Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Adv Sci (Weinh) ; 11(26): e2400829, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704695

RESUMO

Self-assembling peptides have numerous applications in medicine, food chemistry, and nanotechnology. However, their discovery has traditionally been serendipitous rather than driven by rational design. Here, HydrogelFinder, a foundation model is developed for the rational design of self-assembling peptides from scratch. This model explores the self-assembly properties by molecular structure, leveraging 1,377 self-assembling non-peptidal small molecules to navigate chemical space and improve structural diversity. Utilizing HydrogelFinder, 111 peptide candidates are generated and synthesized 17 peptides, subsequently experimentally validating the self-assembly and biophysical characteristics of nine peptides ranging from 1-10 amino acids-all achieved within a 19-day workflow. Notably, the two de novo-designed self-assembling peptides demonstrated low cytotoxicity and biocompatibility, as confirmed by live/dead assays. This work highlights the capacity of HydrogelFinder to diversify the design of self-assembling peptides through non-peptidal small molecules, offering a powerful toolkit and paradigm for future peptide discovery endeavors.


Assuntos
Peptídeos , Peptídeos/química
2.
IEEE J Biomed Health Inform ; 28(1): 569-579, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37991904

RESUMO

Adverse drug-drug interactions (DDIs) pose potential risks in polypharmacy due to unknown physicochemical incompatibilities between co-administered drugs. Recent studies have utilized multi-layer graph neural network architectures to model hierarchical molecular substructures of drugs, achieving excellent DDI prediction performance. While extant substructural frameworks effectively encode interactions from atom-level features, they overlook valuable chemical bond representations within molecular graphs. More critically, given the multifaceted nature of DDI prediction tasks involving both known and novel drug combinations, previous methods lack tailored strategies to address these distinct scenarios. The resulting lack of adaptability impedes further improvements to model performance. To tackle these challenges, we propose PEB-DDI, a DDI prediction learning framework with enhanced substructure extraction. First, the information of chemical bonds is integrated and synchronously updated with the atomic nodes. Then, different dual-view strategies are selected based on whether novel drugs are present in the prediction task. Particularly, we constructed Molecular fingerprint-Molecular graph view for transductive task, and Bipartite graph-Molecular graph view for inductive task. Rigorous evaluations on benchmark datasets underscore PEB-DDI's superior performance. Notably, on DrugBank, it achieves an outstanding accuracy rate of 98.18% when predicting previously unknown interactions among approved drugs. Even when faced with novel drugs, PEB-DDI consistently exhibits outstanding generalization capabilities with an accuracy rate of 88.06%, attributing to the proper migrating of molecular basic structure learning.


Assuntos
Redes Neurais de Computação , Humanos , Interações Medicamentosas
3.
Sci Total Environ ; 851(Pt 1): 158103, 2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35988636

RESUMO

Given the lack of a comprehensive understanding of the complex metabolism and variable exposure environment, carbon particles in macrophages have become a potentially valuable biomarker to assess the exposure level of atmospheric particles, such as black carbon. However, the tedious and subjective quantification method limits the application of carbon particles as a valid biomarker. Aiming to obtain an accurate carbon particles quantification method, the deep learning and binarization algorithm were implemented to develop a quantitative tool for carbon content in airway macrophage (CCAM), named PyCoCa. Two types of macrophages, normal and foamy appearance, were applied for the development of PyCoCa. In comparison with the traditional methods, PyCoCa significantly improves the identification efficiency for over 100 times. Consistency assessment with the gold standard revealed that PyCoCa exhibits outstanding prediction ability with the Interclass Correlation Coefficient (ICC) values of over 0.80. And a proper fresh dye will enhance the performance of PyCoCa (ICC = 0.89). Subsequent sensitivity analysis confirmed an excellent performance regarding accuracy and robustness of PyCoCa under high/low exposure environments (sensitivity > 0.80). Furthermore, a successful application of our quantitative tool in cohort studies indicates that carbon particles induce macrophage foaming and the foaming decrease the carbon particles internalization in reverse. Our present study provides a robust and efficient tool to accurately quantify the carbon particles loading in macrophage for exposure assessment.


Assuntos
Carbono , Macrófagos Alveolares , Aerossóis/análise , Biomarcadores/metabolismo , Carbono/análise , Humanos , Macrófagos/química , Macrófagos Alveolares/química , Macrófagos Alveolares/metabolismo , Fuligem/análise , Fuligem/toxicidade
4.
J Agric Food Chem ; 70(30): 9262-9275, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35862625

RESUMO

The introduction of active groups of natural products into the framework of pesticide molecules is an effective approach for discovering active lead compounds, and thus has been widely used in the development of new agrochemicals. In this work, a novel series of 1,2,3,4-tetrahydroquinoline derivatives containing a pyrimidine ether scaffold were designed and synthesized by the active substructure splicing method. The new compounds showed good antifungal activities against several fungi. Especially, compound 4fh displayed excellent in vitro activity against Valsa mali and Sclerotinia sclerotiorum with EC50 values of 0.71 and 2.47 µg/mL, respectively. 4fh had slightly stronger inhibitory activity (68.08% at 50 µM) against chitin synthase (CHS) than that of polyoxin D (63.84% at 50 µM) and exhibited obvious curative and protective effects on S. sclerotiorum in vivo. Thus, 4fh can be considered as a new candidate fungicide as a chitin synthase inhibitor. An accurate and reliable three-dimensional quantitative structure-activity relationship (3D-QSAR) model presented a useful direction for the further excogitation of more highly active fungicides. Molecular docking revealed that the conventional hydrogen bond mainly affected the binding affinity of 4fh with chitin synthase. The present results will provide a guidance to discover potential CHS-based fungicides for plant disease control in agriculture.


Assuntos
Quitina Sintase , Fungicidas Industriais , Antifúngicos/química , Quitina , Quitina Sintase/genética , Quitina Sintase/metabolismo , Éter , Fungicidas Industriais/química , Simulação de Acoplamento Molecular , Pirimidinas/farmacologia , Quinolinas , Relação Estrutura-Atividade
5.
BMC Bioinformatics ; 22(Suppl 6): 142, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34078284

RESUMO

BACKGROUND: Genomic reads from sequencing platforms contain random errors. Global correction algorithms have been developed, aiming to rectify all possible errors in the reads using generic genome-wide patterns. However, the non-uniform sequencing depths hinder the global approach to conduct effective error removal. As some genes may get under-corrected or over-corrected by the global approach, we conduct instance-based error correction for short reads of disease-associated genes or pathways. The paramount requirement is to ensure the relevant reads, instead of the whole genome, are error-free to provide significant benefits for single-nucleotide polymorphism (SNP) or variant calling studies on the specific genes. RESULTS: To rectify possible errors in the short reads of disease-associated genes, our novel idea is to exploit local sequence features and statistics directly related to these genes. Extensive experiments are conducted in comparison with state-of-the-art methods on both simulated and real datasets of lung cancer associated genes (including single-end and paired-end reads). The results demonstrated the superiority of our method with the best performance on precision, recall and gain rate, as well as on sequence assembly results (e.g., N50, the length of contig and contig quality). CONCLUSION: Instance-based strategy makes it possible to explore fine-grained patterns focusing on specific genes, providing high precision error correction and convincing gene sequence assembly. SNP case studies show that errors occurring at some traditional SNP areas can be accurately corrected, providing high precision and sensitivity for investigations on disease-causing point mutations.


Assuntos
Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Algoritmos , Genômica , Análise de Sequência de DNA
6.
J Cancer Res Clin Oncol ; 147(1): 93-103, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32897433

RESUMO

PURPOSE: In our previous study, we discovered that resveratrol (RSV) had potential tumor-promoting effect on pancreatic cancer (PaCa) via up-regulation of VEGF-B. Therefore, we assumed that a pharmacological inhibitor of VEGF-B should potentiate the anti-tumor effect of RSV on PaCa. METHODS: Real-time PCR and western blotting were used to examine VEGF-B mRNA and protein levels. Cell viability and cell apoptosis were assessed by CCK-8 assay and flow cytometry analysis, respectively. PaCa cell-bearing nude mice were used to evaluate the anti-cancer effects of single treatment or co-administration of RSV and gemcitabine (GEM). RESULTS: We found that treatment with GEM alone dramatically decreased VEGF-B expression in comparison with control group, indicating that GEM is a potential pharmacological inhibitor of VEGF-B in PaCa. The co-administration of RSV and GEM significantly lowered expression of VEGF-B and increased phosphorylation level of GSK3ß at Ser9 when compared to RSV alone treatment either in vitro or in vivo. Combination of RSV and GEM significantly increased cell death and apoptosis of PaCa cells in vitro and inhibited tumor growth in vivo in comparison with RSV or GEM alone treatment. Furthermore, we found that the anti-tumor effect in combination group was dramatically weakened after VEGF-B overexpressed in PaCa cells. CONCLUSION: These results suggest that VEGF-B signaling pathway plays an important role in the development of PaCa and combination of GEM and RSV would be a promising modality for clinical PaCa therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Biomarcadores Tumorais/metabolismo , Sinergismo Farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Pancreáticas/tratamento farmacológico , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Desoxicitidina/administração & dosagem , Desoxicitidina/análogos & derivados , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Resveratrol/administração & dosagem , Células Tumorais Cultivadas , Fator B de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
7.
Toxicol Sci ; 178(1): 26-35, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818265

RESUMO

Nanoscale carbon black as virtually pure elemental carbon can deposit deep in the lungs and cause pulmonary injury. Airway remodeling assessed using computed tomography (CT) correlates well with spirometry in patients with obstructive lung diseases. Structural airway changes caused by carbon black exposure remain unknown. Wall and lumen areas of sixth and ninth generations of airways in 4 lobes were quantified using end-inhalation CT scans in 58 current carbon black packers (CBPs) and 95 non-CBPs. Carbon content in airway macrophage (CCAM) in sputum was quantified to assess the dose-response. Environmental monitoring and CCAM showed a much higher level of elemental carbon exposure in CBPs, which was associated with higher wall area and lower lumen area with no change in total airway area for either airway generation. This suggested small airway wall thickening is a major feature of airway remodeling in CBPs. When compared with wall or lumen areas, wall area percent (WA%) was not affected by subject characteristics or lobar location and had greater measurement reproducibility. The effect of carbon black exposure status on WA% did not differ by lobes. CCAM was associated with WA% in a dose-dependent manner. CBPs had lower FEV1 (forced expiratory volume in 1 s) than non-CBPs and mediation analysis identified that a large portion (41-72%) of the FEV1 reduction associated with carbon black exposure could be explained by WA%. Small airway wall thickening as a major imaging change detected by CT may underlie the pathology of lung function impairment caused by carbon black exposure.


Assuntos
Pulmão/patologia , Exposição Ocupacional/efeitos adversos , Fuligem , China , Humanos , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Reprodutibilidade dos Testes , Testes de Função Respiratória , Fuligem/efeitos adversos , Tomografia Computadorizada por Raios X
8.
Arch Toxicol ; 94(3): 761-771, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32076763

RESUMO

Carbon black (CB) particulates as virtually pure elemental carbon can deposit deep in the lungs of humans. International Agency for Research on Cancer classified CB as a Group 2B carcinogen due to inconclusive human evidence. A molecular epidemiological study was conducted in an established cohort of CB packers (CBP) to assess associations between CB exposure and genomic instability in peripheral lymphocytes using cytokinesis-block micronucleus assay (CBMN). Carbon content in airway macrophages (CCAM) was quantified as a bio-effective dosimeter for chronic CB exposure. Dose-response observed in CBPs was compared to that seen in workers exposed to diesel exhaust. The association between CB exposure status and CBMN endpoints was identified in 85 CBPs and 106 non-CBPs from a 2012 visit and replicated in 127 CBPs and 105 non-CBPs from a 2018 visit. The proportion of cytoplasm area occupied by carbon particles in airway macrophages was over fivefold higher in current CBPs compared to non-CBPs and was associated with CBMN endpoints in a dose-dependent manner. CB aerosol and diesel exhaust shared the same potency of inducing genomic instability in workers. Circulatory pro-inflammatory factors especially TNF-α was found to mediate associations between CB exposure and CBMN endpoints. In vitro functional validation supported the role of TNF-α in inducing genomic instability. An estimated range of lower limits of benchmark dose of 4.19-7.28% of CCAM was recommended for risk assessment. Chronic CB exposure increased genomic instability in human circulation and this provided novel evidence supporting its reclassification as a human carcinogen.


Assuntos
Poluentes Ocupacionais do Ar/metabolismo , Macrófagos/metabolismo , Exposição Ocupacional/análise , Fuligem/metabolismo , Poluentes Ocupacionais do Ar/análise , Poluentes Ocupacionais do Ar/toxicidade , Humanos , Pulmão/efeitos dos fármacos , Testes para Micronúcleos , Fuligem/análise
9.
J Nutr Biochem ; 79: 108132, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-30857673

RESUMO

Doxorubicin (DOX) is a broad spectrum antitumor agent. However, its clinical utility is limited due to the well-known cardiotoxicity. Resveratrol (RSV) has been reported to exert cardioprotective effect in some cardiovascular diseases. In this study, we aimed to determine the effect of RSV on DOX-induced cardiotoxicity, and further explore the underlying mechanism in this process.Male Sprague-Dawley (SD) rats were randomly divided into four groups: CON, DOX, RSV, or DOX+RSV group (10 rats in each group). DOX treatment significantly decreased cardiac function, and increased the release of serum lactate dehydrogenase (LDH) and creatine kinase isoenzyme (CK-MB) in rat serum. Increased cell death and apoptosis of cardiomyocytes were also observed in DOX group in comparison with CON group. DOX treatment dramatically down-regulated expression of VEGF-B either in vivo or in vitro. In contrast, the combination of RSV and DOX markedly attenuated DOX-induced cardiotoxicity with the up-regulation of VEGF-B. Inhibition of VEGF-B by small interfering RNA (siRNA) abolished the protective effects of RSV on DOX-treated cardiomyocytes.Consequently,our findings indicated that RSV attenuates DOX-induced cardiotoxicity through up-regulation of VEGF-B.


Assuntos
Cardiotônicos/farmacologia , Doenças Cardiovasculares/metabolismo , Doxorrubicina/toxicidade , Resveratrol/farmacologia , Fator B de Crescimento do Endotélio Vascular/metabolismo , Animais , Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Cardiotônicos/administração & dosagem , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doenças Cardiovasculares/induzido quimicamente , Doenças Cardiovasculares/prevenção & controle , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Resveratrol/administração & dosagem , Regulação para Cima/efeitos dos fármacos
10.
Biosci Rep ; 39(7)2019 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-31142629

RESUMO

Mesenchymal stromal cells (MSCs) widely exist in many tissues and have multiple differentiation potential and immunomodulatory capacities. Recently, MSCs have become promising tools for the treatment of various degenerative disorders and autoimmune diseases. The properties of MSCs could be modified in different microenvironments. Thus, it is important to explore the factors controlling MSC function. The presence of Toll-like receptors (TLRs) in MSCs was demonstrated according to previous studies. Consistently, we also illustrated the expression of TLRs in both murine and human MSCs, and displayed that the expression patterns of TLRs in MSCs from different sources. Furthermore, we explored the role of TLR and TLR signaling pathway in MSCs. Interestingly, activation of TLR4-induced expression of cytokines and some specific genes in MSCs. However, MSCs retained much lower mRNA level compared with macrophages. We explored the expression of CD14 in MSCs from different sources, which played a vital role in TLR4 signaling pathway, and found that MSCs are almost negative for CD14. Moreover, only partial activation of TLR4 signaling pathway was observed in MSCs, with no activation of AKT, NF-κB and P38. Here, in the study we defined TLR expression, function and activation in MSCs, which is critical for designing MSC-based therapies.


Assuntos
Diferenciação Celular/genética , Receptores de Lipopolissacarídeos/genética , Células-Tronco Mesenquimais/metabolismo , Receptor 4 Toll-Like/genética , Animais , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Macrófagos/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Camundongos , NF-kappa B/genética , Proteínas Proto-Oncogênicas c-akt/genética , Transdução de Sinais/genética , Fator de Transcrição RelA/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética
11.
J Cell Mol Med ; 23(5): 3402-3416, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30869196

RESUMO

Mindin has a broad spectrum of roles in the innate immune system, including in macrophage migration, antigen phagocytosis and cytokine production. Mindin functions as a pattern-recognition molecule for microbial pathogens. However, the underlying mechanisms of mindin-mediated phagocytosis and its exact membrane receptors are not well established. Herein, we generated mindin-deficient mice using the CRISPR-Cas9 system and show that peritoneal macrophages from mindin-deficient mice were severely defective in their ability to phagocytize E  coli. Phagocytosis was enhanced when E  coli or fluorescent particles were pre-incubated with mindin, indicating that mindin binds directly to bacteria or non-pathogen particles and promotes phagocytosis. We defined that 131 I-labelled mindin binds with integrin Mac-1 (CD11b/CD18), the F-spondin (FS)-fragment of mindin binds with the αM -I domain of Mac-1 and that mindin serves as a novel ligand of Mac-1. Blockade of the αM -I domain of Mac-1 using either a neutralizing antibody or si-Mac-1 efficiently blocked mindin-induced phagocytosis. Furthermore, mindin activated the Syk and MAPK signalling pathways and promoted NF-κB entry into the nucleus. Our data indicate that mindin binds with the integrin Mac-1 to promote macrophage phagocytosis through Syk activation and NF-κB p65 translocation, suggesting that the mindin/Mac-1 axis plays a critical role during innate immune responses.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Antígeno de Macrófago 1/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Fagocitose , Receptores de Reconhecimento de Padrão/metabolismo , Quinase Syk/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Sequência de Bases , Núcleo Celular/metabolismo , Células HEK293 , Humanos , Antígeno de Macrófago 1/química , Camundongos , Camundongos Knockout , Fosforilação , Ligação Proteica , Domínios Proteicos , Transporte Proteico , Células RAW 264.7
12.
BMC Cancer ; 19(1): 14, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30612555

RESUMO

BACKGROUND: Gastric cancer (GC) is a common malignant disease worldwide. Aberrant miRNAs expression contributes to malignant cells behaviour, and in preclinical research, miRNA targeting has shown potential for improving GC therapy. Our present study demonstrated that miR-632 promotes GC progression in a trefoil factor 1 (TFF1)-dependent manner. METHODS: We collected GC tissues and serum samples to detect miR-632 expression using real-time PCR. A dual-luciferase reporter assay was used to identify whether miR-632 directly regulates TFF1 expression. Tube formation and endothelial cell recruitment assays were performed with or without miR-632 treatment. Western blot and in situ hybridization assays were performed to detect angiogenesis and endothelial recruitment markers that are affected by miR-632. RESULTS: Our results showed that miR-632 is highly expressed in GC tissue and serum and negatively associated with TFF1 in GC. miR-632 improves tube formation and endothelial cell recruitment by negatively regulating TFF1 in GC cells. Recombinant TFF1 reversed miR-632-mediated angiogenesis. TFF1 is a target gene of miR-632. CONCLUSIONS: Our study demonstrated that miR-632 promotes GC progression by accelerating angiogenesis in a TFF1-dependent manner. Targeting of miR-632 may be a potential therapeutic approach for GC patients.


Assuntos
MicroRNAs/genética , Neovascularização Patológica/genética , Neoplasias Gástricas/genética , Fator Trefoil-1/genética , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização In Situ , Masculino , Pessoa de Meia-Idade , Estômago/patologia , Neoplasias Gástricas/patologia
13.
Cancer Manag Res ; 10: 5799-5806, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510449

RESUMO

PURPOSE: Colorectal cancer (CRC) is one of the most common malignant tumors worldwide. This study aimed to explore the prognostic value of lncRNAs in CRC. MATERIAL AND METHODS: We performed gene expression profiling to identify differentially expressed lncRNAs between 51 normal and 646 tumor tissues from The Cancer Genome Atlas database. Cox regression and robust likelihood-based survival models were used to find prognosis-related lncRNAs. A lncRNA signature was developed to predict the overall survival of patients with CRC. In addition, a receiver operating characteristic curve analysis was performed to identify the optimal cutoff with the best Youden index to divide patients into different groups based on risk level. RESULTS: Eighty survival-related lncRNAs were identified and a 15-lncRNA signature was developed on the basis of a risk score to comprehensively predict the overall survival of patients with CRC. The prognostic value of the 15-lncRNA risk score was validated using the internal testing set and total set. The risk indicator was shown to be an independent prognostic factor (hazard ratio =2.92; 95% CI: 1.73-4.94; P<0.001). Notably, all 15 lncRNAs (AC024581.1, FOXD3-AS1, AC012531.1, AC003101.2, LINC01219, AC083967.1, AL590483.1, AC105118.1, AC010789.1, AC067930.5, AC105219.2, LINC01354, LINC02474, LINC02257, and AC079612.1) were newly found to correlate with the prognosis of patients with CRC. Furthermore, the function of 15 lncRNAs was explored through the ceRNA network. These lncRNAs regulated coding genes that were involved in many key cancer pathways. CONCLUSION: A 15-lncRNA expression signature was discovered as a prognostic indicator for patients with CRC, which may act as competing endogenous RNA (ceRNAs) to play a crucial role in the modulation of cancer-related pathways. These findings may allow a better understanding of the prognostic value of lncRNAs.

14.
PeerJ ; 6: e6110, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30595983

RESUMO

BACKGROUND: Patients with dilated cardiomyopathy, increased ventricular volume, pressure overload or dysynergistic ventricular contraction and relaxation are susceptible to develop serious ventricular arrhythmias (VA). These phenomena are primarily based on a theory of mechanoelectric feedback, which reflects mechanical changes that produce alterations in electrical activity. However, very few systematic studies have provided evidence of the preventive effects of artemisinin (ART) on VA in response to left ventricle (LV) afterload increases. MicroRNAs (miRNAs) are endogenous small non-coding RNAs that regulate expression of multiple genes by suppressing mRNAs post-transcriptionally. AIMS: The aims of this study were to investigate preventive effects of ART on mechanical VA and the underling molecular mechanisms of differentially expressed miRNAs (DEMs). METHODS: For the study, 70 male Wistar rats were randomly divided into seven groups: group 1 was a control group (sham surgery); group 2 was a model group that underwent transverse aortic constriction (TAC) surgery; groups 3, 4, 5 and 6 were administered ART 75, 150, 300 and 600 mg/kg before TAC surgery, respectively; and group 7 was administered verapamil (VER) 1 mg/kg before TAC surgery. A ventricular arrhythmia score (VAS) was calculated to evaluate preventive effects of ART and VER on mechanical VA. The high throughput sequencing-based approach provided DEMs that were altered by ART pretreatment between group 2 and group 4. All predicted mRNAs of DEMs were enriched by gene ontology (GO) and Kyoto Encyclopedia annotation of Genes and Genomes (KEGG) databases. These DEMs were validated by a real time quantitative polymerase chain reaction (RT-qPCR). RESULTS: The average VASs of groups 3, 4, 5, 6 and 7 were significantly reduced compared with those of group 2 (2.70 ± 0.48, 1.70 ± 0.95, 2.80 ± 0.79, 2.60 ± 0.97, 1.40 ± 0.52, vs 3.70 ± 0.67, p < 0.01, respectively). The three top GO terms were neuron projection, organ morphogenesis and protein domain specific binding. KEGG enrichment of the 16 DEMs revealed that MAPK, Wnt and Hippo signaling pathways were likely to play a substantial role in the preventive effects of ART on mechanical VA in response to LV afterload increases. All candidate DEMs with the exception of rno-miR-370-3p, rno-miR-6319, rno-miR-21-3p and rno-miR-204-5p showed high expression levels validated by RT-qPCR. CONCLUSIONS: Artemisinin could prevent mechanical VA in response to LV afterload increases. Validated DEMs could be biomarkers and therapeutic targets of ART regarding its prevention of VA induced by pressure overload. The KEGG pathway and GO annotation analyses of the target mRNAs could indicate the potential functions of candidate DEMs. These results will help to elucidate the functional and regulatory roles of candidate DEMs associated with antiarrhythmic effects of ART.

15.
Oncol Lett ; 12(5): 3344-3350, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27900002

RESUMO

A total of ~38.6 million mortalities occur due to liver cancer annually, worldwide. Although a variety of therapeutic methods are available, the efficacy of treatment at present is extremely limited due to an increased risk of malignancy and inherently poor prognosis of liver cancer. Gene therapy is considered a promising option, and has shown notable potential for the comprehensive therapy of liver cancer, in keeping with advances that have been made in the development of cancer molecular biology. The present study aimed to investigate the synergistic effects of the abilities of the hemagglutinin neuraminidase protein of Newcastle disease virus (NDV), the pro-apoptotic factor apoptin from chicken anaemia virus, and the interferon-γ inducer interleukin-18 (IL-18) in antagonizing liver cancer. Therefore, a recombinant DNA plasmid expressing the three exogenous genes, VP3, IL-18 and hemagglutinin neuraminidase (HN), was constructed. Flow cytometry, acridine orange/ethidium bromide staining and analysis of caspase-3 activity were performed in H22 cell lines transfected with the recombinant DNA plasmid. In addition, 6-week-old C57BL/6 mice were used to establish a H22 hepatoma-bearing mouse model. Mice tumor tissue was analyzed by immunohistochemistry and scanning electron microscopy. The results of the present study revealed that the recombinant DNA vaccine containing the VP3, IL-18 and HN genes inhibited cell proliferation and induced autophagy via the mitochondrial pathway in vivo and in vitro.

16.
Oncotarget ; 7(51): 84190-84200, 2016 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-27705937

RESUMO

Our previous study showed that resveratrol (RSV) exhibited not only anti-tumor effect, but also had potential tumor promotion effect on pancreatic cancer (Paca) cells through up-regulation of VEGF-B. We determined whether metformin (MET) could potentiate the anti-tumor effect of RSV on PaCa in this study. Combination of RSV (100 µmol/l) and MET (20 mmol/l) significantly inhibited tumor growth and increased apoptosis of human PaCa in comparison with RSV or MET alone treatment in PaCa cell lines (Miapaca-2, Panc-1 and Capan-2). Combination of RSV (60 mg/kg, gavage) and MET (250 mg/kg, i.p.) significantly inhibited tumor growth in PaCa bearing nude mice (subcutaneous injection of 5 × 106 Miapaca-2 cells) in comparison with RSV or MET alone treatment on day 40. Combination treatment significantly decreased VEGF-B expression and inhibited activity of GSK-3ß when compared to the RSV alone treatment. Up-regulated expressions of Bax, cleaved caspase-3 and down-regulated expression of Bcl-2 were observed in RSV+ MET group in comparison with RSV group either in vitro or in vivo. Inhibition of VEGF-B by VEGF-B small interfering RNA (siRNA) mimicked the effects of MET on PaCa cells. These results suggested that MET, a potential pharmacological inhibitor of VEGF-B signaling pathway, potentiated the anti-tumor effect of RSV on PaCa, and combination of MET and RSV would be a promising modality for clinical PaCa therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Metformina/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Estilbenos/farmacologia , Fator B de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacologia , Metformina/administração & dosagem , Camundongos Nus , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Interferência de RNA , Resveratrol , Transdução de Sinais/efeitos dos fármacos , Estilbenos/administração & dosagem , Fator B de Crescimento do Endotélio Vascular/genética
17.
Oncotarget ; 7(30): 48027-48037, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27384995

RESUMO

Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and a major cause of cancer mortality. Chemotherapy resistance remains a major challenge for treating advanced CRC. Therefore, the identification of targets that induce drug resistance is a priority for the development of novel agents to overcome resistance. Dragon (also known as RGMb) is a member of the repulsive guidance molecule (RGM) family. We previously showed that Dragon expression increases with CRC progression in human patients. In the present study, we found that Dragon inhibited apoptosis and increased viability of CMT93 and HCT116 cells in the presence of oxaliplatin. Dragon induced resistance of xenograft tumor to oxaliplatinin treatment in mice. Mechanistically, Dragon inhibited oxaliplatin-induced JNK and p38 MAPK activation, and caspase-3 and PARP cleavages. Our results indicate that Dragon may be a novel target that induces drug resistance in CRC.


Assuntos
Moléculas de Adesão Celular Neuronais/biossíntese , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Proteínas do Tecido Nervoso/biossíntese , Moléculas de Adesão de Célula Nervosa/biossíntese , Compostos Organoplatínicos/farmacologia , Animais , Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Células HCT116 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Oxaliplatina , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Am J Transl Res ; 8(12): 5715-5722, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28078042

RESUMO

The pathogenesis of colon cancer (Cca) is to be further investigated. Vitamin D deficiency is associated with cancer growth; the underlying mechanism is unclear. Published data indicate that Cca cells express CD23. This study tests a hypothesis that exposure to IgE induces Cca cell apoptosis. In this study, the effect of ligation of CD23 by IgE on the expression of cyp27b1 was performed with Cca cells. The induction of apoptosis of Cca cells by IgE was assessed in a cell culture model. We observed that Cca cells express CD23; ligation of CD23 with IgE on Cca cells increased the expression of cyp27b1 in Cca, which promoted the conversion of VD3 to calcitriol, the latter increased the expression of FasL by Cca cells, and induced apoptosis of Cca cells. In conclusion, IgE is capable of inducing the cancer cell apoptosis via ligating CD23 and converting VD3 to calcitriol. The results suggest that IgE may have therapeutic potential in the treatment of Cca.

19.
Sci Rep ; 5: 10514, 2015 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-26000985

RESUMO

Previous studies have highlighted the role of genetic predispositions in disease, and several genes had been identified as important in Crohn's disease (CD). However, many of these genes are likely rare and not associated with susceptibility in Chinese CD patients. We found 294 shared identical variants in the CD patients of which 26 were validated by Sanger sequencing. Two heterozygous IFN variants (IFNA10 c.60 T > A; IFNA4 c.60 A > T) were identified as significantly associated with CD susceptibility. The single-nucleotide changes alter a cysteine situated before the signal peptide cleavage site to a stop code (TGA) in IFNA10 result in the serum levels of IFNA10 were significantly decreased in the CD patients compared to the controls. Furthermore, the IFNA10 and IFNA4 mutants resulted in an impairment of the suppression of HCV RNA replication in HuH7 cells, and the administration of the recombinant IFN subtypes restored DSS-induced colonic inflammation through the upregulation of CD4(+) Treg cells. We identified heterozygous IFNA10 and IFNA4 variants as a cause of impaired function and CD susceptibility genes in Chinese patients from multiple center based study. These findings might provide clues in the understanding of the genetic heterogeneity of CD and lead to better screening and improved treatment.


Assuntos
Doença de Crohn/genética , Exoma/genética , Interferon-alfa/genética , Doença Aguda , Adolescente , Adulto , Animais , Povo Asiático/genética , Sequência de Bases , Antígenos CD4/metabolismo , Estudos de Casos e Controles , Linhagem Celular , Quimiocinas/genética , Quimiocinas/metabolismo , Criança , China , Colite/induzido quimicamente , Colite/metabolismo , Colite/patologia , Doença de Crohn/patologia , Citocinas/genética , Citocinas/metabolismo , Análise Mutacional de DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Hepacivirus/genética , Hepacivirus/fisiologia , Heterozigoto , Humanos , Interferon-alfa/sangue , Interferon-alfa/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Plasmídeos/genética , Plasmídeos/metabolismo , Polimorfismo de Nucleotídeo Único , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Replicação Viral , Adulto Jovem
20.
Biomed Mater ; 8(6): 065001, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24225162

RESUMO

Naturally occurring pearl and its derivatives have recently gained interest in bone regeneration due to their bioactive characteristics and good mechanical properties. In this study, three-dimensional scaffolds composed of poly-l-lactide (PLLA)/aragonite pearl powder, PLLA/vaterite pearl powder and PLLA/nacre powder were fabricated by freeze-drying. Scanning electron microscope (SEM) images indicated that the addition of powder made no visible difference to the morphology of the composite scaffolds. These composite scaffolds were found to have nearly twice the compressive strength and compressive modulus of the pure PLLA scaffold. X-ray diffraction patterns reveal that both PLLA/aragonite and PLLA/nacre composite scaffolds have pure aragonite crystals as their inorganic component, while PLLA/vaterite has pure vaterite crystals. The attachment and morphology of rat bone marrow-derived mesenchymal stem cells (rBMSCs) on scaffolds was observed by the SEM. The proliferation and osteogenic differentiation of rBMSCs on composite scaffolds was also investigated. The results indicate that PLLA/aragonite and PLLA/nacre scaffolds better stimulate cell proliferation and alkaline phosphatase activity than the PLLA scaffold. However, the PLLA/vaterite scaffold appears to decrease rBMSCs proliferation as well as the osteogenic differentiation, possibly due to the high pH of the solution containing PLLA/vaterite.


Assuntos
Regeneração Óssea , Substitutos Ósseos/química , Engenharia Tecidual , Alicerces Teciduais/química , Adsorção , Fosfatase Alcalina/metabolismo , Animais , Materiais Biocompatíveis/química , Fenômenos Biomecânicos , Carbonato de Cálcio/química , Diferenciação Celular , Proliferação de Células , Força Compressiva , Interações Hidrofóbicas e Hidrofílicas , Ácido Láctico/química , Teste de Materiais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Microscopia Eletrônica de Varredura , Nácar/química , Osteoblastos/citologia , Osteoblastos/metabolismo , Osteogênese , Poliésteres , Polímeros/química , Porosidade , Ligação Proteica , Ratos , Propriedades de Superfície , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA