Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
BMC Musculoskelet Disord ; 25(1): 223, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504222

RESUMO

OBJECTIVE: Our study aimed to develop a day anterior cervical discectomy and fusion (ACDF) procedure to treat degenerative cervical spondylosis (DCS). The goal was to analyze its clinical implications, safety, and early effects to provide a better surgical option for eligible DCS patients. METHODS: A retrospective analysis was performed to identify DCS patients who underwent day ACDF from September 2022 to August 2023. The operative time, intraoperative blood loss, postoperative drainage, preoperative and postoperative visual analog scale (VAS) scores, neck disability index (NDI) scores, Japanese Orthopedic Association (JOA) scores, JOA recovery rate (RR), incidence of dysphagia-related symptoms, 30-day hospital readmission rate, and incidence of other complications were recorded to evaluate early clinical outcomes. Radiography was performed to assess the location of the implants, neurological decompression, and cervical physiological curvature. RESULTS: All 33 patients (23 women and 10 men) underwent successful surgery and experienced significant symptomatic and neurological improvements. Among them, 26 patients underwent one-segment ACDF, 5 underwent two-segment ACDF, and 2 underwent three-segment ACDF. The average operative time was 71.1 ± 20.2 min, intraoperative blood loss was 19.1 ± 6.2 mL, and postoperative drainage was 9.6 ± 5.8 mL. The preoperative VAS and NDI scores improved postoperatively (7.1 ± 1.2 vs. 3.1 ± 1.3 and 66.7% ± 4.8% vs. 24.1% ± 2.5%, respectively), with a significant difference (P < 0.01). Moreover, the preoperative JOA scores improved significantly postoperatively (7.7 ± 1.3 vs. 14.2 ± 1.4; P < 0.01) with an RR of 93.9% in good or excellent. Postoperative dysphagia-related symptoms occurred in one patient (3.0%). During the follow-up period, no patient was readmitted within 30 days after discharge; however, an incisional hematoma was reported in one patient on the 6th day after discharge, which was cured by pressure dressing. The postoperative radiographs revealed perfect implant positions and sufficient nerve decompression in all patients. Furthermore, the preoperative cervical physiological curvature improved significantly after the operation (14.5° ± 4.0° vs. 26.3° ± 5.4°; P < 0.01). CONCLUSIONS: Day ACDF has good safety and early clinical efficacy, and it could be an appropriate choice for eligible DCS patients.


Assuntos
Transtornos de Deglutição , Fusão Vertebral , Espondilose , Masculino , Humanos , Feminino , Estudos Retrospectivos , Fusão Vertebral/efeitos adversos , Fusão Vertebral/métodos , Vértebras Cervicais/diagnóstico por imagem , Vértebras Cervicais/cirurgia , Discotomia/efeitos adversos , Discotomia/métodos , Espondilose/diagnóstico por imagem , Espondilose/cirurgia , Resultado do Tratamento , Seguimentos
2.
Cell Chem Biol ; 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38442710

RESUMO

The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.

3.
Curr Issues Mol Biol ; 45(4): 3640-3657, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37185761

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease with multifactorial pathogenesis; histone demethylases (HDMs) are emerging as attractive targets. We identified HDM genes (including KDM5C, KDM6B, KDM8, KDM4A, and JMJD7) that were differentially expressed in NAFLD and normal samples by exploring gene expression profiling datasets. There was no significant difference in the expression of genes related to histone demethylation between mild and advanced NAFLD. In vitro and in vivo studies indicated that KDM6B and JMJD7 were upregulated at the mRNA level in NAFLD. We explored the expression levels and prognostic values of the identified HDM genes in hepatocellular carcinoma (HCC). KDM5C and KDM4A were upregulated in HCC compared to normal tissue, while KDM8 showed downregulation. The abnormal expression levels of these HDMs could provide prognostic values. Furthermore, KDM5C and KDM4A were associated with immune cell infiltration in HCC. HDMs were associated with cellular and metabolic processes and may be involved in the regulation of gene expression. Differentially expressed HDM genes identified in NAFLD may provide value to understanding pathogenesis and in the development of epigenetic therapeutic targets. However, on the basis of the inconsistent results of in vitro studies, future in vivo experiments combined with transcriptomic analysis are needed for further validation.

4.
EMBO J ; 42(3): e111513, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36524353

RESUMO

Hedgehog (Hh) signaling pathway plays a pivotal role in embryonic development. Hh binding to Patched1 (PTCH1) derepresses Smoothened (SMO), thereby activating the downstream signal transduction. Covalent SMO modification by cholesterol in its cysteine-rich domain (CRD) is essential for SMO function. SMO cholesterylation is a calcium-accelerated autoprocessing reaction, and STIM1-ORAI1-mediated store-operated calcium entry promotes cholesterylation and activation of endosome-localized SMO. However, it is unknown whether the Hh-PTCH1 interplay regulates the activity of the endoplasmic reticulum (ER)-localized SMO. Here, we found that PTCH1 inhibited the COPII-dependent export of SMO from the ER, whereas Hh promoted this process. The RRxWxR amino acid motif in the cytosolic tail of SMO was essential for COPII recognition, ciliary localization, and signal transduction activity. Hh and PTCH1 regulated cholesterol modification of the ER-localized SMO, and SMO cholesterylation accelerated its exit from ER. The GRAMD1/ASTER sterol transport proteins facilitated cholesterol transfer to ER from PM, resulting in increased SMO cholesterylation and enhanced Hh signaling. Collectively, we reveal a regulatory role of GRAMD-mediated cholesterol transport in ER-resident SMO maturation and Hh signaling.


Assuntos
Cálcio , Proteínas Hedgehog , Transporte Biológico , Cálcio/metabolismo , Colesterol/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/fisiologia , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas de Membrana/metabolismo
5.
World J Gastroenterol ; 28(41): 5910-5930, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36405106

RESUMO

Cirrhosis causes a heavy global burden. In this review, we summarized up-to-date epidemiological features of cirrhosis and its complications. Recent epidemiological studies reported an increase in the prevalence of cirrhosis in 2017 compared to in 1990 in both men and women, with 5.2 million cases of cirrhosis and chronic liver disease occurring in 2017. Cirrhosis caused 1.48 million deaths in 2019, an increase of 8.1% compared to 2017. Disability-adjusted life-years due to cirrhosis ranked 16th among all diseases and 7th in people aged 50-74 years in 2019. The global burden of hepatitis B virus and hepatitis C virus-associated cirrhosis is decreasing, while the burden of cirrhosis due to alcohol and nonalcoholic fatty liver disease (NAFLD) is increasing rapidly. We described the current epidemiology of the major complications of cirrhosis, including ascites, variceal bleeding, hepatic encephalopathy, renal disorders, and infections. We also summarized the epidemiology of hepatocellular carcinoma in patients with cirrhosis. In the future, NAFLD-related cirrhosis will likely become more common due to the prevalence of metabolic diseases such as obesity and diabetes, and the prevalence of alcohol-induced cirrhosis is increasing. This altered epidemiology should be clinically noted, and relevant interventions should be undertaken.


Assuntos
Varizes Esofágicas e Gástricas , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Feminino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/complicações , Varizes Esofágicas e Gástricas/etiologia , Varizes Esofágicas e Gástricas/complicações , Hemorragia Gastrointestinal/etiologia , Cirrose Hepática/complicações , Fibrose , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/complicações
6.
Nature ; 608(7922): 413-420, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922515

RESUMO

High cholesterol is a major risk factor for cardiovascular disease1. Currently, no drug lowers cholesterol through directly promoting cholesterol excretion. Human genetic studies have identified that the loss-of-function Asialoglycoprotein receptor 1 (ASGR1) variants associate with low cholesterol and a reduced risk of cardiovascular disease2. ASGR1 is exclusively expressed in liver and mediates internalization and lysosomal degradation of blood asialoglycoproteins3. The mechanism by which ASGR1 affects cholesterol metabolism is unknown. Here, we find that Asgr1 deficiency decreases lipid levels in serum and liver by stabilizing LXRα. LXRα upregulates ABCA1 and ABCG5/G8, which promotes cholesterol transport to high-density lipoprotein and excretion to bile and faeces4, respectively. ASGR1 deficiency blocks endocytosis and lysosomal degradation of glycoproteins, reduces amino-acid levels in lysosomes, and thereby inhibits mTORC1 and activates AMPK. On one hand, AMPK increases LXRα by decreasing its ubiquitin ligases BRCA1/BARD1. On the other hand, AMPK suppresses SREBP1 that controls lipogenesis. Anti-ASGR1 neutralizing antibody lowers lipid levels by increasing cholesterol excretion, and shows synergistic beneficial effects with atorvastatin or ezetimibe, two widely used hypocholesterolaemic drugs. In summary, this study demonstrates that targeting ASGR1 upregulates LXRα, ABCA1 and ABCG5/G8, inhibits SREBP1 and lipogenesis, and therefore promotes cholesterol excretion and decreases lipid levels.


Assuntos
Receptor de Asialoglicoproteína , Colesterol , Metabolismo dos Lipídeos , Proteínas Quinases Ativadas por AMP/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Receptor de Asialoglicoproteína/antagonistas & inibidores , Receptor de Asialoglicoproteína/deficiência , Receptor de Asialoglicoproteína/genética , Receptor de Asialoglicoproteína/metabolismo , Assialoglicoproteínas/metabolismo , Atorvastatina/farmacologia , Proteína BRCA1 , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Sinergismo Farmacológico , Endocitose , Ezetimiba/farmacologia , Humanos , Lipídeos/análise , Lipídeos/sangue , Fígado/metabolismo , Receptores X do Fígado/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Proteína de Ligação a Elemento Regulador de Esterol 1 , Ubiquitina-Proteína Ligases/metabolismo
7.
Gastroenterol Rep (Oxf) ; 10: goac011, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401986

RESUMO

Microscopic colitis (MC) is a chronic inflammatory disease of the large intestine and as a relatively late recognized condition, its relationship with other disorders of the gastrointestinal tract is gradually being understood and investigated. As a multifactorial disease, MC interacts with inflammatory bowel disease, celiac disease, and irritable bowel syndrome through genetic overlap, immunological factors, and gut microflora. The risk of colorectal cancer was significantly lower in MC, gastrointestinal infections increased the risk of developing MC, and there was an inverse association between Helicobacter pylori infection and MC. A variety of associations are found between MC and other gastrointestinal disorders, where aspects such as genetic effects, resemblance of immunological profiles, and intestinal microecology are potential mechanisms behind the relationships. Clinicians should be aware of these connections to achieve a better understanding and management of MC.

8.
Circulation ; 145(9): 675-687, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35189703

RESUMO

BACKGROUND: High blood cholesterol accelerates the progression of atherosclerosis, which is an asymptomatic process lasting for decades. Rupture of atherosclerotic plaques induces thrombosis, which results in myocardial infarction or stroke. Lowering cholesterol levels is beneficial for preventing atherosclerotic cardiovascular disease. METHODS: Low-density lipoprotein (LDL) receptor (LDLR) was used as bait to identify its binding proteins in the plasma, and the coagulation factor prekallikrein (PK; encoded by the KLKB1 gene) was revealed. The correlation between serum PK protein content and lipid levels in young Chinese Han people was then analyzed. To investigate the effects of PK ablation on LDLR and lipid levels in vivo, we genetically deleted Klkb1 in hamsters and heterozygous Ldlr knockout mice and knocked down Klkb1 using adeno-associated virus-mediated shRNA in rats. The additive effect of PK and proprotein convertase subtilisin/kexin 9 inhibition also was evaluated. In addition, we applied the anti-PK neutralizing antibody that blocked the PK and LDLR interaction in mice. Mice lacking both PK and apolipoprotein e (Klkb1-/-Apoe-/-) were generated to assess the role of PK in atherosclerosis. RESULTS: PK directly bound LDLR and induced its lysosomal degradation. The serum PK concentrations positively correlated with LDL cholesterol levels in 198 young Chinese Han adults. Genetic depletion of Klkb1 increased hepatic LDLR and decreased circulating cholesterol in multiple rodent models. Inhibition of proprotein convertase subtilisin/kexin 9 with evolocumab further decreased plasma LDL cholesterol levels in Klkb1-deficient hamsters. The anti-PK neutralizing antibody could similarly lower plasma lipids through upregulating hepatic LDLR. Ablation of Klkb1 slowed the progression of atherosclerosis in mice on Apoe-deficient background. CONCLUSIONS: PK regulates circulating cholesterol levels through binding to LDLR and inducing its lysosomal degradation. Ablation of PK stabilizes LDLR, decreases LDL cholesterol, and prevents atherosclerotic plaque development. This study suggests that PK is a promising therapeutic target to treat atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , LDL-Colesterol/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/prevenção & controle , Pré-Calicreína/deficiência , Receptores de LDL/metabolismo , Animais , Aterosclerose/genética , LDL-Colesterol/genética , Lisossomos/genética , Lisossomos/metabolismo , Camundongos , Camundongos Knockout , Placa Aterosclerótica/genética , Pré-Calicreína/metabolismo , Proteólise , Receptores de LDL/genética
9.
Food Sci Nutr ; 9(10): 5583-5589, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646528

RESUMO

OBJECTIVE: To investigate the protective effect and mechanism of shikonin on human intervertebral disk degeneration. METHODS: Human primary nucleus pulposus (NP) cells cultured in vitro were used for the experiments. The effects of different concentrations of shikonin (1, 2, 4, 8, and 16 µM) on the activity of lipopolysaccharide (LPS)-induced NP cells were determined using the CCK-8 assay, and the appropriate drug concentration was determined. The experiment was divided into the control, LPS, and LPS + shikonin groups. ELISA and Western blot were used to detect the expression of the inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-1ß. NP cell apoptosis was measured using Western blot and caspase 3 activity. Western blot and immunofluorescence assays were used to detect the protein expression of p-P65 and P65 and the nuclear translocation of P65. RESULTS: The CCK-8 assay showed that shikonin had no cytotoxic effect on NP cells and increased the activity of LPS-induced NP cells, especially at a concentration of 4 µM. Shikonin reversed the expression of the inflammatory cytokines TNF-α and IL-1ß and apoptosis-related molecules Bax, Bcl-2, and cleaved caspase 3 in LPS-induced NP cells. In addition, shikonin significantly decreased apoptosis and caspase-3 activity in LPS-induced NP cells. Furthermore, shikonin treatment significantly inhibited the expression of p-P65 and nuclear translocation of P65, and nuclear factor-kappa B (NF-κB) pathway inhibitor Pyrrolidinedithiocarbamate ammonium (PDTC) significantly enhanced the anti-inflammatory and antiapoptotic effects of shikonin in LPS-induced NP cells. CONCLUSION: Shikonin significantly inhibited the inflammatory response and apoptosis of human primary NP cells, possibly through the NF-κB pathway.

10.
J Cancer ; 11(8): 2201-2212, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32127947

RESUMO

Background: The lnc-SNHG16 serves as an oncogene and miR-128 acts as a tumor suppressor in various cancers. However, the functional role of lnc-SNHG16 and miR-128 in CC still remain unknown. This study aims to explore the expression level of lnc-SNHG16 and miR-128 and its biological roles in CC. Methods: lnc-SNHG16, miR-128, GSPT1 and WNT3A expression were analyzed using quantitative real-time PCR and bioinformatics in cervical cancer tissues and cells. Cell Counting Kit-8, EdU staining, colony formation assay, western blot, Transwell, immunofluorescence, immunohistochemical staining, luciferase reporter assay, electrophoretic mobility shift, tumor xenograft, and flow cytometry assays were employed to investigate the mechanisms underlying the effect of Lnc-SNHG16/miR-128 axis on cervical cancer. Results: lnc-SNHG16 was up-regulated in CC cell lines and tissues. lnc-SNHG16 knockdown inhibited proliferation, restrained the epithelial-mesenchymal transition (EMT) process by regulating cell apoptosis and cell cycle. The next study indicated that lnc-SNHG16 knockdown markedly increased miR-128 level which is down-regulated in CC. Moreover, miR-128 overexpression significantly inhibited proliferation, EMT process and tumor growth by directly targeting GSPT1 and WNT3A. Finally, lnc-SNHG16 activates but miR-128 inactivates the WNT/ß-catenin pathways in CC cells. Conclusion: Our data suggest that lnc-SNHG16/miR-128 axis modulates malignant phenotype of CC cells through WNT/ß-catenin pathway.

11.
Transl Cancer Res ; 9(5): 3643-3657, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-35117727

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) can serve as a competing endogenous RNA (ceRNA) in regulating gene expression in multiple cancers by sponging miRNA. However, this mechanism is poorly studied in pancreatic cancer. This study aims to identify functional lncRNAs and their potential regulatory mechanisms in pancreatic cancer. METHODS: Differentially expressed lncRNA (DE-lncRNA), miRNA (DE-miRNA) and mRNA (DE-mRNA) were analyzed using data from three datasets (GSE89139, GSE24279 and GSE62452) from the Gene Expression Omnibus (GEO). The lncRNA-miRNA-mRNA interactions were predicted using miRcode and Targetscan. Gene ontology (GO) and pathway analysis of DE-mRNAs were performed using clusterProfiler. Survival analysis was conducted using data from The Cancer Genome Atlas (TCGA) database. RESULTS: Three hundred sixty-six DE-lncRNAs, 28 DE-miRNAs and 330 DE-mRNAs from pancreatic cancer and adjacent tissue were identified. A ceRNA network including 75 DE-lncRNAs, 18 DE-miRNAs and 85 DE-mRNAs was constructed, among which 16 DE-lncRNAs were associated with overall survival and 13 DE-lncRNAs were correlated with tumor progression. Three functional lncRNAs, GABPB1-AS1, ST7-AS1 and PSMG3-AS1, were identified as key functional lncRNAs, and their differential expression and potential ceRNA regulatory mechanism were validated by qPCR using pancreatic cancer cell lines and tissues. CONCLUSIONS: Our study identifies novel lncRNAs associated with progression and prognosis of pancreatic cancer and contributes to better understanding of lncRNA-associated ceRNA regulatory mechanisms in pancreatic cancer.

12.
Onco Targets Ther ; 12: 8287-8299, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632078

RESUMO

BACKGROUND: Inositol polyphosphate 4-phosphatase type II (INPP4B), a member of the PI3K/Akt signaling pathway, plays a vital role in the initiation and progression of cancers. However, its biological role in pancreatic cancer remains largely undiscovered. Our study aimed to investigate the effects of INPP4B on proliferation in pancreatic cancer and its clinical relevance. MATERIALS AND METHODS: INPP4B expression data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Clinicopathological and survival data were retrieved from the TCGA database. CCK8 and colony formation assays were performed to measure the proliferative capacity of pancreatic cancer. Tumor xenograft models were established to measure cancer proliferative abilities in vivo. RESULTS: INPP4B was upregulated in pancreatic cancer tissue compared with normal tissue. INPP4B knockdown inhibited cell proliferation and promoted apoptosis in pancreatic cancer in vitro and in vivo. INPP4B knockdown also reduced AKT phosphorylation. Moreover, INPP4B was associated with poor overall and disease-free survival, with Cox regression analysis showing that INPP4B could serve as an independent prognostic marker. ROC curve analysis showed that INPP4B possessed moderate diagnostic value. CONCLUSION: Collectively, INPP4B is an oncogenic gene in pancreatic cancer and could serve as a potential diagnostic marker and an independent prognostic marker, suggesting that it could be a novel therapeutic target for pancreatic cancer.

13.
Med Sci Monit ; 25: 6805-6811, 2019 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-31503552

RESUMO

BACKGROUND The prevalence of bronchiectasis with comorbid chronic obstructive pulmonary disease (COPD) is rising, which causes extremely high risk of exacerbation and mortality. We aimed to evaluate the differences in clinicopathological manifestations, immune function, and inflammation in bronchiectasis patients with comorbid COPD vs. patients who only have COPD. MATERIAL AND METHODS Clinicopathological characteristics, including common potentially pathogenic microorganisms, lung function, immune function, and inflammation were assessed in bronchiectasis patients with comorbid COPD and in patients who only had COPD. RESULTS Compared to patients who only had COPD, patients with bronchiectasis with comorbid COPD had a higher positive rate of sputum bacteria (45.27% vs. 28.03%, P<0.01). Among them, Pseudomonas aeruginosa (P. aeruginosa) accounted for 25.19% in COPD (4.37%) (P<0.01). Likewise, patients with bronchiectasis with comorbid COPD had worse lung function, worse COPD assessment test scores, and worse Modified Medical Research Council scores. Moreover, compared with COPD only cases, patients with bronchiectasis with comorbid COPD had higher levels of white blood cells (WBC), neutrophils, C-reactive protein (CRP), and procalcitonin (PCT) (all P<0.05). Interestingly, the expression levels of Treg in patients with bronchiectasis with comorbid COPD were lower than in patients with COPD only (P<0.05). Th17 and Th17/Treg levels were higher (P<0.05). Furthermore, remarkable increased level of IL17 and IL-6 and decreased level of IL-10 and TGF-ß were observed in the bronchiectasis combined COPD than in pure COPD (All P<0.05). CONCLUSIONS Our findings suggest that P. aeruginosa is the main pathogen of bacterial infection in bronchiectasis patients with comorbid COPD. These patients have more serious clinical manifestations and immune imbalance, which should be considered when providing clinical treatment.


Assuntos
Bronquiectasia/epidemiologia , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Biomarcadores/metabolismo , Bronquiectasia/imunologia , Bronquiectasia/patologia , Bronquiectasia/fisiopatologia , China/epidemiologia , Comorbidade , Progressão da Doença , Feminino , Humanos , Inflamação/patologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/patologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Testes de Função Respiratória , Escarro
14.
Thorac Cancer ; 9(12): 1680-1686, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30281214

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) with different EGFR mutation types shows distinct sensitivity to tyrosine kinase inhibitors (TKIs). This study developed a patho-clinical profile-based prediction model of TKI-sensitive EGFR mutations. METHODS: The records of 1121 Chinese patients diagnosed with NSCLC from November 2008 to October 2014 (the development set) were reviewed. Multivariate logistic regression was conducted to identify any association between potential predictors and the classic sensitive EGFR mutations (exon 19 deletion and exon 21 L858R point mutation). A prediction index was created by assigning weighted scores to each factor proportional to a regression coefficient. Validation was made in an independent cohort consisting of 864 patients who were consecutively enrolled between November 2014 and January 2017 (the validation set). RESULTS: Seven independent predictors were identified: gender (female vs. male), adenocarcinoma (yes vs. no), smoking history (no vs. yes), N stage (N+ vs. N0), M stage (M1 vs. M0), brain metastasis (yes vs. no), and elevated Cyfra 21-1 (no vs. yes). Each was assigned a number of points. In the validation set, the area under curve of the prediction index appeared as 0.698 (95% confidence interval 0.663-0.733). The sensitivity, specificity, positive and negative predictive values, and concordance were 95.0%, 32.3%, 61.4%, 85.1%, and 65.6%, respectively. CONCLUSION: We developed a patho-clinical profile-based model for predicting TKI-sensitive EGFR mutations. Our model may represent a noninvasive, economical choice for clinicians to inform TKI therapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Modelos Teóricos , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Receptores ErbB/genética , Feminino , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Pessoa de Meia-Idade , Estadiamento de Neoplasias , Razão de Chances , Prognóstico , Inibidores de Proteínas Quinases/farmacologia , Curva ROC , Reprodutibilidade dos Testes , Adulto Jovem
15.
Chin Med J (Engl) ; 131(10): 1191-1198, 2018 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-29722338

RESUMO

BACKGROUND: The hedgehog signaling system (HHS) plays an important role in the regulation of cell proliferation and differentiation during the embryonic phases. However, little is known about the involvement of HHS in the malignant transformation of cells. This study aimed to detect the role of HHS in the malignant transformation of human bronchial epithelial (16HBE) cells. METHODS: In this study, two microfluidic chips were designed to investigate cigarette smoke extract (CSE)-induced malignant transformation of cells. Chip A contained a concentration gradient generator, while chip B had four cell chambers with a central channel. The 16HBE cells cultured in chip A were used to determine the optimal concentration of CSE for inducing malignant transformation. The 16HBE cells in chip B were cultured with 12.25% CSE (Group A), 12.25% CSE + 5 µmol/L cyclopamine (Group B), or normal complete medium as control for 8 months (Group C), to establish the in vitro lung inflammatory-cancer transformation model. The transformed cells were inoculated into 20 nude mice as cells alone (Group 1) or cells with cyclopamine (Group 2) for tumorigenesis testing. Expression of HHS proteins was detected by Western blot. Data were expressed as mean ± standard deviation. The t-test was used for paired samples, and the difference among groups was analyzed using a one-way analysis of variance. RESULTS: The optimal concentration of CSE was 12.25%. Expression of HHS proteins increased during the process of malignant transformation (Group B vs. Group A, F = 7.65, P < 0.05). After CSE exposure for 8 months, there were significant changes in cellular morphology, which allowed the transformed cells to grow into tumors in 40 days after being inoculated into nude mice. Cyclopamine could effectively depress the expression of HHS proteins (Group C vs. Group B, F = 6.47, P < 0.05) and prevent tumor growth in nude mice (Group 2 vs. Group 1, t = 31.59, P < 0.01). CONCLUSIONS: The activity of HHS is upregulated during the CSE-induced malignant transformation of 16HBE cells. Cyclopamine can effectively depress expression of HHS proteins in vitro and prevent tumor growth of the transformed cells in vivo.


Assuntos
Fumar/efeitos adversos , Animais , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/fisiologia , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Dispositivos Lab-On-A-Chip , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microfluídica , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fumaça
16.
Yonsei Med J ; 59(1): 13-19, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29214771

RESUMO

PURPOSE: This study aimed to identify potential epidermal growth factor receptor (EGFR) gene mutations in non-small cell lung cancer that went undetected by amplification refractory mutation system-Scorpion real-time PCR (ARMS-PCR). MATERIALS AND METHODS: A total of 200 specimens were obtained from the First Affiliated Hospital of Guangzhou Medical University from August 2014 to August 2015. In total, 100 ARMS-negative and 100 ARMS-positive specimens were evaluated for EGFR gene mutations by Sanger sequencing. The methodology and sensitivity of each method and the outcomes of EGFR-tyrosine kinase inhibitor (TKI) therapy were analyzed. RESULTS: Among the 100 ARMS-PCR-positive samples, 90 were positive by Sanger sequencing, while 10 cases were considered negative, because the mutation abundance was less than 10%. Among the 100 negative cases, three were positive for a rare EGFR mutation by Sanger sequencing. In the curative effect analysis of EGFR-TKIs, the progression-free survival (PFS) analysis based on ARMS and Sanger sequencing results showed no difference. However, the PFS of patients with a high abundance of EGFR mutation was 12.4 months [95% confidence interval (CI), 11.6-12.4 months], which was significantly higher than that of patients with a low abundance of mutations detected by Sanger sequencing (95% CI, 10.7-11.3 months) (p<0.001). CONCLUSION: The ARMS method demonstrated higher sensitivity than Sanger sequencing, but was prone to missing mutations due to primer design. Sanger sequencing was able to detect rare EGFR mutations and deemed applicable for confirming EGFR status. A clinical trial evaluating the efficacy of EGFR-TKIs in patients with rare EGFR mutations is needed.


Assuntos
Adenocarcinoma/genética , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Mutação/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de DNA/métodos , Adenocarcinoma/patologia , Adenocarcinoma de Pulmão , Idoso , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Intervalo Livre de Doença , Feminino , Humanos , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Taxa de Mutação , Resultado do Tratamento
17.
Transl Oncol ; 10(2): 280-287, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28254703

RESUMO

Lung cancer (LC) is a common lethal malignancy with rapid progression and metastasis, and Ring1 and YY1 binding protein (RYBP) has been shown to suppress cell growth in human cancers. This study aimed to investigate the role of RYBP in LC progression and metastasis. In this study, a total of 149 LC patients were recruited, and the clinical stage of their tumors, metastasis status, survival time, presence of epidermal growth factor receptor (EGFR) mutation, and RYBP expression levels were measured. RYBP silencing and overexpression were experimentally performed in LC cell lines and in nude mice, and the expressions of genes in EGFR-related signaling pathways and epithelial-mesenchymal transition (EMT) were detected. The results showed that RYBP was downregulated in LC compared with adjacent normal tissues, and low RYBP expression was associated with a more severe clinical stage, high mortality, high metastasis risk, and poor survival. Cell proliferation and xenograft growth were inhibited by RYBP overexpression, whereas proliferation and xenograft growth were accelerated by RYBP silencing. EGFR and phosphorylated-EGFR levels were upregulated when RYBP was silenced, whereas EGFR, p-EGFR, p-AKT, and p-ERK were downregulated when RYBP was overexpressed. Low RYBP expression was related to a high metastasis risk, and metastasized tumors showed low RYBP levels. Cell migration and invasion were promoted by silencing RYBP but were inhibited by overexpressed RYBP. In addition, the EMT marker vimentin showed diminished expression, and E-cadherin was promoted by the overexpression of RYBP. In conclusion, our data suggest that RYBP suppresses cell proliferation and LC progression by impeding the EGFR-ERK and EGFR-AKT signaling pathways and thereby inhibiting cell migration and invasion and LC metastasis through the suppression of EMT.

18.
Sci Rep ; 6: 29719, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27411490

RESUMO

CD47 is overexpressed in many human cancers, its level positively correlates with tumor invasion and metastasis. However, it is largely unknown whether CD47 overexpression drives metastasis and how CD47 lead to tumor metastasis in non-small cell lung cancer (NSCLC). In this study, we analyzed NSCLC specimens and cell lines, and revealed that CD47 is expressed at a higher level than in tumor-free control samples. Furthermore, increased CD47 expression correlated with clinical staging, lymph node metastasis and distant metastasis. In order to understand the molecular mechanisms underlying CD47 functions, we applied both gain-of-function and loss-of-function approaches in cell lines. The siRNA-mediated downregulation of CD47 inhibited cell invasion and metastasis in vitro, while the overexpression of CD47 by plasmid transfection generated opposite effects. In vivo, CD47-specific shRNA significantly reduced tumor growth and metastasis. On the molecular level, the expression of CD47 correlated with that of Cdc42, both in cell lines and NSCLC specimens. The inhibition of Cdc42 attenuates the invasion and metastasis of CD47-overexpressing cells. These results indicate that Cdc42 is a downstream mediator of CD47-promoted metastasis. Our findings provide first evidence that CD47 is an adverse prognostic factor for disease progression and metastasis, and a promising therapeutic target for NSCLC.


Assuntos
Antígeno CD47/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Células A549 , Animais , Antígeno CD47/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , Interferência de RNA , Terapêutica com RNAi/métodos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
19.
Biomed Pharmacother ; 82: 281-9, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27470364

RESUMO

BACKGROUND: CSTMP, a Tetramethylpyrazine (TMP) analogue, is designed and synthesized based on the pharmacophores of TMP and resveratrol. Recent studies showed that CSTMP had strong protective effects in endothelial cells apoptosis by its anti-oxidant activity. However, the pharmacological function of CSTMP in cancer have not been elucidated to date. The objective of this study was to investigate the anti-cancer effect of CSTMP against human non-small cell lung cancer (NSCLC) A549 cells and the underlying mechanisms. METHODS: The cell proliferation and apoptosis were detected by MTT assay and flow cytometry. Caspases activity was determined spectrophotometricaly at 405nm using a microtiter plate reader. Western blot and real-time PCR was used to assess the protein and mRNA expression. Immunoprecipitation was used to examine the protein-protein interactions. RESULTS: CSTMP inhibited the proliferation and induced cell cycle arrest and apoptosis of A549 cells. Caspase3, 8, 9 and PARP-1 activation, and Bax/Bcl-2 ratio analyses demonstrated that the anti-cancer effect of CSTMP in A549 cells was mediated by promoting caspase- and mitochondria-dependent apoptosis. Furthermore, CSTMP induced ER stress in A549 cells as evidenced by elevated levels of GRP78, GRP94, CHOP, IRE1α, TRAF2, p-ASK1 and p-JNK, activation of caspase12 and 4, and enhanced formation of an IRE1α-TRAF2-ASK1 complex. Knockdown of IRE1α by siRNA suppressed activation of IRE1α, TRAF2, p-ASK1 and p-JNK in CSTMP treated A549 cells. In addition, the effects of CSTMP on the formation of an IRE1α-TRAF2-ASK1 complex, caspase- and mitochondria-dependent apoptosis were also reversed by IRE1α siRNA in A549 cells. CONCLUSIONS: Collectively, we showed that CSTMP induced apoptosis of A549 cells were through IRE1α-TRAF2-ASK1 complex-mediated ER stress, JNK activation, and mitochondrial dysfunction. These insights on this novel compound CSTMP may provide a novel anti-cancer candidate for the treatment of NSCLC.


Assuntos
Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/patologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Endorribonucleases/metabolismo , Neoplasias Pulmonares/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pirazinas/farmacologia , Fator 2 Associado a Receptor de TNF/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Chaperona BiP do Retículo Endoplasmático , Humanos , Neoplasias Pulmonares/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Ligação Proteica/efeitos dos fármacos , Pirazinas/química , RNA Interferente Pequeno/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
Int J Mol Sci ; 17(5)2016 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-27223277

RESUMO

Epidermal growth factor receptor (EGFR) gene mutations occur in multiple human cancers; therefore, the detection of EGFR mutations could lead to early cancer diagnosis. This study describes a novel EGFR mutation detection technique. Compared to direct DNA sequencing detection methods, this method is based on allele-specific amplification (ASA), recombinase polymerase amplification (RPA), peptide nucleic acid (PNA), and SYBR Green I (SYBR), referred to as the AS-RPA-PNA-SYBR (ARPS) system. The principle of this technique is based on three continuous steps: ASA or ASA combined with PNA to prevent non-target sequence amplification (even single nucleotide polymorphisms, SNPs), the rapid amplification advantage of RPA, and appropriate SYBR Green I detection (the samples harboring EGFR mutations show a green signal). Using this method, the EGFR 19Del(2) mutation was detected in 5 min, while the EGFR L858R mutation was detected in 10 min. In this study, the detection of EGFR mutations in clinical samples using the ARPS system was compatible with that determined by polymerase chain reaction (PCR) and DNA sequencing methods. Thus, this newly developed methodology that uses the ARPS system with appropriate primer sets is a rapid, reliable, and practical way to assess EGFR mutations in clinical samples.


Assuntos
Receptores ErbB/genética , Testes Genéticos/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Mutação , Alelos , Benzotiazóis , Linhagem Celular Tumoral , DNA de Neoplasias/química , Diaminas , Detecção Precoce de Câncer/métodos , Humanos , Compostos Orgânicos/química , Sistemas Automatizados de Assistência Junto ao Leito , Reação em Cadeia da Polimerase/métodos , Quinolinas , Recombinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA