Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Chem Sci ; 15(30): 11761-11774, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39092104

RESUMO

Electron-deficient heteroarenes based on dithienopyrrolobenzothiadiazole (BTP) have been highly attractive due to their fascinating packing structures, broad absorption profiles, and promising applications in non-fullerene organic solar cells. However, the control of their crystal structures for superior charge transport still faces big challenges. Herein, a conformation engineering strategy is proposed to rationally manipulate the single crystal structure of BTP-series heteroarenes. The parent molecule BTPO-c has a 3D network crystal structure, which originates from its banana-shaped conformation. Subtracting one thiophene moiety from the central backbone leads to a looser brickwork crystal structure of the derivative BTPO-z because of its interrupted angular-shaped conformation. Further subtracting two thiophene moieties results in the derivative BTPO-l with a compact 2D-brickwork crystal structure due to its quasi-linear conformation with a unique dimer packing structure and short π-π stacking distance (3.30 Å). Further investigation of charge-transport properties via single-crystal organic transistors demonstrates that the compact 2D-brickwork crystal structure of BTPO-l leads to an excellent electron mobility of 3.5 cm2 V-1 s-1, much higher than that of BTPO-c with a 3D network (1.9 cm2 V-1 s-1) and BTPO-z with a looser brickwork structure (0.6 cm2 V-1 s-1). Notably, this study presents, for the first time, an elegant demonstration of the tunable single crystal structures of electron-deficient heteroarenes for efficient organic electronics.

2.
Angew Chem Int Ed Engl ; : e202407039, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39034433

RESUMO

Given the high degree of variability and complexity of cancer, precise monitoring and logical analysis of different nucleic acid markers are crucial for improving diagnostic precision and patient survival rates. However, existing molecular diagnostic methods normally suffer from high cost, cumbersome procedures, dependence on specialized equipment and the requirement of in-depth expertise in data analysis, failing to analyze multiple cancer-associated nucleic acid markers and provide immediate results in a point-of-care manner. Herein, we demonstrate a transistor-based DNA molecular computing (TDMC) platform that enables simultaneous detection and logical analysis of multiple microRNA (miRNA) markers on a single transistor. TDMC can perform not only basic logical operations such as "AND" and "OR", but also complex cascading computing, opening up new dimensions for multi-index logical analysis. Owing to the high efficiency, sensing and computations of multi-analytes can be operated on a transistor at a concentration as low as 2×10-16 M, reaching the lowest concentration for DNA molecular computing. Thus, TDMC achieves an accuracy of 98.4% in the diagnosis of hepatocellular carcinoma from 62 serum samples. As a convenient and accurate platform, TDMC holds promise for applications in "one-stop" personalized medicine.

3.
Biosens Bioelectron ; 263: 116603, 2024 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067414

RESUMO

Biosensors based on carbon nanotube field-effect transistors (CNT-FETs) have shown great potential in biomarker detection due to their high sensitivity because of appreciable semiconducting electrical properties. However, background signal interferences in complex mediums may results in low signal-to-noise ratio, which may impose challenges for precise biomarker detection in physiological fluids. In this work, we develop an enzymatic CNT-FET, with scalable production at wafer scale, for detection of trace sarcosine that is a biopsy-correlated biomarker of prostate cancer. Enzymatic cascade rectors are constructed on the CNT to improve the reaction efficiency, thereby, enhancing the signal transduction. As such, a limit of detection as low as 105 zM is achieved in buffer solution. Owing to the enhanced reaction efficiency, the testing of clinical serum samples yields significant signal difference to discriminate the prostate cancer (PCa) samples from the benign prostatic hyperplasia (BPH) samples (P = 1.07 × 10-5), demonstrating immense potential in practical applications.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Nanotubos de Carbono , Neoplasias da Próstata , Transistores Eletrônicos , Nanotubos de Carbono/química , Humanos , Masculino , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/sangue , Técnicas Biossensoriais/instrumentação , Biomarcadores Tumorais/sangue , Limite de Detecção , Sarcosina/sangue , Sarcosina/análise , Desenho de Equipamento , Hiperplasia Prostática/diagnóstico , Hiperplasia Prostática/sangue
4.
Anal Chem ; 96(21): 8300-8307, 2024 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747393

RESUMO

An antibody transistor is a promising biosensing platform for the diagnosis and monitoring of various diseases. Nevertheless, the low concentration and short half-life of biomarkers require biodetection at the trace-molecule level, which remains a challenge for existing antibody transistors. Herein, we demonstrate a graphene field-effect transistor (gFET) with electrically oriented antibody probes (EOA-gFET) for monitoring several copies of methylated DNA. The electric field confines the orientation of antibody probes on graphene and diminishes the distance between graphene and methylated DNAs captured by antibodies, generating more induced charges on graphene and amplifying the electric signal. EOA-gFET realizes a limit of detection (LoD) of ∼0.12 copy µL-1, reaching the lowest LoD reported before. EOA-gFET shows a distinguishable signal for liver cancer clinical serum samples within ∼6 min, which proves its potential as a powerful tool for disease screening and diagnosis.


Assuntos
Anticorpos , Técnicas Biossensoriais , Metilação de DNA , Grafite , Transistores Eletrônicos , Humanos , Grafite/química , Anticorpos/imunologia , Anticorpos/química , DNA/química , Limite de Detecção , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue
5.
Mitochondrial DNA B Resour ; 9(5): 678-682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38800621

RESUMO

Illicium simonsii Maxim (1888) is a medicinal species of the genus Illicium in the Illiciaceae family. It is commonly used to cure gastro-frigid vomiting, cystic hernia, gas pains in the chest, and scabies as folk medicine. To utilize its resources efficiently, the complete chloroplast genome of I. simonsii was sequenced, assembled, and annotated by using high-throughput sequencing data. The complete chloroplast genome was 143,038 bp in length, with a large single-copy region (LSC) of 101,094 bp, a short single-copy region (SSC) of 20,070 bp, and a pair of inverted repeats (IRs) of 21,874 bp. A total of 113 genes were annotated, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The phylogenetic tree exhibited that I. simonsii and Illicium burmanicum form a sister group, and were nested in the monophyletic clade of the Illicium genus.

6.
Ecotoxicol Environ Saf ; 275: 116272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564870

RESUMO

This study investigated the influence of Cd (25 µM) on Zn accumulation in a hyperaccumulating (HE) and a non-hyperaccumulating (NHE) ecotype of Sedum alfredii Hance at short-term supply of replete (Zn5, 5 µM) and excess (Zn400, 400 µM) Zn. Cd inhibited Zn accumulation in both ecotypes, especially under Zn400, in organs with active metal sequestration, i.e. roots of NHE and shoots of HE. Direct biochemical Cd/Zn competition at the metal-protein interaction and changes in transporter gene expression contributed to the observed accumulation patterns in the roots. Specifically, in HE, Cd stimulated SaZIP4 and SaPCR2 under Zn5, but downregulated SaIRT1 and SaZIP4 under Zn400. However, Cd downregulated related transporter genes, except for SaNRAMP1, in NHE, irrespective of Zn. Cadmium stimulated casparian strip (CSs) development in NHE, as part of the defense response, while it had a subtle effect on the (CS) in HE. Moreover, Cd delayed the initiation of the suberin lamellae (SL) in HE, but stimulated SL deposition in NHE under both Zn5 or Zn400. Changes in suberization were mainly ascribed to suberin-biosynthesis-related genes and hormonal signaling. Altogether, Cd regulated Zn accumulation mainly via symplasmic and transmembrane transport in HE, while Cd inhibited both symplasmic and apoplasmic Zn transport in NHE.


Assuntos
Sedum , Poluentes do Solo , Zinco/metabolismo , Cádmio/metabolismo , Sedum/metabolismo , Transporte Biológico , Transporte de Íons , Raízes de Plantas/metabolismo , Poluentes do Solo/análise
7.
Adv Mater ; 36(5): e2307366, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37805919

RESUMO

"Test-and-go" single-nucleotide variation (SNV) detection within several minutes remains challenging, especially in low-abundance samples, since existing methods face a trade-off between sensitivity and testing speed. Sensitive detection usually relies on complex and time-consuming nucleic acid amplification or sequencing. Here, a graphene field-effect transistor (GFET) platform mediated by Argonaute protein that enables rapid, sensitive, and specific SNV detection is developed. The Argonaute protein provides a nanoscale binding channel to preorganize the DNA probe, accelerating target binding and rapidly recognizing SNVs with single-nucleotide resolution in unamplified tumor-associated microRNA, circulating tumor DNA, virus RNA, and reverse transcribed cDNA when a mismatch occurs in the seed region. An integrated microchip simultaneously detects multiple SNVs in agreement with sequencing results within 5 min, achieving the fastest SNV detection in a "test-and-go" manner without the requirement of nucleic acid extraction, reverse transcription, and amplification.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Nucleotídeos , Proteínas Argonautas , DNA/genética , MicroRNAs/genética , Sondas de DNA
8.
Sci Adv ; 9(38): eadj0839, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37729411

RESUMO

Precision chemistry demands miniaturized catalytic systems for sophisticated reactions with well-defined pathways. An ideal solution is to construct a nanoreactor system functioning as a chemistry laboratory to execute a full chemical process with molecular precision. However, existing nanoscale catalytic systems fail to in situ control reaction kinetics in a closed-loop manner, lacking the precision toward ultimate reaction efficiency. We find an inter-electrochemical gating effect when operating DNA framework-constructed enzyme cascade nanoreactors on a transistor, enabling in situ closed-loop reaction monitoring and modulation electrically. Therefore, a comprehensive system is developed, encapsulating nanoreactors, analyzers, and modulators, where the gate potential modulates enzyme activity and switches cascade reaction "ON" or "OFF." Such electric field-effect property enhances catalytic efficiency of enzyme by 343.4-fold and enables sensitive sarcosine assay for prostate cancer diagnoses, with a limit of detection five orders of magnitude lower than methodologies in clinical laboratory. By coupling with solid-state electronics, this work provides a perspective to construct intelligent nano-systems for precision chemistry.


Assuntos
Bioensaio , Eletricidade , Masculino , Humanos , Catálise , Inteligência , Nanotecnologia
9.
J Phys Chem Lett ; 14(17): 4084-4095, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37125726

RESUMO

Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Nanotecnologia
10.
Proc Natl Acad Sci U S A ; 120(14): e2219043120, 2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-36996112

RESUMO

Despite the various strategies for achieving metal-nitrogen-carbon (M-N-C) single-atom catalysts (SACs) with different microenvironments for electrochemical carbon dioxide reduction reaction (CO2RR), the synthesis-structure-performance correlation remains elusive due to the lack of well-controlled synthetic approaches. Here, we employed Ni nanoparticles as starting materials for the direct synthesis of nickel (Ni) SACs in one spot through harvesting the interaction between metallic Ni and N atoms in the precursor during the chemical vapor deposition growth of hierarchical N-doped graphene fibers. By combining with first-principle calculations, we found that the Ni-N configuration is closely correlated to the N contents in the precursor, in which the acetonitrile with a high N/C ratio favors the formation of Ni-N3, while the pyridine with a low N/C ratio is more likely to promote the evolution of Ni-N2. Moreover, we revealed that the presence of N favors the formation of H-terminated edge of sp2 carbon and consequently leads to the formation of graphene fibers consisting of vertically stacked graphene flakes, instead of the traditional growth of carbon nanotubes on Ni nanoparticles. With a high capability in balancing the *COOH formation and *CO desorption, the as-prepared hierarchical N-doped graphene nanofibers with Ni-N3 sites exhibit a superior CO2RR performance compared to that with Ni-N2 and Ni-N4 ones.

11.
Anal Chem ; 95(2): 1446-1453, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36577081

RESUMO

An aptamer-based field-effect transistor (Apta-FET) is a well-developed assay method with high selectivity and sensitivity. Due to the limited information density that natural nucleotide library holds, the Apta-FET faces fundamental restriction in universality to detect various types of analytes. Herein, we demonstrate a type of Apta-FET sensors based on an artificial nucleotide aptamer (AN-Apta-FET). The introduction of an artificial nucleotide increases the diversity of the potential aptamer structure and expands the analyte category of the Apta-FET. The AN-Apta-FET specifically detects hepatoma exosomes, which traditional Apta-FET fails to discriminate from other tumor-derived exosomes, with a limit of detection down to 242 particles mL-1. The AN-Apta-FET distinguishes serum samples of hepatocellular carcinoma patients within 9 min from those of healthy people, showing the potential as a comprehensive assay tool in future disease diagnosis.


Assuntos
Aptâmeros de Nucleotídeos , Técnicas Biossensoriais , Carcinoma Hepatocelular , Exossomos , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Neoplasias Hepáticas/diagnóstico
12.
Mol Divers ; 27(3): 1323-1332, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35932436

RESUMO

Post-translational modifications of proteins such as protein ubiquitination are crucial for regulating conformation, stability and localization of the modified protein. Ubiquitin-specific protease 2 (USP2), a multifunctional cysteine protease is reported to be a key regulator of ubiquitylation events in numerous oncogenic proteins e.g., fatty acid synthetase, Mdm2, EGFR, cyclin A1, and cyclin-D1, etc. Thus targeting USP2 is a promising strategy for cancer therapy. USP2 is characterized by a catalytic triad comprising of cysteine, histidine and aspartic acid residues. Five residues including three from the catalytic triad and two from outside of the catalytic triad have been reported as a catalytic site of USP2 that catalyze hydrolysis and stabilizes the oxyanion formed in the intermediate step of catalysis. Here, we report two more novel residues (L269 and Y558) on USP2 involved in the catalysis of Ubiquitin using computational alanine scanning (CAS) followed by molecular dynamic simulation studies. The results obtained from CAS were further validated by a highly reliable, time- and cost-effective SDS-PAGE-based kinetics assay using UBA52 which is a natural substrate of USP2. Our results showed that mutating L269 and Y558 significantly compromised the catalytic efficiency of USP2 in hydrolyzing UBA52 which can further be extended to rational drug design of USP2 selective inhibitors and to explore the catalytic sites of other USPs. Two novel residues take part in catalytic activity of USP2 which were depicted by MD Simulations and were further validated by novel SDS-PAGE-based reliable time- and cost-effective kinetics assay.


Assuntos
Endopeptidases , Ubiquitina Tiolesterase , Endopeptidases/química , Endopeptidases/metabolismo , Ubiquitina Tiolesterase/metabolismo , Domínio Catalítico , Simulação de Dinâmica Molecular , Cinética , Proteases Específicas de Ubiquitina/metabolismo , Desenho de Fármacos
14.
Acta Pharmacol Sin ; 44(5): 999-1013, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36347996

RESUMO

Non-healing diabetic wounds (DW) are a serious clinical problem that remained poorly understood. We recently found that topical application of growth differentiation factor 11 (GDF11) accelerated skin wound healing in both Type 1 DM (T1DM) and genetically engineered Type 2 diabetic db/db (T2DM) mice. In the present study, we elucidated the cellular and molecular mechanisms underlying the action of GDF11 on healing of small skin wound. Single round-shape full-thickness wound of 5-mm diameter with muscle and bone exposed was made on mouse dorsum using a sterile punch biopsy 7 days following the onset of DM. Recombinant human GDF11 (rGDF11, 50 ng/mL, 10 µL) was topically applied onto the wound area twice a day until epidermal closure (maximum 14 days). Digital images of wound were obtained once a day from D0 to D14 post-wounding. We showed that topical application of GDF11 accelerated the healing of full-thickness skin wounds in both type 1 and type 2 diabetic mice, even after GDF8 (a muscle growth factor) had been silenced. At the cellular level, GDF11 significantly facilitated neovascularization to enhance regeneration of skin tissues by stimulating mobilization, migration and homing of endothelial progenitor cells (EPCs) to the wounded area. At the molecular level, GDF11 greatly increased HIF-1ɑ expression to enhance the activities of VEGF and SDF-1ɑ, thereby neovascularization. We found that endogenous GDF11 level was robustly decreased in skin tissue of diabetic wounds. The specific antibody against GDF11 or silence of GDF11 by siRNA in healthy mice mimicked the non-healing property of diabetic wound. Thus, we demonstrate that GDF11 promotes diabetic wound healing via stimulating endothelial progenitor cells mobilization and neovascularization mediated by HIF-1ɑ-VEGF/SDF-1ɑ pathway. Our results support the potential of GDF11 as a therapeutic agent for non-healing DW.


Assuntos
Diabetes Mellitus Experimental , Células Progenitoras Endoteliais , Fatores de Diferenciação de Crescimento , Cicatrização , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , Quimiocina CXCL12/efeitos dos fármacos , Quimiocina CXCL12/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Células Progenitoras Endoteliais/metabolismo , Células Progenitoras Endoteliais/patologia , Fatores de Diferenciação de Crescimento/uso terapêutico , Fatores de Diferenciação de Crescimento/metabolismo , Neovascularização Fisiológica , Fator A de Crescimento do Endotélio Vascular/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Cicatrização/efeitos dos fármacos , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapêutico , Subunidade alfa do Fator 1 Induzível por Hipóxia/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
15.
Nat Biomed Eng ; 6(3): 276-285, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35132229

RESUMO

The detection of samples at ultralow concentrations (one to ten copies in 100 µl) in biofluids is hampered by the orders-of-magnitude higher amounts of 'background' biomolecules. Here we report a molecular system, immobilized on a liquid-gated graphene field-effect transistor and consisting of an aptamer probe bound to a flexible single-stranded DNA cantilever linked to a self-assembled stiff tetrahedral double-stranded DNA structure, for the rapid and ultrasensitive electromechanical detection (down to one to two copies in 100 µl) of unamplified nucleic acids in biofluids, and also of ions, small molecules and proteins, as we show for Hg2+, adenosine 5'-triphosphate and thrombin. We implemented an electromechanical biosensor for the detection of SARS-CoV-2 into an integrated and portable prototype device, and show that it detected SARS-CoV-2 RNA in less than four minutes in all nasopharyngeal samples from 33 patients with COVID-19 (with cycle threshold values of 24.9-41.3) and in none of the 54 COVID-19-negative controls, without the need for RNA extraction or nucleic acid amplification.


Assuntos
COVID-19 , Grafite , COVID-19/diagnóstico , Humanos , Íons , RNA Viral/genética , SARS-CoV-2/genética
16.
BMC Cardiovasc Disord ; 21(1): 491, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34635052

RESUMO

BACKGROUND: To provide multivariable prognostic models for severe complications prediction after heart valve surgery, including low cardiac output syndrome (LCOS), acute kidney injury requiring hemodialysis (AKI-rH) and multiple organ dysfunction syndrome (MODS). METHODS: We developed multivariate logistic regression models to predict severe complications after heart valve surgery using 930 patients collected retrospectively from the first affiliated hospital of Sun Yat-Sen University from January 2014 to December 2015. The validation was conducted using a retrospective dataset of 713 patients from the same hospital from January 2016 to March 2017. We considered two kinds of prognostic models: the PRF models which were built by using the preoperative risk factors only, and the PIRF models which were built by using both of the preoperative and intraoperative risk factors. The least absolute shrinkage selector operator was used for developing the models. We assessed and compared the discriminative abilities for both of the PRF and PIRF models via the receiver operating characteristic (ROC) curve. RESULTS: Compared with the PRF models, the PIRF modes selected additional intraoperative factors, such as auxiliary cardiopulmonary bypass time and combined tricuspid valve replacement. Area under the ROC curves (AUCs) of PRF models for predicting LCOS, AKI-rH and MODS are 0.565 (0.466, 0.664), 0.688 (0.62, 0.757) and 0.657 (0.563, 0.751), respectively. As a comparison, the AUCs of the PIRF models for predicting LOCS, AKI-rH and MODS are 0.821 (0.747, 0.896), 0.78 (0.717, 0.843) and 0.774 (0.7, 0.847), respectively. CONCLUSIONS: Adding the intraoperative factors can increase the predictive power of the prognostic models for severe complications prediction after heart valve surgery.


Assuntos
Injúria Renal Aguda/etiologia , Baixo Débito Cardíaco/etiologia , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Técnicas de Apoio para a Decisão , Doenças das Valvas Cardíacas/cirurgia , Valvas Cardíacas/cirurgia , Insuficiência de Múltiplos Órgãos/etiologia , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/terapia , Adulto , Idoso , Baixo Débito Cardíaco/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Insuficiência de Múltiplos Órgãos/diagnóstico , Análise Multivariada , Valor Preditivo dos Testes , Diálise Renal , Reprodutibilidade dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo , Resultado do Tratamento
17.
Molecules ; 26(13)2021 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203335

RESUMO

Oil and gas wastewater refers to the waste stream produced in special production activities such as drilling and fracturing. This kind of wastewater has the following characteristics: high salinity, high chromaticity, toxic and harmful substances, poor biodegradability, and a difficulty to treat. Interestingly, nanomaterials show great potential in water treatment technology because of their small size, large surface area, and high surface energy. When nanotechnology is combined with membrane treatment materials, nanofiber membranes with a controllable pore size and high porosity can be prepared, which provides more possibilities for oil-water separation. In this review, the important applications of nanomaterials in wastewater treatment, including membrane separation technology and photocatalysis technology, are summarized. Membrane separation technology is mainly manifested in ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). It also focuses on the application of semiconductor photocatalysis technology induced by TiO2 in the degradation of oil and gas wastewater. Finally, the development trends of nanomaterials in oil and gas wastewater treatment are prospected.

18.
Int J Mol Sci ; 22(9)2021 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-33925279

RESUMO

Ubiquitylation and deubiquitylation are reversible protein post-translational modification (PTM) processes involving the regulation of protein degradation under physiological conditions. Loss of balance in this regulatory system can lead to a wide range of diseases, such as cancer and inflammation. As the main members of the deubiquitinases (DUBs) family, ubiquitin-specific peptidases (USPs) are closely related to biological processes through a variety of molecular signaling pathways, including DNA damage repair, p53 and transforming growth factor-ß (TGF-ß) pathways. Over the past decade, increasing attention has been drawn to USPs as potential targets for the development of therapeutics across diverse therapeutic areas. In this review, we summarize the crucial roles of USPs in different signaling pathways and focus on advances in the development of USP inhibitors, as well as the methods of screening and identifying USP inhibitors.


Assuntos
Proteases Específicas de Ubiquitina/antagonistas & inibidores , Proteases Específicas de Ubiquitina/metabolismo , Enzimas Desubiquitinantes/metabolismo , Avaliação Pré-Clínica de Medicamentos , Humanos , Neoplasias/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Proteólise , Transdução de Sinais , Ubiquitina/metabolismo , Ubiquitinação/fisiologia
19.
Technol Cancer Res Treat ; 20: 15330338211004921, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33910421

RESUMO

BACKGROUND: RBMS3 (RNA-binding motif, single-stranded-intervacting protein 3) acts as a tumor-suppressive gene in a number of human cancers, however, its role in breast cancer is not fully understood. This study aimed to investigate the expression and clinicopathological significance of RBMS3 in breast cancer. METHODS: A total of 998 breast cancer tissue samples in The Cancer Genome Atlas (TCGA) database with survival outcomes were divided into high RBMS3 expression and low expression groups using the median as the cutoff. Clinicopathological characteristics and prognosis were compared between the 2 groups. RESULTS: TCGA showed that RBMS3 mRNA was downregulated in breast cancer tissues, and RBMS3 downregulation was correlated with poor prognosis. Immunohistochemistry staining of 127 paraffin-embedded breast cancer tissues showed that RBMS3 protein was localized in the cytoplasm and nucleus; however, nuclear staining was present in 90.0% of normal breast tissues but only 28.3% of breast cancer tissues. Decreased RBMS3 protein expression was significantly correlated with estrogen receptor (ER)-negative status and death at final follow-up. Patients with lower RBMS3 protein expression had substantially shorter survival than those with higher RBMS3 expression. Univariate and multivariate analysis indicated that the combination of RBMS3 expression and ER status (a variable designated as "cofactor") was an independent prognostic factor in patients with breast cancer (hazard ratio [HR] = 0.420, 95% confidence interval [CI]: 0.223-0.791, P = 0.007). CONCLUSION: RBMS3 downregulation was correlated with poor prognosis in breast cancer patients, and the combination of RBMS3 expression and ER status was an independent prognostic factor.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Proteínas de Ligação a RNA/metabolismo , Transativadores/metabolismo , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Regulação para Baixo , Feminino , Seguimentos , Humanos , Pessoa de Meia-Idade , Prognóstico , Proteínas de Ligação a RNA/genética , Taxa de Sobrevida , Transativadores/genética
20.
ESC Heart Fail ; 8(1): 447-460, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33236535

RESUMO

AIMS: Previous reports indicated that the Slit2-Robo signalling pathway is involved in embryonic heart development and fibrosis in other solid organs, but its function in adult cardiac fibrosis has not been investigated. Here, we investigate the role of the Slit2-Robo1 signalling pathway in cardiac fibrosis. METHODS AND RESULTS: The right atrial tissue samples were obtained from patients with valvular heart disease complicated by atrial fibrillation during heart valve surgery and from healthy heart donors. The fibrotic animal model is created by performing transverse aortic constriction (TAC) surgery. The Robo1, Slit2, TGF-ß1, and collagen I expression levels in human and animal samples were evaluated by immunohistochemistry and western blot analysis. Echocardiography measured the changes in heart size and cardiac functions of animals. Angiotensin II (Ang II), Slit2-siRNA, TGF-ß1-siRNA, recombinant Slit2, and recombinant TGF-ß1 were transfected to cardiac fibroblasts (CFs) respectively to observe their effects on collagen I expression level. The right atrial appendage of patients with valvular heart disease complicated by atrial fibrillation found significantly up-regulated Slit2, Robo1, TGF-ß1, and collagen I expression levels. TAC surgery leads to heart enlargement, cardiac fibrosis, and up-regulation of Slit2, Robo1, TGF-ß1, and collagen I expression levels in animal model. Robo1 antagonist R5 and TGF-ß1 antagonist SB431542 suppressed cardiac fibrosis in TAC mice. Treatment with 100 nM Ang II in CFs caused significantly increased Slit2, Robo1, Smad2/3, TGF-ß1, collagen I, PI3K, and Akt expression levels. Transfecting Slit2-siRNA and TGF-ß1-siRNA, respectively, into rat CFs significantly down-regulated Smad2/3 and collagen I expression, inhibiting the effects of Ang II. Recombinant Slit2 activated the TGF-ß1/Smad signalling pathway in CFs and up-regulated Periostin, Robo1, and collagen I expression. CONCLUSIONS: The Slit2-Robo1 signalling pathway interfered with the TGF-ß1/Smad pathway and promoted cardiac fibrosis. Blockade of Slit2-Robo1 might be a new treatment for cardiac fibrosis.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Miocárdio/patologia , Proteínas do Tecido Nervoso/genética , Receptores Imunológicos , Transdução de Sinais , Fator de Crescimento Transformador beta1 , Animais , Fibrose , Humanos , Camundongos , Ratos , Receptores Imunológicos/genética , Proteínas Roundabout
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA