Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Immunity ; 57(10): 2310-2327.e6, 2024 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-39317200

RESUMO

The liver macrophage population comprises resident Kupffer cells (KCs) and monocyte-derived macrophages with distinct pro- or anti-inflammatory properties that affect the severity and course of liver diseases. The mechanisms underlying macrophage differentiation and functions in metabolic dysfunction-associated steatotic liver disease and/or steatohepatitis (MASLD/MASH) remain mostly unknown. Using single-cell RNA sequencing (scRNA-seq) and fate mapping of hepatic macrophage subpopulations, we unraveled the temporal and spatial dynamics of distinct monocyte and monocyte-derived macrophage subsets in MASH. We revealed a crucial role for the Notch-Recombination signal binding protein for immunoglobulin kappa J region (RBPJ) signaling pathway in controlling the monocyte-to-macrophage transition, with Rbpj deficiency blunting inflammatory macrophages and monocyte-derived KC differentiation and conversely promoting the emergence of protective Ly6Clo monocytes. Mechanistically, Rbpj deficiency promoted lipid uptake driven by elevated CD36 expression in Ly6Clo monocytes, enhancing their protective interactions with endothelial cells. Our findings uncover the crucial role of Notch-RBPJ signaling in monocyte-to-macrophage transition and will aid in the design of therapeutic strategies for MASH treatment.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina , Inflamação , Macrófagos , Receptores Notch , Transdução de Sinais , Animais , Receptores Notch/metabolismo , Camundongos , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Fígado Gorduroso/metabolismo , Fígado Gorduroso/imunologia , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Monócitos/metabolismo , Diferenciação Celular , Células de Kupffer/metabolismo , Células de Kupffer/imunologia , Camundongos Knockout , Humanos , Fígado/metabolismo , Fígado/patologia
2.
Photodiagnosis Photodyn Ther ; 49: 104279, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39168069

RESUMO

BACKGROUND: Photodynamic therapy (PDT) has been emerging as a promising treatment for unresectable cholangiocarcinoma (CCA). A number of experiments have demonstrated that PDT could enhance antitumor immunity significantly. However, the impact of PDT on peripheral immune system for unresectable CCA remains unclear. METHODS: In a clinical trial comparing the perioperative and long-term outcomes of PDT+stent treatment and stent alone treatment for unresectable CCA, we tested the levels of lymphocytes (CD4+ T cells, CD8+ T cells, NK cells, B cells and Treg cells) and immune-related cytokines (IL-4, IL-6, IL-10, TNF-α, TGF-ß, perforin, GM-CSF and IFN-γ) in peripheral blood before and after PDT+stent treatment or stent alone treatment and analyzed the influence of PDT on peripheral immune system for unresectable CCA. RESULTS: Before treatment, the levels of all the immune cells and immune-related cytokines did not show significant differences between the PDT+stent group and stent alone group. The ratio of CD8+ T cells increased significantly after PDT treatment, but other kinds of lymphocytes did not show significant difference. Increased level of IL-6 and decreased level of perforin and TGF-ß after PDT treatment were demonstrated, whereas no significant changes were found for other immune-related cytokines. CONCLUSION: PDT altered the levels of immune cells and immune-related cytokines in the peripheral blood of unresectable CCA patients, potentially correlating with the therapeutic efficacy of PDT in unresectable CCA treatment. Future studies could delve deeper into this aspect to explore how PDT can be more effectively utilized in the management of unresectable CCA.

3.
Sci Immunol ; 9(97): eadk3981, 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39058763

RESUMO

Tumor-associated macrophages (TAMs) are a heterogeneous population of cells whose phenotypes and functions are shaped by factors that are incompletely understood. Herein, we asked when and where TAMs arise from blood monocytes and how they evolve during tumor development. We initiated pancreatic ductal adenocarcinoma (PDAC) in inducible monocyte fate-mapping mice and combined single-cell transcriptomics and high-dimensional flow cytometry to profile the monocyte-to-TAM transition. We revealed that monocytes differentiate first into a transient intermediate population of TAMs that generates two longer-lived lineages of terminally differentiated TAMs with distinct gene expression profiles, phenotypes, and intratumoral localization. Transcriptome datasets and tumor samples from patients with PDAC evidenced parallel TAM populations in humans and their prognostic associations. These insights will support the design of new therapeutic strategies targeting TAMs in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Monócitos , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Animais , Monócitos/imunologia , Humanos , Camundongos , Macrófagos Associados a Tumor/imunologia , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Diferenciação Celular/imunologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
4.
Science ; 383(6679): eadf6493, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38207030

RESUMO

Neutrophils are increasingly recognized as key players in the tumor immune response and are associated with poor clinical outcomes. Despite recent advances characterizing the diversity of neutrophil states in cancer, common trajectories and mechanisms governing the ontogeny and relationship between these neutrophil states remain undefined. Here, we demonstrate that immature and mature neutrophils that enter tumors undergo irreversible epigenetic, transcriptional, and proteomic modifications to converge into a distinct, terminally differentiated dcTRAIL-R1+ state. Reprogrammed dcTRAIL-R1+ neutrophils predominantly localize to a glycolytic and hypoxic niche at the tumor core and exert pro-angiogenic function that favors tumor growth. We found similar trajectories in neutrophils across multiple tumor types and in humans, suggesting that targeting this program may provide a means of enhancing certain cancer immunotherapies.


Assuntos
Reprogramação Celular , Neoplasias , Neovascularização Patológica , Neutrófilos , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/imunologia , Neutrófilos/imunologia , Proteômica , Reprogramação Celular/genética , Reprogramação Celular/imunologia , Neovascularização Patológica/genética , Neovascularização Patológica/imunologia , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Epigênese Genética , Hipóxia , Transcrição Gênica
5.
Sci Rep ; 14(1): 62, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167979

RESUMO

The percentage of macrophage subpopulations based on their origins in the adult cochlea remains unclear. This study aimed to elucidate the origins of cochlear macrophages during the onset phase and development of auditory function. We used three types of mice: wildtype ICR mice, colony-stimulating factor 1 receptor (Csf1r)-deficient mice, and Ms4a3Cre-Rosa tdTomato (Ms4a3tdT) transgenic mice. Macrophages were labeled with ionized calcium-binding adapter molecule 1 (Iba1), which is specific to more mature macrophages, and CD11b, which is specific to monocyte lineage. We investigated the spatial and temporal distribution patterns of resident macrophages in the cochlea during the postnatal and early adult stages. During the adult stages, the rate of monocytes recruited from the systemic circulation increased; moreover, Iba1+/CD11b- cochlear macrophages gradually decreased with age. Fate mapping of monocytes using Ms4a3tdT transgenic mice revealed an increased proportion of bone marrow-derived cochlear macrophages in the adult stage. Contrastingly, the proportion of yolk sac- and fetal liver-derived tissue-resident macrophages decreased steadily with age. This heterogeneity could be attributed to differences in environmental niches within the tissue or at the sub-tissue levels. Future studies should investigate the role of cochlear macrophages in homeostasis, inflammation, and other diseases, including infection, autoimmune, and metabolic diseases.


Assuntos
Macrófagos , Monócitos , Animais , Camundongos , Camundongos Endogâmicos ICR , Macrófagos/metabolismo , Camundongos Transgênicos , Cóclea , Homeostase
6.
Biomark Res ; 12(1): 1, 2024 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-38185636

RESUMO

Tumor-associated macrophages (TAMs) are a heterogeneous population that play diverse functions in tumors. Their identity is determined not only by intrinsic factors, such as origins and transcription factors, but also by external signals from the tumor microenvironment (TME), such as inflammatory signals and metabolic reprogramming. Metabolic reprogramming has rendered TAM to exhibit a spectrum of activities ranging from pro-tumorigenic to anti-tumorigenic, closely associated with tumor progression and clinical prognosis. This review implicates the diversity of TAM phenotypes and functions, how this heterogeneity has been re-evaluated with the advent of single-cell technologies, and the impact of TME metabolic reprogramming on TAMs. We also review current therapies targeting TAM metabolism and offer new insights for TAM-dependent anti-tumor immunotherapy by focusing on the critical role of different metabolic programs in TAMs.

7.
Nature ; 625(7993): 166-174, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38057662

RESUMO

Myeloid cells are known to suppress antitumour immunity1. However, the molecular drivers of immunosuppressive myeloid cell states are not well defined. Here we used single-cell RNA sequencing of human and mouse non-small cell lung cancer (NSCLC) lesions, and found that in both species the type 2 cytokine interleukin-4 (IL-4) was predicted to be the primary driver of the tumour-infiltrating monocyte-derived macrophage phenotype. Using a panel of conditional knockout mice, we found that only deletion of the IL-4 receptor IL-4Rα in early myeloid progenitors in bone marrow reduced tumour burden, whereas deletion of IL-4Rα in downstream mature myeloid cells had no effect. Mechanistically, IL-4 derived from bone marrow basophils and eosinophils acted on granulocyte-monocyte progenitors to transcriptionally programme the development of immunosuppressive tumour-promoting myeloid cells. Consequentially, depletion of basophils profoundly reduced tumour burden and normalized myelopoiesis. We subsequently initiated a clinical trial of the IL-4Rα blocking antibody dupilumab2-5 given in conjunction with PD-1/PD-L1 checkpoint blockade in patients with relapsed or refractory NSCLC who had progressed on PD-1/PD-L1 blockade alone (ClinicalTrials.gov identifier NCT05013450 ). Dupilumab supplementation reduced circulating monocytes, expanded tumour-infiltrating CD8 T cells, and in one out of six patients, drove a near-complete clinical response two months after treatment. Our study defines a central role for IL-4 in controlling immunosuppressive myelopoiesis in cancer, identifies a novel combination therapy for immune checkpoint blockade in humans, and highlights cancer as a systemic malady that requires therapeutic strategies beyond the primary disease site.


Assuntos
Medula Óssea , Carcinogênese , Interleucina-4 , Mielopoese , Transdução de Sinais , Animais , Humanos , Camundongos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/metabolismo , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Carcinogênese/efeitos dos fármacos , Carcinogênese/metabolismo , Carcinogênese/patologia , Carcinoma Pulmonar de Células não Pequenas/imunologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/terapia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Inibidores de Checkpoint Imunológico/imunologia , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Interleucina-4/metabolismo , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/terapia , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Monócitos/efeitos dos fármacos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/metabolismo , Recidiva , Transdução de Sinais/efeitos dos fármacos
8.
Nature ; 623(7986): 415-422, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37914939

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease with high resistance to therapies1. Inflammatory and immunomodulatory signals co-exist in the pancreatic tumour microenvironment, leading to dysregulated repair and cytotoxic responses. Tumour-associated macrophages (TAMs) have key roles in PDAC2, but their diversity has prevented therapeutic exploitation. Here we combined single-cell and spatial genomics with functional experiments to unravel macrophage functions in pancreatic cancer. We uncovered an inflammatory loop between tumour cells and interleukin-1ß (IL-1ß)-expressing TAMs, a subset of macrophages elicited by a local synergy between prostaglandin E2 (PGE2) and tumour necrosis factor (TNF). Physical proximity with IL-1ß+ TAMs was associated with inflammatory reprogramming and acquisition of pathogenic properties by a subset of PDAC cells. This occurrence was an early event in pancreatic tumorigenesis and led to persistent transcriptional changes associated with disease progression and poor outcomes for patients. Blocking PGE2 or IL-1ß activity elicited TAM reprogramming and antagonized tumour cell-intrinsic and -extrinsic inflammation, leading to PDAC control in vivo. Targeting the PGE2-IL-1ß axis may enable preventive or therapeutic strategies for reprogramming of immune dynamics in pancreatic cancer.


Assuntos
Inflamação , Interleucina-1beta , Neoplasias Pancreáticas , Macrófagos Associados a Tumor , Humanos , Carcinogênese , Carcinoma Ductal Pancreático/complicações , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Dinoprostona/metabolismo , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Inflamação/complicações , Inflamação/imunologia , Inflamação/patologia , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Microambiente Tumoral , Fatores de Necrose Tumoral/metabolismo , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
9.
Sci Immunol ; 8(89): eadd4374, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37922341

RESUMO

The salivary glands often become damaged in individuals receiving radiotherapy for head and neck cancer, resulting in chronic dry mouth. This leads to detrimental effects on their health and quality of life, for which there is no regenerative therapy. Macrophages are the predominant immune cell in the salivary glands and are attractive therapeutic targets due to their unrivaled capacity to drive tissue repair. Yet, the nature and role of macrophages in salivary gland homeostasis and how they may contribute to tissue repair after injury are not well understood. Here, we show that at least two phenotypically and transcriptionally distinct CX3CR1+ macrophage populations are present in the adult salivary gland, which occupy anatomically distinct niches. CD11c+CD206-CD163- macrophages typically associate with gland epithelium, whereas CD11c-CD206+CD163+ macrophages associate with blood vessels and nerves. Using a suite of complementary fate mapping systems, we show that there are highly dynamic changes in the ontogeny and composition of salivary gland macrophages with age. Using an in vivo model of radiation-induced salivary gland injury combined with genetic or antibody-mediated depletion of macrophages, we demonstrate an essential role for macrophages in clearance of cells with DNA damage. Furthermore, we show that epithelial-associated macrophages are indispensable for effective tissue repair and gland function after radiation-induced injury, with their depletion resulting in reduced saliva production. Our data, therefore, provide a strong case for exploring the therapeutic potential of manipulating macrophages to promote tissue repair and thus minimize salivary gland dysfunction after radiotherapy.


Assuntos
Neoplasias de Cabeça e Pescoço , Xerostomia , Humanos , Macrófagos , Qualidade de Vida , Glândulas Salivares , Xerostomia/terapia
10.
Mar Drugs ; 21(10)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37888469

RESUMO

Aborycin is a type I lasso peptide with a stable interlocked structure, offering a favorable framework for drug development. The aborycin biosynthetic gene cluster gul from marine sponge-associated Streptomyces sp. HNS054 was cloned and integrated into the chromosome of S. coelicolor hosts with different copies. The three-copy gul-integration strain S. coelicolor M1346::3gul showed superior production compared to the one-copy or two-copy gul-integration strains, and the total titer reached approximately 10.4 mg/L, i.e., 2.1 times that of the native strain. Then, five regulatory genes, phoU (SCO4228), wblA (SCO3579), SCO1712, orrA (SCO3008) and gntR (SCO1678), which reportedly have negative effects on secondary metabolism, were further knocked out from the M1346::3gul genome by CRISPR/Cas9 technology. While the ΔSCO1712 mutant showed a significant decrease (4.6 mg/L) and the ΔphoU mutant showed no significant improvement (12.1 mg/L) in aborycin production, the ΔwblA, ΔorrA and ΔgntR mutations significantly improved the aborycin titers to approximately 23.6 mg/L, 56.3 mg/L and 48.2 mg/L, respectively, which were among the highest heterologous yields for lasso peptides in both Escherichia coli systems and Streptomyces systems. Thus, this study provides important clues for future studies on enhancing antibiotic production in Streptomyces systems.


Assuntos
Streptomyces coelicolor , Streptomyces , Streptomyces coelicolor/metabolismo , Streptomyces/genética , Streptomyces/metabolismo , Antibacterianos/farmacologia , Peptídeos/farmacologia , Cromossomos , Família Multigênica
11.
Nat Cancer ; 4(8): 1138-1156, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488416

RESUMO

Ovarian cancer (OC) is an aggressive gynecological tumor usually diagnosed with widespread metastases and ascites. Here, we depicted a single-cell landscape of the OC ecosystem with five tumor-relevant sites, including omentum metastasis and malignant ascites. Our data reveal the potential roles of ascites-enriched memory T cells as a pool for tumor-infiltrating exhausted CD8+ T cells and T helper 1-like cells. Moreover, tumor-enriched macrophages exhibited a preference for monocyte-derived ontogeny, whereas macrophages in ascites were more of embryonic origin. Furthermore, we characterized MAIT and dendritic cells in malignant ascites, as well as two endothelial subsets in primary tumors as predictive biomarkers for platinum-based chemotherapy response. Taken together, our study provides a global view of the female malignant ascites ecosystem and offers valuable insights for its connection with tumor tissues and paves the way for potential markers of efficacy evaluation and therapy resistance in OC.


Assuntos
Ascite , Neoplasias Ovarianas , Feminino , Humanos , Ascite/patologia , Linfócitos T CD8-Positivos/patologia , Ecossistema , Análise de Célula Única
12.
Nat Immunol ; 24(7): 1098-1109, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37337103

RESUMO

Macrophages are involved in immune defense, organogenesis and tissue homeostasis. Macrophages contribute to the different phases of mammary gland remodeling during development, pregnancy and involution postlactation. Less is known about the dynamics of mammary gland macrophages in the lactation stage. Here, we describe a macrophage population present during lactation in mice. By multiparameter flow cytometry and single-cell RNA sequencing, we identified a lactation-induced CD11c+CX3CR1+Dectin-1+ macrophage population (liMac) that was distinct from the two resident F4/80hi and F4/80lo macrophage subsets present pregestationally. LiMacs were predominantly monocyte-derived and expanded by proliferation in situ concomitant with nursing. LiMacs developed independently of IL-34, but required CSF-1 signaling and were partly microbiota-dependent. Locally, they resided adjacent to the basal cells of the alveoli and extravasated into the milk. We found several macrophage subsets in human milk that resembled liMacs. Collectively, these findings reveal the emergence of unique macrophages in the mammary gland and milk during lactation.


Assuntos
Lactação , Leite Humano , Gravidez , Feminino , Camundongos , Humanos , Animais , Macrófagos , Glândulas Mamárias Animais
13.
Nature ; 618(7966): 818-826, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37316669

RESUMO

Correct development and maturation of the enteric nervous system (ENS) is critical for survival1. At birth, the ENS is immature and requires considerable refinement to exert its functions in adulthood2. Here we demonstrate that resident macrophages of the muscularis externa (MMϕ) refine the ENS early in life by pruning synapses and phagocytosing enteric neurons. Depletion of MMϕ before weaning disrupts this process and results in abnormal intestinal transit. After weaning, MMϕ continue to interact closely with the ENS and acquire a neurosupportive phenotype. The latter is instructed by transforming growth factor-ß produced by the ENS; depletion of the ENS and disruption of transforming growth factor-ß signalling result in a decrease in neuron-associated MMϕ associated with loss of enteric neurons and altered intestinal transit. These findings introduce a new reciprocal cell-cell communication responsible for maintenance of the ENS and indicate that the ENS, similarly to the brain, is shaped and maintained by a dedicated population of resident macrophages that adapts its phenotype and transcriptome to the timely needs of the ENS niche.


Assuntos
Sistema Nervoso Entérico , Intestinos , Macrófagos , Sistema Nervoso Entérico/citologia , Sistema Nervoso Entérico/crescimento & desenvolvimento , Sistema Nervoso Entérico/fisiologia , Intestinos/inervação , Linfotoxina-alfa/metabolismo , Macrófagos/metabolismo , Macrófagos/fisiologia , Neurônios/fisiologia , Desmame , Comunicação Celular , Transcriptoma , Fenótipo , Fagocitose , Sinapses , Plasticidade Neuronal , Trânsito Gastrointestinal
14.
Sci Immunol ; 8(84): eadd7446, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37294749

RESUMO

The recruitment of monocytes and their differentiation into immunosuppressive cells is associated with the low efficacy of preclinical nonconformal radiotherapy (RT) for tumors. However, nonconformal RT (non-CRT) does not mimic clinical practice, and little is known about the role of monocytes after RT modes used in patients, such as conformal RT (CRT). Here, we investigated the acute immune response induced by after CRT. Contrary to non-CRT approaches, we found that CRT induces a rapid and robust recruitment of monocytes to the tumor that minimally differentiate into tumor-associated macrophages or dendritic cells but instead up-regulate major histocompatibility complex II and costimulatory molecules. We found that these large numbers of infiltrating monocytes are responsible for activating effector polyfunctional CD8+ tumor-infiltrating lymphocytes that reduce tumor burden. Mechanistically, we show that monocyte-derived type I interferon is pivotal in promoting monocyte accumulation and immunostimulatory function in a positive feedback loop. We also demonstrate that monocyte accumulation in the tumor microenvironment is hindered when RT inadvertently affects healthy tissues, as occurs in non-CRT. Our results unravel the immunostimulatory function of monocytes during clinically relevant modes of RT and demonstrate that limiting the exposure of healthy tissues to radiation has a positive therapeutic effect on the overall antitumor immune response.


Assuntos
Interferon Tipo I , Neoplasias , Humanos , Monócitos , Neoplasias/radioterapia , Diferenciação Celular , Interferon Tipo I/farmacologia , Linfócitos do Interstício Tumoral , Microambiente Tumoral
15.
Annu Rev Immunol ; 41: 375-404, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-37126421

RESUMO

Myeloid cells are a significant proportion of leukocytes within tissues, comprising granulocytes, monocytes, dendritic cells, and macrophages. With the identification of various myeloid cells that perform separate but complementary functions during homeostasis and disease, our understanding of tissue myeloid cells has evolved significantly. Exciting findings from transcriptomics profiling and fate-mapping mouse models have facilitated the identification of their developmental origins, maturation, and tissue-specific specializations. This review highlights the current understanding of tissue myeloid cells and the contributing factors of functional heterogeneity to better comprehend the complex and dynamic immune interactions within the healthy or inflamed tissue. Specifically, we discuss the new understanding of the contributions of granulocyte-monocyte progenitor-derived phagocytes to tissue myeloid cell heterogeneity as well as the impact of niche-specific factors on monocyte and neutrophil phenotype and function. Lastly, we explore the developing paradigm of myeloid cell heterogeneity during inflammation and disease.


Assuntos
Monócitos , Neutrófilos , Camundongos , Humanos , Animais , Macrófagos , Células Mieloides , Inflamação , Diferenciação Celular
16.
Nat Immunol ; 24(5): 827-840, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36928411

RESUMO

Resident tissue macrophages (RTMs) are differentiated immune cells that populate distinct niches and exert important tissue-supportive functions. RTM maintenance is thought to rely either on differentiation from monocytes or on RTM self-renewal. Here, we used a mouse model of inducible lung interstitial macrophage (IM) niche depletion and refilling to investigate the development of IMs in vivo. Using time-course single-cell RNA-sequencing analyses, bone marrow chimeras and gene targeting, we found that engrafted Ly6C+ classical monocytes proliferated locally in a Csf1 receptor-dependent manner before differentiating into IMs. The transition from monocyte proliferation toward IM subset specification was controlled by the transcription factor MafB, while c-Maf specifically regulated the identity of the CD206+ IM subset. Our data provide evidence that, in the mononuclear phagocyte system, the ability to proliferate is not merely restricted to myeloid progenitor cells and mature RTMs but is also a tightly regulated capability of monocytes developing into RTMs in vivo.


Assuntos
Macrófagos , Monócitos , Animais , Camundongos , Diferenciação Celular , Pulmão , Proliferação de Células , Fator de Transcrição MafB/genética
17.
Cell Stem Cell ; 30(3): 283-299.e9, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36787740

RESUMO

Stem cell-independent reprogramming of differentiated cells has recently been identified as an important paradigm for repairing injured tissues. Following periportal injury, mature hepatocytes re-activate reprogramming/progenitor-related genes (RRGs) and dedifferentiate into liver progenitor-like cells (LPLCs) in both mice and humans, which contribute remarkably to regeneration. However, it remains unknown which and how external factors trigger hepatocyte reprogramming. Here, by employing single-cell transcriptional profiling and lineage-specific deletion tools, we uncovered that periportal-specific LPLC formation was initiated by regionally activated Kupffer cells but not peripheral monocyte-derived macrophages. Unexpectedly, using in vivo screening, the proinflammatory factor IL-6 was identified as the niche signal repurposed for RRG induction via STAT3 activation, which drove RRG expression through binding to their pre-accessible enhancers. Notably, RRGs were activated through injury-specific rather than liver embryogenesis-related enhancers. Collectively, these findings depict an injury-specific niche signal and the inflammation-mediated transcription in driving the conversion of hepatocytes into a progenitor phenotype.


Assuntos
Interleucina-6 , Células de Kupffer , Animais , Humanos , Camundongos , Diferenciação Celular , Hepatócitos/metabolismo , Interleucina-6/metabolismo , Células de Kupffer/fisiologia , Fígado , Regeneração Hepática/fisiologia
18.
Nat Commun ; 14(1): 872, 2023 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-36797275

RESUMO

Although extracellular DNA is known to form immune complexes (ICs) with autoantibodies in systemic lupus erythematosus (SLE), the mechanisms leading to the release of DNA from cells remain poorly characterized. Here, we show that the pore-forming protein, gasdermin D (GSDMD), is required for nuclear DNA and mitochondrial DNA (mtDNA) release from neutrophils and lytic cell death following ex vivo stimulation with serum from patients with SLE and IFN-γ. Mechanistically, the activation of FcγR downregulated Serpinb1 following ex vivo stimulation with serum from patients with SLE, leading to spontaneous activation of both caspase-1/caspase-11 and cleavage of GSDMD into GSDMD-N. Furthermore, mtDNA oxidization promoted GSDMD-N oligomerization and cell death. In addition, GSDMD, but not peptidyl arginine deiminase 4 is necessary for extracellular mtDNA release from low-density granulocytes from SLE patients or healthy human neutrophils following incubation with ICs. Using the pristane-induced lupus model, we show that disease severity is significantly reduced in mice with neutrophil-specific Gsdmd deficiency or following treatment with the GSDMD inhibitor, disulfiram. Altogether, our study highlights an important role for oxidized mtDNA in inducing GSDMD oligomerization and pore formation. These findings also suggest that GSDMD might represent a possible therapeutic target in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Serpinas , Animais , Humanos , Camundongos , Caspase 1/metabolismo , DNA Mitocondrial/metabolismo , Gasderminas , Neutrófilos , Proteínas de Ligação a Fosfato/metabolismo , Serpinas/metabolismo , Multimerização Proteica
19.
Sci China Life Sci ; 66(1): 67-80, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35881219

RESUMO

Group 2 innate lymphoid cells (ILC2s) play important tissue resident roles in anti-parasite immunity, allergic immune response, tissue homeostasis, and tumor immunity. ILC2s are considered tissue resident cells with little proliferation at steady state. Recent studies have shown that a subset of small intestinal ILC2s could leave their residing tissues, circulate and migrate to different organs, including lung, liver, mesenteric LN and spleen, upon activation. However, it remains unknown whether other ILC populations with migratory behavior exist. In this study, we find two major colon ILC2 populations with potential to migrate to the lung in response to IL-25 stimulation. One subset expresses IL-17A and resembles inflammatory ILC2s (iILC2s) but lacks CD27 expression, whereas the other expresses CD27 but not IL-17A. In addition, the IL-17A+ ILC2s express lower levels of CD127, CD25, and ST2 than CD27+ ILC2s, which express higher levels of IL-5 and IL-13. Surprisingly, we found that both colon ILC2 populations still maintained their colonic features of preferential expression of IL-17A and CD27, IL-5/IL-13, respectively. Together, our study identifies two migratory colon ILC2 subsets with unique surface markers and cytokine profiles which are critical in regulating lung and colon immunity and homeostasis.


Assuntos
Imunidade Inata , Interleucina-13 , Interleucina-5 , Linfócitos , Pulmão/patologia , Citocinas
20.
Immunity ; 55(11): 2103-2117.e10, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36323311

RESUMO

The surface of the central nervous system (CNS) is protected by the meninges, which contain a dense network of meningeal macrophages (MMs). Here, we examined the role of tissue-resident MM in viral infection. MHC-II- MM were abundant neonatally, whereas MHC-II+ MM appeared over time. These barrier macrophages differentially responded to in vivo peripheral challenges such as LPS, SARS-CoV-2, and lymphocytic choriomeningitis virus (LCMV). Peripheral LCMV infection, which was asymptomatic, led to a transient infection and activation of the meninges. Mice lacking macrophages but conserving brain microglia, or mice bearing macrophage-specific deletion of Stat1 or Ifnar, exhibited extensive viral spread into the CNS. Transcranial pharmacological depletion strategies targeting MM locally resulted in several areas of the meninges becoming infected and fatal meningitis. Low numbers of MHC-II+ MM, which is seen upon LPS challenge or in neonates, corelated with higher viral load upon infection. Thus, MMs protect against viral infection and may present targets for therapeutic manipulation.


Assuntos
COVID-19 , Coriomeningite Linfocítica , Animais , Camundongos , Lipopolissacarídeos , Camundongos Endogâmicos C57BL , SARS-CoV-2 , Vírus da Coriomeningite Linfocítica/fisiologia , Macrófagos , Meninges
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA