Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cancer Lett ; 598: 217094, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38945204

RESUMO

Recent therapeutic strategies for the treatment of triple-negative breast cancer (TNBC) have shifted the focus from vascular growth factors to endothelial cell metabolism. This study highlights the underexplored therapeutic potential of peri-tumoral electroacupuncture, a globally accepted non-pharmacological intervention for TNBC, and molecular mechanisms. Our study showed that peri-tumoral electroacupuncture effectively reduced the density of microvasculature and enhanced vascular functionality in 4T1 breast cancer xenografts, with optimal effects on day 3 post-acupuncture. The timely integration of peri-tumoral electroacupuncture amplified the anti-tumor efficacy of paclitaxel. Multi-omics analysis revealed Glyoxalase 1 (Glo1) and the associated methylglyoxal-glycolytic pathway as key mediators of electroacupuncture-induced vascular normalization. Peri-tumoral electroacupuncture notably reduced Glo1 expression in the endothelial cells of 4T1 xenografts. Using an in vivo matrigel plug angiogenesis assay, we demonstrated that either Glo1 knockdown or electroacupuncture inhibited angiogenesis. In contrast, Glo1 overexpression increased blood vessel formation. In vitro pharmacological inhibition and genetic knockdown of Glo1 in human umbilical vein endothelial cells inhibited proliferation and promoted apoptosis via downregulating the methylglyoxal-glycolytic pathway. The study using the Glo1-silenced zebrafish model further supported the role of Glo1 in vascular development. This study underscores the pivotal role of Glo1 in peri-tumoral electroacupuncture, spotlighting a promising avenue for enhancing vascular normalization and improving TNBC treatment outcomes.

2.
Photodiagnosis Photodyn Ther ; 48: 104255, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38901715

RESUMO

BACKGROUND: Chromoblastomycosis (CMB) is a chronic granulomatous fungal infection that affect the skin and subcutaneous tissues. It is clinically problematic due to limited treatment options, low cure rates, and high rates of relapse. This underscores the necessity for innovative treatment approaches. In this study, potassium iodide (KI) combined with Methylene Blue (MB) mediated antimicrobial photodynamic therapy (PDT) were assessed in the treatment of Fonsecaea monophora (F. monophora) both in vitro and in vivo. And the underlying mechanism that contributes to the efficacy of this treatment approach was investigated. METHODS: In vitro experiments were conducted using different combinations and concentrations of MB, KI, and 660 nm light (60 mW/cm2) to inhibit F. monophora. The study was carried out using colony-forming unit (CFU) counts and scanning electron microscopy (SEM). The production of singlet oxygen (1O2), free iodine (I2), hydrogen peroxide (H2O2), and superoxide anion during the KI combined MB-mediated antimicrobial PDT process was also detected. In vivo experiments were developed using a Balb/c mouse paw infection model with F. monophora and treated with PBS, 10 mM KI, 2 mM MB +100 J/cm² and 10 mM KI+2 mM MB +100 J/cm² respectively. Inflammatory swelling, fungal load and histopathological analyses of the mouse footpads were assessed. RESULTS: KI enhanced the killing effect of MB-mediated antimicrobial PDT on the conidial spores of F. monophora at the cell and infected animal model level. During the process, the main antimicrobial agents in KI combined with MB- mediated antimicrobial PDT could produce stronger toxic active species including free I2 and H2O2. CONCLUSION: KI combined with MB-mediated antimicrobial PDT could be an effective adjunct therapy for treating CBM.

3.
J Orthop Surg Res ; 19(1): 324, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38822361

RESUMO

BACKGROUND: The patellar height index is important; however, the measurement procedures are time-consuming and prone to significant variability among and within observers. We developed a deep learning-based automatic measurement system for the patellar height and evaluated its performance and generalization ability to accurately measure the patellar height index. METHODS: We developed a dataset containing 3,923 lateral knee X-ray images. Notably, all X-ray images were from three tertiary level A hospitals, and 2,341 cases were included in the analysis after screening. By manually labeling key points, the model was trained using the residual network (ResNet) and high-resolution network (HRNet) for human pose estimation architectures to measure the patellar height index. Various data enhancement techniques were used to enhance the robustness of the model. The root mean square error (RMSE), object keypoint similarity (OKS), and percentage of correct keypoint (PCK) metrics were used to evaluate the training results. In addition, we used the intraclass correlation coefficient (ICC) to assess the consistency between manual and automatic measurements. RESULTS: The HRNet model performed excellently in keypoint detection tasks by comparing different deep learning models. Furthermore, the pose_hrnet_w48 model was particularly outstanding in the RMSE, OKS, and PCK metrics, and the Insall-Salvati index (ISI) automatically calculated by this model was also highly consistent with the manual measurements (intraclass correlation coefficient [ICC], 0.809-0.885). This evidence demonstrates the accuracy and generalizability of this deep learning system in practical applications. CONCLUSION: We successfully developed a deep learning-based automatic measurement system for the patellar height. The system demonstrated accuracy comparable to that of experienced radiologists and a strong generalizability across different datasets. It provides an essential tool for assessing and treating knee diseases early and monitoring and rehabilitation after knee surgery. Due to the potential bias in the selection of datasets in this study, different datasets should be examined in the future to optimize the model so that it can be reliably applied in clinical practice. TRIAL REGISTRATION: The study was registered at the Medical Research Registration and Filing Information System (medicalresearch.org.cn) MR-61-23-013065. Date of registration: May 04, 2023 (retrospectively registered).


Assuntos
Aprendizado Profundo , Patela , Humanos , Patela/diagnóstico por imagem , Patela/anatomia & histologia , Estudos Retrospectivos , Masculino , Feminino , Automação , Radiografia/métodos , Pessoa de Meia-Idade , Adulto
4.
Int J Med Robot ; 20(3): e2635, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38733580

RESUMO

BACKGROUND: Rotational alignment in total knee arthroplasty (TKA) is a crucial technical point that needs attention. We conducted a retrospective study to investigate whether a new robot-assisted TKA (RA-TKA) could improve the accuracy of rotational alignment and whether rotational alignment affects postoperative pain and functional evaluation of the knee. METHODS: A total of 136 consecutive patients who underwent TKA were included in this study. Half of the patients underwent RA-TKA and the other half underwent conventional TKA (CON-TKA) by the same group of surgeons. Collect the relevant parameters. RESULTS: The postoperative femoral rotation angle (FRA) was -0.72 ± 2.59° in the robot-assisted group and 1.13 ± 2.73° in the conventional group, and were statistically significantly different (p < 0.001). CONCLUSION: This study provides preliminary evidence that the RA-TKA provides more precise control of FRA than CON-TKA, and verifies that tibial rotation angle and combined rotation angle affect postoperative knee pain and functional evaluation.


Assuntos
Artroplastia do Joelho , Fêmur , Procedimentos Cirúrgicos Robóticos , Humanos , Artroplastia do Joelho/métodos , Procedimentos Cirúrgicos Robóticos/métodos , Estudos Retrospectivos , Feminino , Masculino , Idoso , Pessoa de Meia-Idade , Rotação , Fêmur/cirurgia , Articulação do Joelho/cirurgia , Articulação do Joelho/fisiopatologia , Amplitude de Movimento Articular , Dor Pós-Operatória/prevenção & controle , Dor Pós-Operatória/etiologia , Resultado do Tratamento
5.
Mol Ther ; 32(7): 2264-2285, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702887

RESUMO

Overexpression of vesicular stomatitis virus G protein (VSV-G) elevates the secretion of EVs known as gectosomes, which contain VSV-G. Such vesicles can be engineered to deliver therapeutic macromolecules. We investigated viral glycoproteins from several viruses for their potential in gectosome production and intracellular cargo delivery. Expression of the viral glycoprotein (viral glycoprotein from the Chandipura virus [CNV-G]) from the human neurotropic pathogen Chandipura virus in 293T cells significantly augments the production of CNV-G-containing gectosomes. In comparison with VSV-G gectosomes, CNV-G gectosomes exhibit heightened selectivity toward specific cell types, including primary cells and tumor cell lines. Consistent with the differential tropism between CNV-G and VSV-G gectosomes, cellular entry of CNV-G gectosome is independent of the Low-density lipoprotein receptor, which is essential for VSV-G entry, and shows varying sensitivity to pharmacological modulators. CNV-G gectosomes efficiently deliver diverse intracellular cargos for genomic modification or responses to stimuli in vitro and in the brain of mice in vivo utilizing a split GFP and chemical-induced dimerization system. Pharmacokinetics and biodistribution analyses support CNV-G gectosomes as a versatile platform for delivering macromolecular therapeutics intracellularly.


Assuntos
Vesiculovirus , Animais , Humanos , Camundongos , Vesiculovirus/genética , Vesiculovirus/metabolismo , Vesículas Extracelulares/metabolismo , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Glicoproteínas/metabolismo , Glicoproteínas/genética , Células HEK293 , Proteínas Virais/metabolismo , Proteínas Virais/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Sistemas de Liberação de Medicamentos/métodos , Linhagem Celular Tumoral
6.
Curr Pharm Des ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38747231

RESUMO

BACKGROUND: Huaier (Trametes robiniophila Murr), a traditional Chinese medicine, is widely used in China as a complementary and alternative therapy to treat hepatocellular carcinoma (HCC). Past studies have shown that Huaier can arrest the cell cycle, promote apoptosis and inhibit the proliferation of cancer cells. However, how it regulates the metabolism of HCC is still unclear. OBJECTIVE: This study explores the metabolic-related function of Huaier in treating HCC with an in-silico approach. METHODS: A network pharmacology and bioinformatics-based approach was employed to investigate the molecular pathogenesis of metabolic reprogramming in HCC with Huaier. The compounds of Huaier were obtained from public databases. Oral bioavailability and drug likeness were screened using the TCMSP platform. The differential gene expressions between HCC and non-tumor tissue were calculated and used to find the overlap from the targets of Huaier. The enrichment analysis of the overlapped targets by Metascape helped filter out the metabolism-related targets of Huaier in treating HCC. Protein-protein interaction (PPI) network construction and topological screening revealed the hub nodes. The prognosis and clinical correlation of these targets were validated from the cancer genome atlas (TCGA) database, and the interactions between the hub nodes and active ingredients were validated by molecular docking. RESULTS: The results showed that Peroxyergosterol, Daucosterol, and Kaempferol were the primary active compounds of Huaier involved in the metabolic reprogramming of HCC. The top 6 metabolic targets included AKR1C3, CYP1A1, CYP3A4, CYP1A2, CYP17A1, and HSD11B1. The decreased expression of CYP3A4 and increased expression of AKR1C3 were related to the poor overall survival of HCC patients. The molecular docking validated that Peroxyergosterol and Kaempferol exhibited the potential to modulate CYP3A4 and AKR1C3 from a computational perspective. CONCLUSION: This study provided a workflow for understanding the mechanism of Huaier in regulating the metabolic reprogramming of HCC.

7.
J Med Chem ; 67(11): 9054-9068, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38781403

RESUMO

Molecular hybridization is a well-established strategy for developing new drugs. In the pursuit of promising photosensitizers (PSs) with enhanced photodynamic therapy (PDT) efficiency, a series of novel 5-fluorouracil (5FU) gallium corrole conjugates (1-Ga-4-Ga) were designed and synthesized by hybridizing a chemotherapeutic drug and PSs. Their photodynamic antitumor activity was also evaluated. The most active complex (2-Ga) possesses a low IC50 value of 0.185 µM and a phototoxic index of 541 against HepG2 cells. Additionally, the 5FU-gallium corrole conjugate (2-Ga) exhibited a synergistic increase in cytotoxicity under irradiation. Excitedly, treatment of HepG2 tumor-bearing mice with 2-Ga under irradiation could completely ablate tumors without harming normal tissues. 2-Ga-mediated PDT could disrupt mitochondrial function, cause cell cycle arrest in the sub-G1 phase, and activate the cell apoptosis pathway by upregulating the cleaved PARP expression and the Bax/Bcl-2 ratios. This work provides a useful strategy for the design of new corrole-based chemo-photodynamic therapy drugs.


Assuntos
Apoptose , Fluoruracila , Gálio , Fotoquimioterapia , Fármacos Fotossensibilizantes , Porfirinas , Fluoruracila/farmacologia , Fluoruracila/química , Fluoruracila/uso terapêutico , Humanos , Gálio/química , Gálio/farmacologia , Animais , Porfirinas/farmacologia , Porfirinas/química , Porfirinas/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/química , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/uso terapêutico , Camundongos , Apoptose/efeitos dos fármacos , Células Hep G2 , Antineoplásicos/farmacologia , Antineoplásicos/química , Antineoplásicos/síntese química , Camundongos Endogâmicos BALB C , Camundongos Nus
8.
Signal Transduct Target Ther ; 9(1): 84, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38575583

RESUMO

Circulating tumor cells (CTCs) are precursors of distant metastasis in a subset of cancer patients. A better understanding of CTCs heterogeneity and how these CTCs survive during hematogenous dissemination could lay the foundation for therapeutic prevention of cancer metastasis. It remains elusive how CTCs evade immune surveillance and elimination by immune cells. In this study, we unequivocally identified a subpopulation of CTCs shielded with extracellular vesicle (EVs)-derived CD45 (termed as CD45+ CTCs) that resisted T cell attack. A higher percentage of CD45+ CTCs was found to be closely correlated with higher incidence of metastasis and worse prognosis in cancer patients. Moreover, CD45+ tumor cells orchestrated an immunosuppressive milieu and CD45+ CTCs exhibited remarkably stronger metastatic potential than CD45- CTCs in vivo. Mechanistically, CD45 expressing on tumor surfaces was shown to form intercellular CD45-CD45 homophilic interactions with CD45 on T cells, thereby preventing CD45 exclusion from TCR-pMHC synapse and leading to diminished TCR signaling transduction and suppressed immune response. Together, these results pointed to an underappreciated capability of EVs-derived CD45-dressed CTCs in immune evasion and metastasis, providing a rationale for targeting EVs-derived CD45 internalization by CTCs to prevent cancer metastasis.


Assuntos
Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Células Neoplásicas Circulantes/metabolismo , Receptores de Antígenos de Linfócitos T , Linfócitos T/metabolismo
9.
Drug Des Devel Ther ; 18: 1115-1131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38618280

RESUMO

Background: The ChaiShao Shugan Formula (CSSGF) is a traditional Chinese medicine formula with recently identified therapeutic value in triple-negative breast cancer (TNBC). This study aimed to elucidate the underlying mechanism of CSSGF in TNBC treatment. Methods: TNBC targets were analyzed using R and data were from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The major ingredients and related protein targets of CSSGF were explored via the Traditional Chinese Medicine Systems Pharmacology database, and an ingredient-target network was constructed via Cytoscape to identify hub genes. The STRING database was used to construct the PPI network. GO and KEGG enrichment analyses were performed via R to obtain the main targets. The online tool Kaplan‒Meier plotter was used to identify the prognostic genes. Molecular docking was applied to the core target genes and active ingredients. MDA-MB-231 and MCF-7 cell lines were used to verify the efficacy of the various drugs. Results: A total of 4562 genes were screened as TNBC target genes. The PPI network consisted of 89 nodes and 845 edges. Our study indicated that quercetin, beta-sitosterol, luteolin and catechin might be the core ingredients of CSSGF, and EGFR and c-Myc might be the latent therapeutic targets of CSSGF in the treatment of TNBC. GO and KEGG analyses indicated that the anticancer effect of CSSGF on TNBC was mainly associated with DNA binding, transcription factor binding, and other biological processes. The related signaling pathways mainly involved the TNF-a, IL-17, and apoptosis pathways. The molecular docking data indicated that quercetin, beta-sitosterol, luteolin, and catechin had high affinity for EGFR, JUN, Caspase-3 and ESR1, respectively. In vitro, we found that CSSGF could suppress the expression of c-Myc or promote the expression of EGFR. In addition, we found that quercetin downregulates c-Myc expression in two BC cell lines. Conclusion: This study revealed the effective ingredients and latent molecular mechanism of action of CSSGF against TNBC and confirmed that quercetin could target c-Myc to induce anti-BC effects.


Assuntos
Catequina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/genética , Luteolina , Simulação de Acoplamento Molecular , Quercetina , Células MCF-7 , Receptores ErbB/genética
10.
Exp Ther Med ; 27(5): 219, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38590572

RESUMO

Disruption of the epithelial-mesenchymal transition (EMT) of activated lung cells is an important strategy to inhibit the progression of idiopathic pulmonary fibrosis (IPF). The present study investigated the role of exosomes derived from airway basal cells on EMT of lung cells and elucidate the underlying mechanism. Exosomes were characterized by nanoparticle tracking analysis, transmission electron microscopy imaging and markers detection. The role of exosome on the EMT of lung epithelial cells and lung fibroblasts induced by TGF-ß1 was detected. RNA sequencing screened dysregulated genes in exosome-treated group, followed by the bioinformatical analysis. One of the candidates, anoctamin-1 (ANO1), was selected for further gain-and-loss phenotype assays. A bleomycin-induced pulmonary fibrosis model was used to evaluate the treatment effect of exosomes. Exosomes were round-like and positively expressed CD63 and tumor susceptibility gene 101 protein. Treatment with exosomes inhibited the EMT of lung cells activated by TGF-ß1. 4158 dysregulated genes were identified in exosome-treated group under the threshold of |log2 fold-change| value >1 and they were involved in the metabolism of various molecules, as well as motility-related biological processes. A key gene, ANO1, was verified by reverse transcription-quantitative PCR, whose overexpression induced the EMT of lung cells. By contrast, ANO1 knockdown reversed the EMT induced by TGF-ß1. In vivo assay indicated that exosome treatment ameliorated pulmonary fibrosis and inhibited the upregulation of ANO1 induced by bleomycin. In conclusion, airway basal cell-derived exosomes suppressed the EMT of lung cells via the downregulation of ANO1. These exosomes represent a potential therapeutic option for patients with IPF.

11.
Cell Mol Biol (Noisy-le-grand) ; 70(2): 30-37, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38430044

RESUMO

At present, the early diagnosis and treatment of non-small cell lung cancer (NSCLC) is still an urgent problem to be solved worldwide, including in China. The present work investigated the possible protective effect of ZDHHC16 in cell proliferation and metastasis of NSCLC and explored its possible mechanisms. ZDHHC16 expression level in patients with Non-Small-Cell Lung Cancer was up-regulation. ZDHHC16 gene is stabilized by m6A methylation. ZDHHC16 gene reduced ferroptosis of NSCLC by the rehabilitation of the mitochondrial structure. ZDHHC16 promoted CREB expression through the inhibition of CREB Ubiquitination. Confocal microscopy showed that ZDHHC16 reduced the CREB expression of NSCLC. ZDHHC16 up-regulation reduced CREB Ubiquitination, and down-regulation of ZDHHC16 promoted CREB Ubiquitination of NSCLC. CREB Agonists reduced the effects of ZDHHC16 on ferroptosis, not affecting the Warburg effect of NSCLC. CREB inhibitor reduced the effects of si-ZDHHC16 on ferroptosis, not affecting the Warburg effect of NSCLC. METTL3-mediated m6A modification increases ZDHHC16 stability. Our study revealed that the m6A-forming enzyme METTL3 upregulates ZDHHC16 expression in NSCLC patients, leading to the reduction of ferroptosis by inhibiting CREB ubiquitination.


Assuntos
Adenina/análogos & derivados , Carcinoma Pulmonar de Células não Pequenas , Ferroptose , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Ferroptose/genética , Neoplasias Pulmonares/genética , Metiltransferases , Ubiquitinação , Aciltransferases
12.
Acta Pharm Sin B ; 14(3): 905-952, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486980

RESUMO

Cancer immunotherapy, exemplified by the remarkable clinical benefits of the immune checkpoint blockade and chimeric antigen receptor T-cell therapy, is revolutionizing cancer therapy. They induce long-term tumor regression and overall survival benefit in many types of cancer. With the advances in our knowledge about the tumor immune microenvironment, remarkable progress has been made in the development of small-molecule drugs for immunotherapy. Small molecules targeting PRR-associated pathways, immune checkpoints, oncogenic signaling, metabolic pathways, cytokine/chemokine signaling, and immune-related kinases have been extensively investigated. Monotherapy of small-molecule immunotherapeutic drugs and their combinations with other antitumor modalities are under active clinical investigations to overcome immune tolerance and circumvent immune checkpoint inhibitor resistance. Here, we review the latest development of small-molecule agents for cancer immunotherapy by targeting defined pathways and highlighting their progress in recent clinical investigations.

13.
PLoS One ; 19(3): e0298271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38502664

RESUMO

Multiple Sclerosis (MS) is an immune-related disease and the relationship between MS and cancer has raised attention. Previous studies of the relationship between MS and cancer have reached conflicting conclusions. In this study, the two-sample MR method is used to investigate whether MS has a causal correlation with cancers and offer scientific evidence for cancer prevention. Single nucleotide polymorphisms (SNPs) related to MS were obtained from the genome-wide association study (GWAS) based on International Multiple Sclerosis Genetics Consortium (IMSGC) and SNPs related to 15 types of cancers were obtained from the GWASs based on UK Biobank. Inverse variance weighted (IVW) method was mainly used to assess causal effects. Sensitivity analyses were conducted with Cochran's Q-test, MR Egger intercept, leave-one-out test, and MR Steiger method. IVW analysis showed that MS was only associated with a marginal increased risk of cervical cancer (OR 1.0004, 95% CI 1.0002-1.0007, p = 0.0003). Sensitivity analyses showed that the results of MR analysis were robust and found no heterogeneity, no pleiotropy, and no reverse causation. In conclusion, this study finds no causal relationship between MS and 15 types of cancers except cervical cancer.


Assuntos
Esclerose Múltipla , Neoplasias do Colo do Útero , Feminino , Humanos , Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Esclerose Múltipla/epidemiologia , Esclerose Múltipla/genética , Nonoxinol
14.
Exp Mol Med ; 56(1): 177-191, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177295

RESUMO

Dysregulation of wild-type p53 turnover is a key cause of hepatocellular carcinoma (HCC), yet its mechanism remains poorly understood. Here, we report that WD repeat and SOCS box containing protein 2 (WSB2), an E3 ubiquitin ligase, is an independent adverse prognostic factor in HCC patients. WSB2 drives HCC tumorigenesis and lung metastasis in vitro and in vivo. Mechanistically, WSB2 is a new p53 destabilizer that promotes K48-linked p53 polyubiquitination at the Lys291 and Lys292 sites in HCC cells, leading to p53 proteasomal degradation. Degradation of p53 causes IGFBP3-dependent AKT/mTOR signaling activation. Furthermore, WSB2 was found to bind to the p53 tetramerization domain via its SOCS box domain. Targeting mTOR with everolimus, an oral drug, significantly blocked WSB2-triggered HCC tumorigenesis and metastasis in vivo. In clinical samples, high expression of WSB2 was associated with low wild-type p53 expression and high p-mTOR expression. These findings demonstrate that WSB2 is overexpressed and degrades wild-type p53 and then activates the IGFBP3-AKT/mTOR axis, leading to HCC tumorigenesis and lung metastasis, which indicates that targeting mTOR could be a new therapeutic strategy for HCC patients with high WSB2 expression and wild-type p53.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias Pulmonares , Humanos , Carcinogênese , Carcinoma Hepatocelular/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/uso terapêutico , Neoplasias Hepáticas/metabolismo , Neoplasias Pulmonares/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteína Supressora de Tumor p53/genética
15.
Artigo em Inglês | MEDLINE | ID: mdl-38079258

RESUMO

BACKGROUND: Evidence suggests that variation in light exposure strongly influences the dynamic of inflammation, coagulation, and the immune system. Polytrauma induces systemic inflammation that can lead to end-organ injury. Here, we hypothesize that alterations in light exposure influence post-trauma inflammation, coagulopathy, and end-organ injury. METHODS: Study Type: Original Research Article. Level of Evidence: Basic Science (Level IV).C57BL/6 mice underwent a validated polytrauma and hemorrhage model performed following 72 hours of exposure to red (617 nm, 1,700lux), blue (321 nm, 1,700lux), and fluorescent white light (300lux) (n = 6-8/group). The animals were sacrificed at 6 h post-trauma. Plasma samples were evaluated and compared for pro-inflammatory cytokine expression levels, coagulation parameters, markers of liver and renal injury, and histological changes (Carstairs staining). One-way ANOVA statistical tests were applied to compare study groups. RESULTS: Pre-exposure to long-wavelength red light significantly reduced the inflammatory response at 6 hours post-polytrauma compared to blue and ambient light, as evidenced by decreased levels of IL-6, MCP-1 (both p < 0.001), liver injury markers (ALT, p < 0.05), and kidney injury markers (cystatin C, p < 0.01). Additionally, Carstairs staining of organ tissues revealed milder histological changes in the red light-exposed group, indicating reduced end-organ damage. Furthermore, PT was significantly lower (p < 0.001) and fibrinogen levels were better maintained (p < 0.01) in the red light-exposed mice compared to those exposed to blue and ambient light. CONCLUSION: Prophylactic light exposure can be optimized to reduce systemic inflammation, coagulopathy and minimize acute organ injury following polytrauma. Understanding the mechanisms by which light exposure attenuates inflammation may provide a novel strategy to reducing trauma related morbidity.

16.
Front Cardiovasc Med ; 10: 1297848, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38089765

RESUMO

Introduction: Frailty can lead to a decrease in the patient's resistance to interference such as injury and disease, and cause a series of complications. An increasing number of studies have found that pre-operative frailty exacerbates the occurrence of adverse events after carotid artery revascularization, but an integrated quantitative analysis is currently lacking. Therefore, we conducted a meta-analysis to evaluate the impact of pre-operative frailty on patients undergoing carotid artery revascularization. Method: According to the PRISMA guidelines, we systematically searched for relevant studies on Medline, Embase, Ovid, CINAHL, Web Of Science, and Cochrane Library from establishment until June 2023. Summarize the risk of adverse outcome events through OR and 95% CI. Results: A total of 16 cohort studies were included, including 1692338 patients. Among patients who underwent carotid artery revascularization surgery, the prevalence of pre-operative frailty was 36% (95% CI = 0.18-0.53, P < 0.001). Compared with non frail individuals, frail individuals have an increased risk of mortality (OR = 2.35, 95% CI = 1.40-3.92, P = 0.001, I2 = 94%), stroke (OR = 1.33, 95% CI = 1.10-1.61, P = 0.003, I2 = 71%), myocardial infarction (OR = 1.86, 95% CI = 1.51-2.30, P < 0.001, I2 = 61%), and non-home discharge (OR = 2.39, 95% CI = 1.85-3.09, P < 0.001, I2 = 63%). Conclusion: The results of this article show that patients undergoing carotid artery revascularization have a higher prevalence of pre-operative frailty, which can lead to an increased risk of postoperative death, stroke, myocardial infarction, and non-home discharge. Strengthening the assessment and management of frailty is of great significance for patient prognosis. Systematic Review Registration: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=416234, identifier: CRD42023416234.

17.
Respir Res ; 24(1): 300, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38017523

RESUMO

BACKGROUND: The accumulation of myofibroblasts is the key pathological feature of pulmonary fibrosis (PF). Aberrant differentiation of lung-resident mesenchymal stem cells (LR-MSCs) has been identified as a critical source of myofibroblasts, but the molecular mechanisms underlying this process remain largely unknown. In recent years, N6-methyladenosine (m6A) RNA modification has been implicated in fibrosis development across diverse organs; however, its specific role in promoting the differentiation of LR-MSCs into myofibroblasts in PF is not well defined. METHODS: In this study, we examined the levels of m6A RNA methylation and the expression of its regulatory enzymes in both TGF-ß1-treated LR-MSCs and fibrotic mouse lung tissues. The downstream target genes of m6A and their related pathways were identified according to a literature review, bioinformatic analysis and experimental verification. We also assessed the expression levels of myofibroblast markers in treated LR-MSCs and confirmed the involvement of the above-described pathway in the aberrant differentiation direction of LR-MSCs under TGF-ß1 stimulation by overexpressing or knocking down key genes within the pathway. RESULTS: Our results revealed that METTL3-mediated m6A RNA methylation was significantly upregulated in both TGF-ß1-treated LR-MSCs and fibrotic mouse lung tissues. This process directly led to the aberrant differentiation of LR-MSCs into myofibroblasts by targeting the miR-21/PTEN pathway. Moreover, inhibition of METTL3 or miR-21 and overexpression of PTEN could rescue this abnormal differentiation. CONCLUSION: Our study demonstrated that m6A RNA methylation induced aberrant LR-MSC differentiation into myofibroblasts via the METTL3/miR-21/PTEN signaling pathway. We indicated a novel mechanism to promote PF progression. Targeting METTL3-mediated m6A RNA methylation and its downstream targets may present innovative therapeutic approaches for the prevention and treatment of PF.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Fibrose Pulmonar , Animais , Camundongos , Diferenciação Celular , Fibrose , Pulmão/metabolismo , Células-Tronco Mesenquimais/metabolismo , Metilação , MicroRNAs/genética , MicroRNAs/metabolismo , Miofibroblastos/metabolismo , Fibrose Pulmonar/metabolismo , Fator de Crescimento Transformador beta1/farmacologia
18.
PLoS Pathog ; 19(10): e1011662, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37788227

RESUMO

Coxsackievirus A10 (CVA10) has recently emerged as one of the major causative agents of hand, foot, and mouth disease. CVA10 may also cause a variety of complications. No approved vaccine or drug is currently available for CVA10. The residues of CVA10 critical for viral attachment, infectivity and in vivo pathogenicity have not been identified by experiment. Here, we report the identification of CVA10 residues important for binding to cellular receptor KREMEN1. We identified VP2 N142 as a key receptor-binding residue by screening of CVA10 mutants resistant to neutralization by soluble KREMEN1 protein. The receptor-binding residue N142 is exposed on the canyon rim but highly conserved in all naturally occurring CVA10 strains, which provides a counterexample to the canyon hypothesis. Residue N142 when mutated drastically reduced receptor-binding activity, resulting in decreased viral attachment and infection in cell culture. More importantly, residue N142 when mutated reduced viral replication in limb muscle and spinal cord of infected mice, leading to lower mortality and less severe clinical symptoms. Additionally, residue N142 when mutated could decrease viral binding affinity to anti-CVA10 polyclonal antibodies and a neutralizing monoclonal antibody and render CVA10 resistant to neutralization by the anti-CVA10 antibodies. Overall, our study highlights the essential role of VP2 residue N142 of CVA10 in the interactions with KREMEN1 receptor and neutralizing antibodies and viral virulence in mice, facilitating the understanding of the molecular mechanisms of CVA10 infection and immunity. Our study also provides important information for rational development of antibody-based treatment and vaccines against CVA10 infection.


Assuntos
Anticorpos Neutralizantes , Enterovirus , Animais , Camundongos , Enterovirus/genética , Virulência , Anticorpos Antivirais
19.
Front Endocrinol (Lausanne) ; 14: 1266552, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37850101

RESUMO

Background: Several easily and inexpensively measured indicators of visceral adiposity dysfunction are currently available, but it remains unclear whether they are correlated with stroke risk in the community-dwelling population. We aimed to examine the longitudinal association of the triglyceridemic-waist phenotypes, the triglyceride glucose (TyG) index, as well as TyG-related indicators with stroke risk. Methods: In this study, we conducted a prospective cohort study in Hunan, a region located in Central China, where the prevalence of stroke is relatively high. We included a total of 20185 subjects aged ≥40 years between November 2017 and December 2018. Triglyceride glucose-body mass index (TyG-BMI) and triglyceride glucose-waist circumference (TyG-WC) were calculated as multiplying TyG index by BMI and WC, respectively. Triglyceride waist phenotypes were categorized into four phenotypes: HTGW (elevated triglyceride and enlarged WC), NTNW (normal triglyceride and normal WC); HTNW (high triglyceride and normal WC), and NTGW (normal triglyceride and enlarged WC). We constructed a multivariable Cox regression model to assess the association between these novel lipid indicators and the risk of stroke. Subgroup analysis was conducted to test the robustness of our research findings. ROC curve was used for assessing the predictive ability of different stroke risk indices. Results: After 2 years of follow- up, 135 participants experienced new stroke events. After adjusting for potential confounders, we found that participants with HTGW had higher likelihood of stroke (HR: 1.96, 95% CI: 1.21 to 3.16). However, we did not find significant associations for HTNW (HR: 1.42, 95% CI: 0.91 to 2.21) and NTGW (HR: 1.09, 95% CI 0.67 to 1.78). when compared to participants in the first TyG quartile, those in the fourth TyG quartile were associated with a 2.06-fold (95% CI: 1.22, 3.50) risk of stroke. Each 1-SD increase in TyG, TyG-BMI, and TyG-WC was associated with a higher risk of stroke, with adjusted HRs of 1.34 (95% CI: 1.11 to 1.61), 1.35 (95% CI: 1.14 to 1.59), and 1.23 (95% CI: 1.04 to 1.46), respectively. In subgroup analyses, those positive relationships appeared to be stronger among male participants with lower levels of physical activity and smoking. Conclusion: HTGW, along with higher levels of TyG and TyG-related indicators, were found to be associated with an elevated risk of stroke. HTGW and these novel lipid indicators might be reliable indicators to identify populations at elevated risk of stroke.


Assuntos
Obesidade , Acidente Vascular Cerebral , Humanos , Masculino , Estudos Prospectivos , Glucose , Acidente Vascular Cerebral/epidemiologia , Acidente Vascular Cerebral/etiologia , Triglicerídeos
20.
Biochem Genet ; 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667096

RESUMO

Cancer driver genes (CDGs) and the driver mutations disrupt the homeostasis of numerous critical cell activities, thereby playing a critical role in tumor initiation and progression. In this study, integrative bioinformatics analyses were performed based on a series of online databases, aiming to identify driver genes with high frequencies of mutations in head and neck cancers. Higher myeloma overexpressed (MYEOV) genetic variation frequency and expression level were connected to a poorer prognosis in head and neck cancer patients. MYEOV was dramatically upregulated within head and neck tumor samples and cells. Consistently, MYEOV overexpression remarkably enhanced the aggressiveness of head and neck cancer cells by promoting colony formation, cell invasion, and cell migration. Conversely, MYEOV knockdown attenuated cancer cell aggressiveness and inhibited tumor growth and metastasis in the oral orthotopic tumor model. In conclusion, MYEOV is overexpressed in head and neck cancer, with greater mutation frequencies correlating to a poorer prognosis in head and neck cancer patients. MYEOV serves as an oncogene in head and neck cancer through the promotion of tumor cell colony formation, invasion, and migration, as well as promoting tumor growth and metastasis in the oral orthotopic tumor model.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA