Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Front Immunol ; 14: 1251517, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37790932

RESUMO

Background: Intervertebral disc degeneration (IVDD) is a leading cause of low back pain (LBP). The pathological process of IVDD is associated with inflammatory reactions and extracellular matrix (ECM) disorders. Digoxin is widely used for treating heart failure, and it has been reported to have anti-inflammatory effects. Objective: This study is to investigate the role of digoxin in the pathogenesis of intervertebral disc degeneration as well as the involved molecular mechanism, particularly the potential target protein. Methods: We exploited a rat needle model to investigate digoxin's role in intervertebral disc degeneration in vivo. Safranin O staining was used to measure cartilaginous tissue in the intervertebral disc. The morphological changes of intervertebral discs in animal models were determined by Hematoxylin-Eosin (H&E) staining and the pathological score. Primary nucleus pulposus cells (NP cells) from intervertebral discs of patients and murine were used in the present study. Western-Blotting assay, Real-time PCR assay, immunofluorescence staining, and immunochemistry were used to detect the role of digoxin in anti-TNF-α-induced inflammatory effects in vitro. Transfection of siRNA was used to regulate low-density lipoprotein receptor-related protein 4 (LRP4) expression in NP cells to investigate the potential protein target of digoxin. Results: Digoxin protected against intervertebral disc degeneration in rat needle models. Digoxin was found to exert its disc-protective effects through at least three different pathways by a) suppressing TNF-α-induced inflammation, b) attenuating ECM destruction, c) significantly promoting ECM anabolism. Additionally, LRP4 was found to be the downstream molecule of digoxin in NP cells for anti-inflammation and regulation of ECM metabolism. The knockdown of LRP4 downregulated the protective effect of digoxin in NP cells. Conclusion: These findings suggest that digoxin may be a potential therapeutic agent for intervertebral disc degeneration through anti-catabolism and pro-anabolism. Digoxin might also work as an alternative for other inflammation-related diseases.


Assuntos
Degeneração do Disco Intervertebral , Humanos , Ratos , Camundongos , Animais , Degeneração do Disco Intervertebral/genética , NF-kappa B/metabolismo , Digoxina/farmacologia , Digoxina/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Fator de Necrose Tumoral alfa/metabolismo , Inflamação/metabolismo , Proteínas Relacionadas a Receptor de LDL
3.
J Stroke Cerebrovasc Dis ; 32(3): 106974, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36587509

RESUMO

PURPOSE: Many studies have shown that cytochrome P450 (CYP) gene polymorphisms are usually associated with an increased risk of cardiovascular and cerebrovascular diseases. To explore the association of CYP2C8 and CYP2J2 gene polymorphisms with hypertensive intracerebral hemorrhage (HICH) in the Han Chinese population. METHODS: Forty HICH patients and 40 control subjects were recruited for this study. Two single nucleotide polymorphisms (SNP) (rs1058932, rs2275622) in the CYP2C8 gene and two SNPs (rs2271800, rs1155002) in the CYP2J2 gene were selected for genotyping by direct sequencing. Statistical analysis was applied to examine the effect of genetic variation on HICH. RESULTS: We found that variant alleles of CYP2C8 rs1058932 (A) and rs2275622 (C) were both significantly associated with HICH, especially in females. We also found significant associations of CYP2C8 rs1058932 (A) and rs2275622 (C) variant alleles with poor outcomes in HICH patients, especially in males. CONCLUSIONS: CYP2C8 gene polymorphisms might increase the risk of HICH in the Han Chinese population and might lead to poor outcomes. This finding adds to the body of literature supporting novel therapeutic strategies for HICH.


Assuntos
Citocromo P-450 CYP2J2 , Hemorragia Intracraniana Hipertensiva , Masculino , Feminino , Humanos , Citocromo P-450 CYP2C8/genética , Sistema Enzimático do Citocromo P-450/genética , Polimorfismo de Nucleotídeo Único
4.
EBioMedicine ; 86: 104364, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36395737

RESUMO

BACKGROUND: This study, based on multicentre cohorts, aims to utilize computed tomography (CT) images to construct a deep learning model for predicting major pathological response (MPR) to neoadjuvant chemoimmunotherapy in non-small cell lung cancer (NSCLC) and further explore the biological basis under its prediction. METHODS: 274 patients undergoing curative surgery after neoadjuvant chemoimmunotherapy for NSCLC at 4 centres from January 2019 to December 2021 were included and divided into a training cohort, an internal validation cohort, and an external validation cohort. ShuffleNetV2x05-based features of the primary tumour on the CT scans within the 2 weeks preceding neoadjuvant administration were employed to develop a deep learning score for distinguishing MPR and non-MPR. To reveal the underlying biological basis of the deep learning score, a genetic analysis was conducted based on 25 patients with RNA-sequencing data. FINDINGS: MPR was achieved in 54.0% (n = 148) patients. The area under the curve (AUC) of the deep learning score to predict MPR was 0.73 (95% confidence interval [CI]: 0.58-0.86) and 0.72 (95% CI: 0.58-0.85) in the internal validation and external validation cohorts, respectively. After integrating the clinical characteristic into the deep learning score, the combined model achieved satisfactory performance in the internal validation (AUC: 0.77, 95% CI: 0.64-0.89) and external validation cohorts (AUC: 0.75, 95% CI: 0.62-0.87). In the biological basis exploration for the deep learning score, a high deep learning score was associated with the downregulation of pathways mediating tumour proliferation and the promotion of antitumour immune cell infiltration in the microenvironment. INTERPRETATION: The proposed deep learning model could effectively predict MPR in NSCLC patients treated with neoadjuvant chemoimmunotherapy. FUNDING: This study was supported by National Key Research and Development Program of China, China (2017YFA0205200); National Natural Science Foundation of China, China (91959126, 82022036, 91959130, 81971776, 81771924, 6202790004, 81930053, 9195910169, 62176013, 8210071009); Beijing Natural Science Foundation, China (L182061); Strategic Priority Research Program of Chinese Academy of Sciences, China (XDB38040200); Chinese Academy of Sciences, China (GJJSTD20170004, QYZDJ-SSW-JSC005); Shanghai Hospital Development Center, China (SHDC2020CR3047B); and Science and Technology Commission of Shanghai Municipality, China (21YF1438200).


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Aprendizado Profundo , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Terapia Neoadjuvante , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Estudos Retrospectivos , China , Microambiente Tumoral
5.
Bioengineered ; 13(6): 14066-14079, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35730500

RESUMO

Esophageal cancer is a lethal disease, and emerging evidence has shown that microRNAs are involved in its development, progression, and clinical outcome. MicroRNAs are potential biomarkers for esophageal squamous cell carcinoma (ESCC), and may be useful in advanced RNA therapy for ESCC. This study was conducted to evaluate the molecular mechanism of miR-4739 in ESCC. Reverse transcription-quantitative polymerase chain reaction and western blotting were performed to measure RNA and protein levels. Transwell assay, Cell Counting Kit-8 assay, cytometry analysis, and human umbilical vein endothelial cell tube formation assay were conducted to determine the molecular function of miR-4739 in ESCC. Potential targets of miR-4739 were predicted using bioinformatics tools and confirmed in ESCC cells using a luciferase reporter and RNA pulldown assay. Finally, we performed immunohistochemistry to evaluate the effects of administering agomir-4739 to a mouse model of ESCC. MiR-4739 expression was downregulated in ESCC tissues and cells. MiR-4739 overexpression inhibited cell proliferation, migration, and invasion, and promoted apoptosis of ESCC cells. Furthermore, vascular endothelial growth factor A expression was downregulated by miR-4739 mimics in ESCC cells. MiR-4739 negatively regulated homeobox C10 expression. Additionally, agomir-4739 inhibited tumor growth and angiogenesis in vivo. We demonstrated that miR-4739 overexpression exerted an inhibitory effect on ESCC cells by preventing the expression of homeobox C10 via the vascular endothelial growth factor A/phosphatidylinositol 3-kinase/AKT pathway, indicating the potential of this microRNA as a treatment target in ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Homeobox , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Invasividade Neoplásica/genética , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
J Card Surg ; 37(6): 1537-1543, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35315544

RESUMO

BACKGROUND AND AIMS OF STUDY: Transcatheter mitral valve implantation (TMVI) is a promising and minimally invasive treatment for high-risk mitral regurgitation. We aimed to investigate the feasibility of a novel self-expanding valved stent for TMVI via apical access. METHODS: We designed a novel self-expanding mitral valve stent system consisting of an atrial flange and saddle-shaped ventricular body connected by two opposing anchors and two opposing extensions. During valve deployment, each anchor was controlled by a recurrent string. TMVI was performed in 10 pigs using the valve prosthesis through apical access to verify technical feasibility. Echocardiography and ventricular angiography were used to assess hemodynamic data and valve function. Surviving pigs were killed 4 weeks later to confirm stent deployment. RESULTS: Ten animals underwent TMVI using the novel mitral valve stent. Optimal valve deployment and accurate anatomical adjustments were obtained in nine animals. Implantation failed in one case, and the animal died 1 day later due to stent mismatch. After stent implantation, the hemodynamic parameters of the other animals were stable, and valve function was normal. The mean pressure across the mitral valve and left ventricular outflow tract were 2.98 ± 0.91 mmHg and 3.42 ± 0.66 mmHg, respectively. Macroscopic evaluation confirmed the stable and secure positioning of the stents. No obvious valve displacement, embolism, or paravalvular leakage was observed 4 weeks postvalve implantation. CONCLUSIONS: This study demonstrated that the novel mitral valve is technically feasible in animals. However, the long-term feasibility and durability of this valved stent must be improved and verified.


Assuntos
Implante de Prótese de Valva Cardíaca , Próteses Valvulares Cardíacas , Insuficiência da Valva Mitral , Animais , Ecocardiografia Transesofagiana , Estudos de Viabilidade , Valva Mitral/diagnóstico por imagem , Valva Mitral/cirurgia , Insuficiência da Valva Mitral/cirurgia , Desenho de Prótese , Stents , Suínos
8.
J Transl Med ; 20(1): 28, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033112

RESUMO

BACKGROUND: Neointimal hyperplasia induced by interventional surgery can lead to progressive obliteration of the vascular lumen, which has become a major factor affecting prognosis. The rate of re-endothelialization is known to be inversely related to neointima formation. Growth differentiation factor 11 (GDF11) is a secreted protein with anti-inflammatory, antioxidant, and antiaging properties. Recent reports have indicated that GDF11 can improve vascular remodeling by maintaining the differentiated phenotypes of vascular smooth muscle cells. However, it is not known whether and how GDF11 promotes re-endothelialization in vascular injury. The present study was performed to clarify the influence of GDF11 on re-endothelialization after vascular injury. METHODS: An adult Sprague-Dawley rat model of common carotid artery balloon dilatation injury was surgically established. A recombinant adenovirus carrying GDF11 was delivered into the common carotid artery to overexpress GDF11. Vascular re-endothelialization and neointima formation were assessed in harvested carotid arteries through histomolecular analysis. CCK-8 analysis, LDH release and Western blotting were performed to investigate the effects of GDF11 on endothelial NLRP3 inflammasome activation and relevant signaling pathways in vitro. RESULTS: GDF11 significantly enhanced re-endothelialization and reduced neointima formation in rats with balloon-dilatation injury by suppressing the activation of the NLRP3 inflammasome. Administration of an endoplasmic reticulum stress (ER stress) inhibitor, 4PBA, attenuated endothelial NLRP3 inflammasome activation induced by lysophosphatidylcholine. In addition, upregulation of LOX-1 expression involved elevated ER stress and could result in endothelial NLRP3 inflammasome activation. Moreover, GDF11 significantly inhibited NLRP3 inflammasome-mediated endothelial cell pyroptosis by negatively regulating LOX-1-dependent ER stress. CONCLUSIONS: We conclude that GDF11 improves re-endothelialization and can attenuate vascular remodeling by reducing endothelial NLRP3 inflammasome activation. These findings shed light on new treatment strategies to promote re-endothelialization based on GDF11 as a future target.


Assuntos
Neointima , Lesões do Sistema Vascular , Animais , Artérias Carótidas , Fatores de Diferenciação de Crescimento , Hiperplasia , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Ratos Sprague-Dawley
9.
J Exp Clin Cancer Res ; 40(1): 361, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34781999

RESUMO

BACKGROUND: Cisplatin-based chemotherapy is a mainstay systematic therapy for advanced esophageal squamous cell carcinoma (ESCC), and cisplatin resistance, which is not uncommon, is the major barrier to improving patient outcomes. Circular RNAs (circRNAs) are novel noncoding RNAs that are implicated in cancer progression, but their involvement in modulating cisplatin responsiveness in ESCC remains unknown. METHODS: Bioinformatics analysis was used to profile and identify the circRNAs involved in cisplatin responsiveness in ESCC. The chemosensitive role of cDOPEY2 was confirmed both in vitro and in vivo. The molecular mechanism of cDOPEY2 was investigated by mass spectrometry, immunoprecipitation, and ubiquitination analyses. RESULTS: We report that a novel circRNA (cDOPYE2, hsa_circ_0008078) was markedly downregulated in cisplatin-resistant ESCC cells (ESCC-CR) compared with parental chemosensitive cells. Re-expression of cDOPEY2 substantially enhanced the cell-killing ability of cisplatin by augmenting the apoptotic process in ESCC-CR cells, which was achieved by decreasing the abundance of the antiapoptotic protein Mcl-1. Mechanistically, we showed that cDOPEY2 acted as a protein scaffold to enhance the interaction between the cytoplasmic polyadenylation element binding protein (CPEB4) and the E3 ligase TRIM25, which in turn facilitated the ubiquitination and degradation of CPEB4. The increased Mcl-1 expression in ESCC-CR cells was dependent on the binding of CPEB4 to its untranslated mRNA, and depletion of CPEB4 mediated by cDOPEY2 reversed this effect. Rescue experiments confirmed that the critical role of cDOPEY2 in maintaining cisplatin sensitivity was dependent on the depletion of CEPB4 and its downstream target Mcl-1. Clinical and in vivo data further corroborated the significant relevance of cDOPEY2 to cisplatin responsiveness in ESCC. CONCLUSIONS: We provide evidence that cDOPEY2 inhibits CPEB4-mediated Mcl-1 translation by promoting the ubiquitination and degradation of CPEB4 to alleviate cisplatin resistance, indicating that cDOPEY2 may serve as a valuable biomarker and potential therapeutic target in ESCC.


Assuntos
Neoplasias Esofágicas/genética , RNA Circular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Apoptose , Proliferação de Células , Neoplasias Esofágicas/mortalidade , Feminino , Humanos , Camundongos , Camundongos Nus , Análise de Sobrevida
10.
Clin Transl Med ; 11(9): e545, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34586732

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is a highly aggressive and treatment-resistant tumor. The biological implications and molecular mechanism of cancer stem-like cells (CSCs) in ESCC, which contribute to therapeutic resistance such as radioresistance, remain elusive. METHODS: Quantitative real-time polymerase chain reaction, western blotting, immunohistochemistry, and in situ hybridization assays were used to detect methyltransferase-like 14 miR-99a-5p tribble 2 (METTL14/miR-99a-5p/TRIB2) expression in ESCC. The biological functions of METTL14/miR-99a-5p/TRIB2 were demonstrated in vitro and in vivo. Mass spectrum analysis was used to identify the downstream proteins regulated by TRIB2. Chromatin immunoprecipitation (IP), IP, N6 -methyladenosine (m6 A)-RNA IP, luciferase reporter, and ubiquitination assays were employed to explore the molecular mechanisms underlying this feedback circuit and its downstream pathways. RESULTS: We found that miR-99a-5p was significantly decreased in ESCC. miR-99a-5p inhibited CSCs persistence and the radioresistance of ESCC cells, and miR-99a-5p downregulation predicted an unfavorable prognosis of ESCC patients. Mechanically, we unveiled a METTL14-miR-99a-5p-TRIB2 positive feedback loop that enhances CSC properties and radioresistance of ESCC cells. METTL14, an m6 A RNA methyltransferase downregulated in ESCC, suppresses TRIB2 expression via miR-99a-5p-mediated degradation of TRIB2 mRNA by targeting its 3' untranslated region, whereas TRIB2 induces ubiquitin-mediated proteasomal degradation of METTL14 in a COP1-dependent manner. METTL14 upregulates miR-99a-5p by modulating m6 A-mediated, DiGeorge critical region 8-dependent pri-mir-99a processing. Hyperactivation of TRIB2 resulting from this positive circuit was closely correlated with radioresistance and CSC characteristics. Furthermore, TRIB2 activates HDAC2 and subsequently induces p21 epigenetic repression through Akt/mTOR/S6K1 signaling pathway activation. Pharmacologic inhibition of HDAC2 effectively attenuates the TRIB2-mediated effect both in vitro and in patient-derived xenograft models. CONCLUSION: Our data highlight the presence of the METTL14/miR-99a-5p/TRIB2 axis and show that it is positively associated with CSC characteristics and radioresistance of ESCC, suggesting potential therapeutic targets for ESCC treatment.


Assuntos
Epigênese Genética/genética , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Células-Tronco Neoplásicas/metabolismo , Tolerância a Radiação/genética , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Histona Desacetilase 2/genética , Histona Desacetilase 2/metabolismo , Humanos , Metiltransferases/genética , Metiltransferases/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , MicroRNAs/metabolismo
11.
Cancer Lett ; 520: 321-331, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34389432

RESUMO

Acquired resistance to growth factor receptor tyrosine kinase inhibitors limits the therapeutic benefits gained by EGFR-mutant lung adenocarcinoma (LUAD) patients treated with gefitinib. Circular RNAs (circRNAs) are novel noncoding RNAs implicated in the regulation of chemoresistance in malignancies. However, whether circRNAs participate in the development of EGFR-TKI resistance in LUAD remains to be clarified. Here, we report that circASK1 (hsa_circ_0007798) is significantly downregulated in gefitinib-resistant cells and enhances the gefitinib sensitivity of LUAD cells. Mechanistically, we identified a novel protein encoded by circASK1, ASK1-272a.a, which is essential for ASK1/JNK/p38 signaling activation and mediates the chemosensitivity-inducing effect of circASK1 in LUAD. Importantly, this novel isoform competes with ASK1 for binding to Akt1, therefore antagonizing Akt1-induced ASK1 phosphorylation and inactivation, leading to the activation of ASK1-induced apoptosis and alleviating gefitinib resistance. Moreover, increased YTHDF2-mediated endoribonucleolytic cleavage of m6A-modified circASK1 accounts for its downregulation in gefitinib-resistant cells. The clinical data and in vivo model further corroborated the suppressive effect of circASK1 and its encoded protein on gefitinib resistance. Our study provides a novel therapeutic target to overcome gefitinib resistance in LUAD patients.


Assuntos
Adenocarcinoma de Pulmão/tratamento farmacológico , Gefitinibe/farmacologia , MAP Quinase Quinase Quinase 5/genética , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Gefitinibe/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Inibidores de Proteínas Quinases/efeitos adversos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Mol Cancer ; 20(1): 105, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34416901

RESUMO

BACKGROUND: An in-depth understanding of immune evasion mechanisms in tumors is crucial to overcome resistance and enable innovative advances in immunotherapy. Circular RNAs (circRNAs) have been implicated in cancer progression. However, much remains unknown regarding whether circRNAs impact immune escape in non-small-cell lung carcinoma (NSCLC). METHODS: We performed bioinformatics analysis to profile and identify the circRNAs mediating immune evasion in NSCLC. A luciferase reporter assay, RNA immunoprecipitation (RIP), RNA pulldown assays and fluorescence in situ hybridization were performed to identify the interactions among circIGF2BP3, miR-328-3p, miR-3173-5p and plakophilin 3 (PKP3). In vitro T cell-mediated killing assays and in vivo syngeneic mouse models were used to investigate the functional roles of circIGF2BP3 and its downstream target PKP3 in antitumor immunity in NSCLC. The molecular mechanism of PKP3-induced PD-L1 upregulation was explored by immunoprecipitation, RIP, and ubiquitination assays. RESULTS: We demonstrated that circIGF2BP3 (hsa_circ_0079587) expression was increased in NSCLC and negatively correlated with CD8+ T cell infiltration. Functionally, elevated circIGF2BP3 inactivated cocultured T cells in vitro and compromised antitumor immunity in an immunocompetent mouse model, and this effect was dependent on CD8+ T cells. Mechanistically, METTL3 mediates the N6-methyladenosine (m6A) modification of circIGF2BP3 and promotes its circularization in a manner dependent on the m6A reader protein YTHDC1. circIGF2BP3 competitively upregulates PKP3 expression by sponging miR-328-3p and miR-3173-5p to compromise the cancer immune response. Furthermore, PKP3 engages with the RNA-binding protein FXR1 to stabilize OTUB1 mRNA, and OTUB1 elevates PD-L1 abundance by facilitating its deubiquitination. Tumor PD-L1 deletion completely blocked the impact of the circIGF2BP3/PKP3 axis on the CD8+ T cell response. The inhibition of circIGF2BP3/PKP3 enhanced the treatment efficacy of anti-PD-1 therapy in a Lewis lung carcinoma mouse model. Collectively, the PKP3/PD-L1 signature and the infiltrating CD8+ T cell status stratified NSCLC patients into different risk groups. CONCLUSION: Our results reveal the function of circIGF2BP3 in causing immune escape from CD8+ T cell-mediated killing through a decrease in PD-L1 ubiquitination and subsequent proteasomal degradation by stabilizing OTUB1 mRNA in a PKP3-dependent manner. This work sheds light on a novel mechanism of PD-L1 regulation in NSCLC and provides a rationale to enhance the efficacy of anti-PD-1 treatment in NSCLC.


Assuntos
Antígeno B7-H1/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , RNA Circular/genética , Proteínas de Ligação a RNA/genética , Adenosina/análogos & derivados , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Linfócitos do Interstício Tumoral , Camundongos , Modelos Biológicos , Estabilidade de RNA , RNA Circular/metabolismo , Proteínas de Ligação a RNA/metabolismo , Evasão Tumoral/genética , Evasão Tumoral/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Oncol Lett ; 21(6): 488, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33968204

RESUMO

Lung adenocarcinoma, a type of non-small cell lung cancer, is the leading cause of cancer death worldwide. Great efforts have been made to identify the underlying mechanism of adenocarcinoma, especially in relation to oncogenes. The present study by integrating computational analysis with western blotting, aimed to understand the role of the upregulation of glucosamine-phosphate N-acetyltransferase 1 (GNPNAT1) in carcinogenesis. In the present study, publicly available gene expression profiles and clinical data were downloaded from The Cancer Genome Atlas to determine the role of GNPNAT1 in lung adenocarcinoma (LUAD). In addition, the association between LUAD susceptibility and GNPNAT1 upregulation were analyzed using Wilcoxon signed-rank test and logistic regression analysis. In LUAD, GNPNAT1 upregulation was significantly associated with disease stage [odds ratio (OR)=2.92, stage III vs. stage I], vital status (dead vs. alive, OR=1.89), cancer status (tumor status vs. tumor-free status, OR=1.85) and N classification (yes vs. no, OR=1.75). Cox regression analysis and the Kaplan-Meier method were utilized to evaluate the association between GNPNAT1 expression and overall survival (OS) time in patients with LUAD. The results demonstrated that patients with increased GNPNAT1 expression levels exhibited a reduced survival rate compared with those with decreased expression levels (P=8.9×10-5). In addition, Cox regression analysis revealed that GNPNAT1 upregulation was significantly associated with poor OS time [hazard ratio (HR): 1.07; 95% confidence interval (CI): 1.04-1.10; P<0.001]. The gene set enrichment analysis revealed that 'cell cycle', 'oocyte meiosis', 'pyrimidine mediated metabolism', 'ubiquitin mediated proteolysis', 'one carbon pool by folate', 'mismatch repair progesterone-mediated oocyte maturation' and 'basal transcription factors purine metabolism' were differentially enriched in the GNPNAT1 high-expression samples compared with GNPNAT1 low-expression samples. The aforementioned pathways are involved in the pathogenesis of LUAD. The findings of the present study suggested that GNPNAT1 upregulation may be considered as a promising diagnostic and prognostic biomarker in patients with LUAD. In addition, the aforementioned pathways may be pivotal pathways perturbed by the abnormal expression of GNPNAT1 in LUAD. The findings of the present study demonstrated the therapeutic value of the regulation of GNPNAT1 in lung adenocarcinoma.

14.
J Cancer ; 12(4): 1073-1084, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33442405

RESUMO

Esophageal squamous cell carcinoma (ESCC) is the major subclass of esophageal cancer and one of the most life-threatening malignancies with high morbidity and mortality. Long noncoding RNAs (lncRNAs) participate in tumorigenesis and metastasis of various tumors. Here, we investigated the function of a newly identified lncRNA FAM225A in ESCC. LncRNA FAM225A expression was significantly higher in ESCC and predicted poor prognosis of ESCC patients. We confirmed that upregulation of FAM225A in ESCC and overexpression of FAM225A was associated with poor outcome in ESCC patients using TCGA ESCC cohort. Knockdown of FAM225A significantly inhibited cell growth, migration and invasion of ESCC cells in vitro and inhibited ESCC xenograft development in vivo. Mechanistically, we demonstrated that lncRNA FAM225A functioned as a competing endogenous RNA (ceRNA) via sponging miR-197-5p. LncRNA FAM225A exerted its regulatory function on ESCC proliferation and metastasis via modulating expression of miR-197-5p. MiR-197-5p overexpression antagonized the function of FAM225A, with decreased cell growth and invasion. Moreover, we identified that RNA binding protein NONO was a direct target of miR-197-5p and miR-197-5p negatively regulated NONO expression and TGF-ß signaling in ESCC cells. In summary, our findings suggest that lncRNA FAM225A promotes ESCC development and progression via sponging miR-197-5p and upregulating NONO expression. These results suggest that lncRNA FAM225A could be explored as a new therapy target in ESCC treatment.

15.
J Exp Clin Cancer Res ; 39(1): 238, 2020 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-33168024

RESUMO

BACKGROUND: CD8+ tumor-infiltrating T lymphocytes (T-TILs) in the tumor microenvironment (TME) play an important role in tumor development, and miRNAs regulate tumor cell interactions with the microenvironment. T-TIL-based tumor immunotherapy provides a promising treatment strategy in diffuse large B-cell lymphoma (DLBCL). MiRNAs tend to be attractive targets for novel antitumor interventions. METHODS: Weighted gene coexpression network analysis (WGCNA), CIBERSORT analysis and Cox regression analysis were used to identify CD8+ T-TIL-related miRNAs. RT-PCR, western blotting, immunohistochemistry (IHC), in situ hybridization (ISH), luciferase reporter assay, coimmunoprecipitation and ubiquitination analyses were used to detect miRNA, mRNA and protein expression and their combination. The viability and function of CD8+ T cells after stimulation were evaluated by enzyme-linked immunosorbent assay (ELISA), cytotoxicity assay, functional avidity assessment, flow cytometry and Cell Counting Kit-8 (CCK-8) assay. DLBCL cell lines, primary cells and a murine xenograft model established with A20 cell injection were used as in vitro and in vivo experimental models. RESULTS: MiR-340-5p was positively correlated with CD8+ T-TILs in DLBCL patients, and KMT5A was a direct target gene of miR-340-5p. CD8+ T-cell function was significantly enhanced by miR-340-5p mimics both in vitro and in vivo, which was reversed by KMT5A overexpression. We demonstrated that COP1/CD73 was involved in the downstream mechanism of the miR-340-5p/KMT5A axis involving ubiquitination. In vivo, we validated an improved CD8+ T-TIL infiltration rate and tumor suppression with miR-340-5p treatment. Furthermore, miR-340-5p directly regulated the biological activity of DLBCL cells without CD8+ T-cell participation. CONCLUSIONS: MiR-340-5p promoted CD8+ T-TIL infiltration and antitumor function by regulating KMT5A and COP1 and further activating CD73 ubiquitination. MiR-340-5p is potentially a novel target for DLBCL immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Linfócitos do Interstício Tumoral/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , MicroRNAs/metabolismo , Animais , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Proliferação de Células/fisiologia , Feminino , Humanos , Linfócitos do Interstício Tumoral/patologia , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Transfecção
16.
Onco Targets Ther ; 13: 9785-9795, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33061457

RESUMO

INTRODUCTION: Lung adenocarcinoma (LUAD), which is the most important and common subtype of non-small cell lung cancer (NSCLC), is highly heterogeneous with a poor prognosis and poses great challenges to health worldwide. MicroRNAs (miRNAs) are regulators of gene expression with recognized roles in physiology and diseases, such as cancers, but little is known about their functional relevance to CD8+ T cell infiltration regulation in the tumor microenvironment (TME) of NSCLC patients, especially LUAD patients. METHODS: Bioinformatic analysis was used to analyze TCGA data. RT-PCT, Western blot, luciferase assay and immunohistochemistry were used to detect the expression levels and bindings of genes and miRNA. ELISA and cytotoxic assay were used to evaluate CD8+ T cell function. RESULTS: In this study, bioinformatic analysis unveiled the miR-505-3p/NET1 pair as a CD8+ T-tumor-infiltrating lymphocyte (TIL) regulator. Then, we confirmed the bioinformatic results with LUAD patient samples, and NET1 was shown to be a direct target of miR-505-3p in a luciferase assay. Functional experiments demonstrated that miR-505-3p enhanced CD8+ T-TIL function, while NET1 impaired CD8+ T-TIL function and partly reversed the effects of miR-505-3p. The observed effects might be exerted via the regulation of immunosuppressive receptors in T cells. DISCUSSION: Our study may provide novel insights into LUAD progression related to the TME mechanism and new possibilities for improving adoptive immunotherapy.

17.
J Exp Clin Cancer Res ; 39(1): 144, 2020 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-32727517

RESUMO

BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most lethal forms of adult cancer with poor prognosis. Substantial evidence indicates that reactive oxygen species (ROS) are important modulators of aggressive cancer behavior. However, the mechanism by which ESCC cells integrate redox signals to modulate carcinoma progression remains elusive. METHODS: The expression of interferon alpha inducible protein 6 (IFI6) in clinical ESCC tissues and cell lines was detected by RT-PCR and Western blotting. The correlation between IFI6 expression levels and aggressive ESCC disease stage was examined by immunohistochemistry. Bioinformatic analysis was conducted to explore the potential function of IFI6 in ESCC. ESCC cell lines stably depleted of IFI6 and ectopically expressing IFI6 were established using lentiviruses expressing shRNAs and an IFI6 expression plasmid, respectively. The effects of IFI6 on ESCC cells were determined by cell-based analyses, including EdU assay, apoptotic assay, cellular and mitochondria-specific ROS detection, seahorse extracellular flux, and mitochondrial calcium flux assays. Blue native-polyacrylamide gel electrophoresis was used to determine mitochondrial supercomplex assembly. Transcriptional activation of NADPH oxidase 4 (NOX4) via ATF3 was confirmed by dual luciferase assay. In vivo tumor growth was determined in mouse xenograft models. RESULTS: We find that the expression of IFI6, an IFN-stimulated gene localized in the inner mitochondrial membrane, is markedly elevated in ESCC patients and a panel of ESCC cell lines. High IFI6 expression correlates with aggressive disease phenotype and poor prognosis in ESCC patients. IFI6 depletion suppresses proliferation and induces apoptosis by increasing ROS accumulation. Mechanistically, IFI6 ablation induces mitochondrial calcium overload by activating mitochondrial Ca2+ uniporter and subsequently ROS production. Following IFI6 ablation, mitochondrial ROS accumulation is also induced by mitochondrial supercomplex assembly suppression and oxidative phosphorylation dysfunction, while IFI6 overexpression produces the opposite effects. Furthermore, energy starvation induced by IFI6 inhibition drives endoplasmic reticulum stress through disrupting endoplasmic reticulum calcium uptake, which upregulates NOX4-derived ROS production in an ATF3-dependent manner. Finally, the results in xenograft models of ESCC further corroborate the in vitro findings. CONCLUSION: Our study unveils a novel redox homeostasis signaling pathway that regulates ESCC pathobiology and identifies IFI6 as a potential druggable target in ESCC.


Assuntos
Biomarcadores Tumorais/metabolismo , Estresse do Retículo Endoplasmático , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Mitocôndrias/patologia , Proteínas Mitocondriais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Proliferação de Células , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/genética , Carcinoma de Células Escamosas do Esôfago/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/genética , NADPH Oxidase 4/genética , NADPH Oxidase 4/metabolismo , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Oncotarget ; 8(51): 88857-88869, 2017 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-29179482

RESUMO

PURPOSE: To investigate whether FGFR1 gene amplification is associated with clinicopathologic characteristics and its potential impact on survival in patients with resected esophageal squamous cell carcinoma (ESCC). METHODS: Five hundred fifty-six ESCC patients undergoing curative resection of ESCC were retrospectively studied. FGFR1 gene copy number was determined in microarrayed tumor samples using fluorescent in situ hybridization (FISH) analysis. FGFR1 gene amplification status was prespecified as copy number ≥ 6 or FGFR1/CEN 8 ratio ≥ 2.2. FGFR1 expression was evaluated by immunohistochemistry. Overall survival (OS) and disease-free survival (DFS) were analyzed using the Kaplan-Meier method followed by the log rank test. Correlation with survival was examined using multivariate Cox regression. RESULTS: FGFR1 amplification was identified in 67 (12.1%) patients; these patients had significantly shorter OS (50.0 vs 32.0 months; log rank; P<0.001) as well as shorter DFS (47.0 vs 28.0 months; log rank; P<0.001) than those without FGFR1 amplification. Under a Cox proportional hazard model, FGFR1 amplification was associated with significantly shorter OS (adjusted hazard ratio [AHR]=1.61; 95% CI, 1.10-2.43, P=0.004) and DFS (AHR=1.72; 95%CI, 1.15-2.48; P<0.001). Moreover, cases with high intratumoral FGFR1 expression showed significantly shorter OS and DFS than those with low FGFR1 expression. The frequency of FGFR1 amplification was significantly higher in heavy drinkers than in moderate and light drinkers. CONCLUSION: FGFR1 amplification is an independent adverse prognostic factor in surgically resected ESCC. FGFR1 may be a promising therapeutic target in patients with ESCC.

19.
Oncotarget ; 8(39): 65642-65658, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-29029460

RESUMO

Esophageal squamous cell carcinoma (ESCC) is a common malignant disease characterized by poor prognosis. Chemoresistance remains a major cause of ESCC relapse. Vaccinia-related kinase 1 (VRK1) has previously been identified as a cancer-related gene. However, there is little research demonstrating an association between VRK1 and ESCC. In this study, we show that VRK1 is overexpressed in ESCC primary tumor samples and cell lines. VRK1 expression was significantly correlated with clinical characteristics and predicted poor outcomes in ESCC patients. Functionally, knockdown of VRK1 inhibited ESCC cell proliferation, survival, migration and invasion; conversely, VRK1 overexpression produced the opposite effects. Furthermore, we found that up-regulation of VRK1 promoted cisplatin (CDDP) resistance in ESCC both in vitro and in vivo, whereas knockdown of VRK1 reduced this resistance. Further studies verified that VRK1 phosphorylated c-Jun and that the VRK1/c-Jun pathway contributed to CDDP resistance in ESCC. Mechanistically, a dual luciferase reporter assay revealed that c-Jun transcriptionally activated the expression of c-MYC. Silencing c-MYC abolished the c-Jun-mediated CDDP resistance of ESCC cells. A Kaplan-Meier analysis indicated that c-MYC is a potential prognostic factor in ESCC. Finally, luteolin, a VRK1 inhibitor, attenuated the malignant biological behaviors and CDDP resistance in ESCC cells. Collectively, we conclude that VRK1 promotes CDDP resistance through c-MYC by activating c-Jun and potentiating a malignant phenotype in ESCC. Our studies provide novel insight into the role of VRK1 in carcinogenesis and indicate that VRK1 can serve as a potential therapeutic target in ESCC.

20.
Technol Health Care ; 25(6): 1061-1071, 2017 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-28854525

RESUMO

OBJECTIVE: This study aims to compare the curative effect of different treatment methods of hypertensive putamen hemorrhage, in order to determine an ideal method of treatment; and to explore the curative effect of the application of soft channel technology-minimally invasive liquefaction and drainage of intracerebral hematoma in the treatment of hypertensive putamen hemorrhage. METHODS: Patients with hypertensive cerebral hemorrhage, who were treated in our hospital from January 2015 to January 2016, were included into this study. Patients were divided into three groups: minimally invasive drainage group, internal medical treatment group and craniotomy group. In the minimally invasive drainage group, puncture aspiration and drainage were performed according to different hematoma conditions detected in brain CT, the frontal approach was selected for putamen and intracerebral hemorrhage, and drainage was reserved until the hematoma disappeared in CT detection. Drug therapy was dominated in the internal medical treatment group, while surgery under general anesthesia was performed to remove the hematoma in the craniotomy group. RESULTS: Post-treatment neurological function defect scores in minimally invasive drainage group and internal medical group were 16.14 ± 11.27 and 31.43 ± 10.42, respectively; and the difference was remarkably significant (P< 0.01). Post-treatment neurological function defect scores in the minimally invasive drainage group and craniotomy group were 16.14 ± 11.27 and 24.20 ± 12.23, respectively; and the difference was statistically significant (P< 0.05). There was a remarkable significant difference in ADL1-2 level during followed-up in survival patients between the minimally invasive drainage group and internal medical treatment group (P< 0.01), and there was a significant difference in followed-up mortality between these two groups (P< 0.01). CONCLUSION: Clinical observation and following-up results revealed that minimally invasive drainage treatment was superior to internal medical treatment and craniotomy.


Assuntos
Drenagem/métodos , Hematoma/etiologia , Hematoma/terapia , Hipertensão/complicações , Hemorragia Putaminal/etiologia , Idoso , Craniotomia/métodos , Feminino , Hematoma/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA