MMP-9) levels; and (iv) LIPUS treatment demonstrated its potential to alleviate the changes induced by 6-OHDA, particularly in the levels of BDNF, GDNF, and tyrosine hydroxylase (TH). CONCLUSION: LIPUS treatment may possess partial therapeutic capabilities for SH-SY5Y cells damaged by 6-OHDA neurotoxicity. Our findings enhance our understanding of the effects of LIPUS treatment on cell viability and its modulation of key factors involved in the pathophysiology of HIBD and show the promising potential of LIPUS as an alternative therapeutic approach for neonates with HIBD.


Assuntos
Produtos Biológicos , Neuroblastoma , Animais , Recém-Nascido , Humanos , Fator Neurotrófico Derivado do Encéfalo , Oxidopamina , Fator Neurotrófico Derivado de Linhagem de Célula Glial , Ondas Ultrassônicas , Caspases
4.
Oncogene ; 43(7): 511-523, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38177412

RESUMO

Leukocyte cell-derived chemotaxin 2 (LECT2) is a multifunctional cytokine that can bind to several receptors and mediate distinct molecular pathways in various cell settings. Changing levels of LECT2 have been implicated in multiple human disease states, including cancers. Here, we have demonstrated reduced serum levels of LECT2 in patients with epithelial ovarian cancer (EOC) and down-regulated circulating Lect2 as the disease progresses in a syngeneic mouse ID8 EOC model. Using the murine EOC model, we discovered that loss of Lect2 promotes EOC progression by modulating both tumor cells and the tumor microenvironment. Lect2 inhibited EOC cells' invasive phenotype and suppressed EOC's transcoelomic metastasis by targeting c-Met signaling. In addition, Lect2 downregulation induced the accumulation and activation of myeloid-derived suppressor cells (MDSCs). This fostered an immunosuppressive microenvironment in EOC by inhibiting T-cell activation and skewing macrophages toward an M2 phenotype. The therapeutic efficacy of programmed cell death-1 (PD-1)/PD-L1 pathway blockade for the ID8 model was significantly hindered. Overall, our data highlight multiple functions of Lect2 during EOC progression and reveal a rationale for synergistic immunotherapeutic strategies by targeting Lect2.


Assuntos
Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Imunossupressores , Modelos Animais de Doenças , Microambiente Tumoral/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA