Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Heart ; 110(13): 899-907, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38772574

RESUMO

OBJECTIVE: To evaluate the heart response of Erdheim-Chester disease (ECD) through continuous follow-up within our large cohort, for which there is a lack of understanding. METHODS: We conducted a retrospective analysis of clinical data from patients with ECD with cardiac involvement diagnosed at our centre between January 2010 and August 2023. We assessed the heart response by integrating pericardial effusion and metabolic responses. RESULTS: A total of 40 patients were included, with a median age of 51.5 years (range: 29-66) and a BRAFV600E mutation rate of 56%. The most common imaging manifestations observed were pericardial effusion (73%), right atrium (70%) and right atrioventricular sulcus infiltration (58%). Among 21 evaluable patients, 18 (86%) achieved a heart response including 5 (24%) complete response (CR) and 13 (62%) partial response (PR). The CR rate of pericardial effusion response was 33%, while the PR rate was 56%. Regarding the cardiac mass response, 33% of patients showed PR. For cardiac metabolic response, 32% and 53% of patients achieved complete and partial metabolic response, respectively. There was a correlation between pericardial effusion response and cardiac metabolic response (r=0.73 (95% CI 0.12 to 0.83), p<0.001). The median follow-up was 50.2 months (range: 1.0-102.8 months). The estimated 5-year overall survival was 78.9%. The median progression-free survival was 59.4 months (95% CI 26.2 to 92.7 months). Patients who received BRAF inhibitors achieved better heart response (p=0.037) regardless of treatment lines. CONCLUSION: We pioneered the evaluation of heart response of ECD considering both pericardial effusion and cardiac metabolic response within our cohort, revealing a correlation between these two indicators. BRAF inhibitors may improve heart response, regardless of the treatment lines.


Assuntos
Doença de Erdheim-Chester , Derrame Pericárdico , Humanos , Doença de Erdheim-Chester/complicações , Doença de Erdheim-Chester/tratamento farmacológico , Doença de Erdheim-Chester/diagnóstico , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Idoso , Derrame Pericárdico/etiologia , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Resultado do Tratamento , Mutação
2.
Acta Biochim Biophys Sin (Shanghai) ; 56(2): 174-183, 2024 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273784

RESUMO

The most frequent primary brain tumor in adults is glioma, yet no effective curative treatments are currently available. Our previous study demonstrated the enhancing effects of JARID2 on glioma sensitivity to TMZ treatment. In this study, miR-155 is predicted to target JARID2. miR-155 is overexpressed in clinical glioma specimens and cell lines. miR-155 overexpression in glioma cells enhances cell viability and represses cell apoptosis. Through targeting, miR-155 inhibits JARID2 expression. miR-155 inhibition inhibits glioma cell viability and enhances cell apoptosis, whereas JARID2 knockdown enhances cell viability and inhibits cell apoptosis; JARID2 knockdown partially reverses miR-155 inhibition effects on glioma phenotypes. miR-155 inhibition reduces but knockdown of JARID2 promotes the tumor formation ability of glioma cells in vivo. Valproic acid (VPA) upregulates JARID2 expression, inhibits glioma cell viability and enhances cell apoptosis. VPA downregulates the expression level of miR-155 by increasing the methylation level of the miR-155 promoter, suggesting that the miR-155/JARID2 axis is implicated in VPA inhibition of glioma cell viability and enhancement of glioma cell apoptosis. This study demonstrates a new mechanism of VPA treatment of gliomas by affecting the miR-155/JARID2 axis, which could be regarded as a new strategy for the prevention and treatment of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Humanos , Ácido Valproico/farmacologia , Linhagem Celular Tumoral , Glioma/tratamento farmacológico , Glioma/genética , Glioma/metabolismo , MicroRNAs/metabolismo , Metilação , Proliferação de Células/genética , Apoptose/genética , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica
3.
Adv Healthc Mater ; 12(27): e2300516, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37285596

RESUMO

Reactive oxygen species (ROS)-involved tumor therapeutic strategy, chemodynamic therapy (CDT), has attracted extensive research interest in the scientific community. However, the therapeutic effect of CDT is insufficient and unsustainable owing to the limited endogenous H2 O2 level in the tumor microenvironment. Here, peroxidase (POD)-like RuTe2 nanozyme with the immobilization of glucose oxidase (GOx) and allochroic 3,3',5,5'-tetramethylbenzidine (TMB) molecule have been synthesized to construct RuTe2 -GOx-TMB nanoreactors (RGT NRs) as cascade reaction systems for tumor-specific and self-replenishing cancer therapy. GOx in sequential nanocatalysts can effectively deplete glucose in tumor cells. Meanwhile, a sustainable supply of H2 O2 for subsequent Fenton-like reactions catalyzed by RuTe2 nanozyme is achieved in response to the mild acidic tumor microenvironment. Through this cascade reaction, highly toxic hydroxyl radicals (·OH) are produced, which can further oxidize TMB to trigger tumor-specific "turn-on" photothermal therapy (PTT). In addition, PTT and massive ROS can stimulate the tumor immune microenvironment and activate the systematic anti-tumor immune responses, exerting a notable effect on hindering tumor recurrence and metastasis. This study paves a promising paradigm for synergistic starvation therapy, PTT, and CDT cancer therapy with high efficiency.


Assuntos
Neoplasias , Humanos , Espécies Reativas de Oxigênio , Neoplasias/tratamento farmacológico , Glucose , Glucose Oxidase/uso terapêutico , Peroxidase , Microambiente Tumoral , Peróxido de Hidrogênio , Linhagem Celular Tumoral
4.
Brain Pathol ; 33(4): e13160, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186490

RESUMO

The pathological diagnosis of intracranial germinoma (IG), oligodendroglioma, and low-grade astrocytoma on intraoperative frozen section (IFS) and hematoxylin-eosin (HE)-staining section directly determines patients' treatment options, but it is a difficult task for pathologists. We aimed to investigate whether whole-slide imaging (WSI)-based deep learning can contribute new precision to the diagnosis of IG, oligodendroglioma, and low-grade astrocytoma. Two types of WSIs (500 IFSs and 832 HE-staining sections) were collected from 379 patients at multiple medical centers. Patients at Center 1 were split into the training, testing, and internal validation sets (3:1:1), while the other centers were the external validation sets. First, we subdivided WSIs into small tiles and selected tissue tiles using a tissue tile selection model. Then a tile-level classification model was established, and the majority voting method was used to determine the final diagnoses. Color jitter was applied to the tiles so that the deep learning (DL) models could adapt to the variations in the staining. Last, we investigated the effectiveness of model assistance. The internal validation accuracies of the IFS and HE models were 93.9% and 95.3%, respectively. The external validation accuracies of the IFS and HE models were 82.0% and 76.9%, respectively. Furthermore, the IFS and HE models can predict Ki-67 positive cell areas with R2 of 0.81 and 0.86, respectively. With model assistance, the IFS and HE diagnosis accuracy of pathologists improved from 54.6%-69.7% and 53.5%-83.7% to 87.9%-93.9% and 86.0%-90.7%, respectively. Both the IFS model and the HE model can differentiate the three tumors, predict the expression of Ki-67, and improve the diagnostic accuracy of pathologists. The use of our model can assist clinicians in providing patients with optimal and timely treatment options.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Aprendizado Profundo , Oligodendroglioma , Humanos , Oligodendroglioma/diagnóstico por imagem , Oligodendroglioma/cirurgia , Antígeno Ki-67 , Neuropatologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia
5.
Front Immunol ; 14: 1168244, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122727

RESUMO

Objective: This meta-analysis aimed to evaluate the efficacy and safety of PD-1/PD-L1 inhibitors in patients with glioma. Methods: PubMed, EMBASE, Web of Science, and the Cochrane library were searched from inception to January 2023 without language restriction. Primary outcomes included overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and adverse events (AEs). The risk of bias was assessed by subgroup analysis, sensitivity analysis, and publication bias, including funnel plot, Egger's test, and Begg's test. Results: A total of 20 studies involving 2,321 patients were included in this meta-analysis. In the analysis of the included phase III clinical trials, the forest plot showed that PD-1/PD-L1 inhibitors did not improve the OS (HR=1.15, 95% CI: 1.03-1.29, P=0.02, I2 = 14%) and PFS (HR=1.43, 95% CI: 1.03-1.99, P=0.03, I2 = 87%). In the single-arm analysis, the forest plot demonstrated that the 6-month OS was 71% (95% CI: 57%-83%, I2 = 92%), 1-year OS was 43% (95% CI: 33%-54%, I2 = 93%), and the 2-year OS was 27% (95% CI: 13%-44%, I2 = 97%). The pooled estimate of the median OS was 8.85 months (95% CI: 7.33-10.36, I2 = 91%). Furthermore, the result indicated that the 6-month PFS was 28% (95% CI: 18%-40%, I2 = 95%), 1-year PFS was 15% (95% CI: 8%-23%, I2 = 92%), and the 18-month PFS was 10% (95% CI: 3%-20%, I2 = 93%). The pooled estimate of the median PFS was 3.72 months (95% CI: 2.44-5.00, I2 = 99%). For ORR, the pooled estimate of ORR was 10% (95% CI: 2%-20%, I2 = 88%). We further analyzed the incidence of PD-1/PD-L1 inhibitor-related AEs, and the pooled incidence of AEs was 70% (95% CI: 58%-81%, I2 = 94%). The incidence of AEs ≥ grade 3 was 19% (95% CI: 11%-30%, I2 = 94%). The funnel plot for the median PFS and median OS was symmetric with no significant differences in Egger's test and Begg's test. The sensitivity analysis revealed that our results were stable and reliable. Conclusion: The results of this meta-analysis suggest that anti-PD-1/PD-L1 therapy is relatively safe but could not prolong survival in glioma. More randomized controlled trials are needed to confirm our results. Systematic review registration: https://www.crd.york.ac.uk/prospero/, identifier CRD42023396057.


Assuntos
Antígeno B7-H1 , Glioma , Inibidores de Checkpoint Imunológico , Humanos , Glioma/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico
6.
Front Neurol ; 14: 1209701, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37234780

RESUMO

[This corrects the article DOI: 10.3389/fneur.2023.1100933.].

7.
Front Neurol ; 14: 1100933, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064206

RESUMO

Background: A deep learning (DL) model based on representative biopsy tissues can predict the recurrence and overall survival of patients with glioma, leading to optimized personalized medicine. This research aimed to develop a DL model based on hematoxylin-eosin (HE) stained pathological images and verify its diagnostic accuracy. Methods: Our study retrospectively collected 162 patients with glioma and randomly divided them into a training set (n = 113) and a validation set (n = 49) to build a DL model. The HE-stained slide was segmented into a size of 180 × 180 pixels without overlapping. The patch-level features were extracted by the pre-trained ResNet50 to predict the recurrence and overall survival. Additionally, a light-strategy was introduced where low-size digital biopsy images with clinical information were inputted into the DL model to ensure minimum memory occupation. Results: Our study extracted 512 histopathological features from the HE-stained slides of each glioma patient. We identified 36 and 18 features as significantly related to disease-free survival (DFS) and overall survival (OS), respectively, (P < 0.05) using the univariate Cox proportional-hazards model. Pathomics signature showed a C-index of 0.630 and 0.652 for DFS and OS prediction, respectively. The time-dependent receiver operating characteristic (ROC) curves, along with nomograms, were used to assess the diagnostic accuracy at a fixed time point. In the validation set (n = 49), the area under the curve (AUC) in the 1- and 2-year DFS was 0.955 and 0.904, respectively, and the 2-, 3-, and 5-year OS were 0.969, 0.955, and 0.960, respectively. We stratified the patients into low- and high-risk groups using the median hazard score (0.083 for DFS and-0.177 for OS) and showed significant differences between these groups (P < 0.001). Conclusion: Our results demonstrated that the DL model based on the HE-stained slides showed the predictability of recurrence and survival in patients with glioma. The results can be used to assist oncologists in selecting the optimal treatment strategy in clinical practice.

8.
Environ Sci Technol ; 57(7): 2981-2991, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36749182

RESUMO

The interactions between dissolved organic matter (DOM) and iron (Fe) oxyhydroxide are crucial in regulating the biogeochemical cycling of nutrients and elements, including the preservation of carbon in soils. The mechanisms of DOM molecular assembly on mineral surfaces have been extensively studied at the mesoscale with equilibrium experiments, yet the molecular-level evolution of the DOM-mineral interface under dynamic interaction conditions is not fully understood. Here, we designed a microfluidic reactor coupled with an online solid phase extraction (SPE)-LC-QTOF MS system to continually monitor the changes in DOM composition during flowing contact with Fe oxyhydroxide at circumneutral pH, which simulates soil minerals interacting with constant DOM input. Time-series UV-visible absorption spectra and mass spectrometry data showed that after aromatic DOM moieties were first preferentially sequestered by the pristine Fe oxyhydroxide surface, the adsorption of nonaromatic DOM molecules with greater hydrophobicity, lower acidity, and lower molecular weights (<400) from new DOM solutions was favored. This is accompanied by a transition from mineral surface chemistry-dominated adsorption to organic-organic interaction-dominated adsorption. These findings provide direct molecular-level evidence to the zonal model of DOM assembly on mineral surfaces by taking the dynamics of interfacial interactions into consideration. This study also shows that coupled microfluidics and online high-resolution mass spectrometry (HRMS) system is a promising experimental platform for probing microscale environmental carbon dynamics by integrating in situ reactions, sample pretreatment, and automatic analysis.


Assuntos
Matéria Orgânica Dissolvida , Microfluídica , Espectrometria de Massas , Minerais/química , Solo/química , Carbono
9.
Biomed Pharmacother ; 156: 113783, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36240615

RESUMO

Pentraxin-3 (PTX3) is the prototype of the long pentraxin subfamily, an acute-phase protein consisting of a C-terminal pentraxin domain and a unique N-terminal domain. PTX3 was initially isolated from human umbilical vein endothelial cells and human FS-4 fibroblasts. It was subsequently found to be also produced by synoviocytes, chondrocytes, osteoblasts, smooth muscle cells, myeloid dendritic cells, epithelial cells, and tumor cells. Various modulatory factors, such as miRNAs, cytokines, drugs, and hypoxic conditions, could regulate the expression level of PTX3. PTX3 is essential in regulating innate immunity, inflammation, angiogenesis, and tissue remodeling. Besides, PTX3 may play dual (pro-tumor and anti-tumor) roles in oncogenesis. PTX3 is involved in the occurrence and development of many non-cancerous diseases, including COVID-19, and might be a potential biomarker indicating the prognosis, activity,and severity of diseases. In this review, we summarize and discuss the potential roles of PTX3 in the oncogenesis and pathogenesis of non-cancerous diseases and potential targeted therapies based on PTX3.


Assuntos
Tratamento Farmacológico da COVID-19 , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Proteína C-Reativa/genética , Proteína C-Reativa/metabolismo , Inflamação/metabolismo , Imunidade Inata , Carcinogênese
10.
Front Immunol ; 13: 831542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979347

RESUMO

Background: CLEC5A is a member of the C-type lectin superfamily. It can activate macrophages and lead to a series of immune-inflammation reactions. Previous studies reveal the role of CLEC5A in infection and inflammation diseases. Method: We acquire and analyze data from The Cancer Genome Atlas (TCGA) database, Genotype-Tissue Expression (GTEx) database, and other comprehensive databases via GSCALite, cBioPortal, and TIMER 2.0 platforms or software. Single-cell sequencing analysis was performed for quantifying the tumor microenvironment of several types of cancers. Results: CLEC5A is differentially expressed in a few cancer types, of which overexpression accompanies low overall survival of patients. DNA methylation mainly negatively correlates with CLEC5A expression. Moreover, CLEC5A is positively related to immune infiltration, including macrophages, cancer-associated fibroblasts (CAFs), and regulatory T cells (Tregs). Immune checkpoint genes are significantly associated with CLEC5A expression in diverse cancers. In addition, CLEC5A expression correlates with mismatch repair (MMR) in several cancers. Tumor mutation burden (TMB), microsatellite instability (MSI), and neoantigens show a positive association with CLEC5A expression in several cancers. Furthermore, CLEC5A in cancer correlates with signal transduction, the immune system, EMT, and apoptosis process. The drug sensitivity analysis screens out potential therapeutic agents associated with CLEC5A expression, including FR-180204, Tivozanib, OSI-930, Linifanib, AC220, VNLG/124, Bexarotene, omacetaxine mepesuccinate, narciclasine, leptomycin B, PHA-793887, LRRK2-IN-1, and CR-1-31B. Conclusion: CLEC5A overexpresses in multiple cancers in contrast to normal tissues, and high CLEC5A expression predicts poor prognosis of patients and immune infiltration. CLEC5A is a potential prognostic biomarker of diverse cancers and a target for anti-tumor therapy.


Assuntos
Neoplasias , Receptores de Superfície Celular , Biomarcadores Tumorais/genética , Humanos , Inflamação , Lectinas Tipo C/genética , Neoplasias/genética , Prognóstico , Receptores de Superfície Celular/metabolismo , Microambiente Tumoral/genética
11.
Cell Mol Neurobiol ; 42(4): 1065-1077, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-33161527

RESUMO

Glioma is the most common malignant brain tumor and long non-coding RNAs (lncRNAs) have been reported to play an important role in the growth and angiogenesis of glioma. However, the potential mechanisms of lncRNA H19 in glioma remain unclear. In the present study, the effects of lncRNA H19 on glioma cell proliferation, migration, and angiogenesis were evaluated. The expression levels of H19, miR-342, and Wnt5a in glioma tissues and cells were detected by RT-qPCR or Western blotting. Dual luciferase reporter assay confirmed the interaction between H19, miR-342, and Wnt5a. Cell proliferation, migration, and angiogenesis were analyzed by colony formation, transwell, and tube formation assays, respectively. IHC was performed to test the angiogenesis-related factor CD31. H19 and Wnt5a expression were remarkably upregulated in glioma tissues and cells, whereas miR-342 expression was downregulated. Moreover, functional analysis confirmed that knockdown of H19 or overexpression of miR-342 suppressed glioma cell proliferation, migration, and angiogenesis in vitro. Besides, H19 was found to directly target miR-342 to promote Wnt5a expression and activate ß-catenin pathway in glioma cells. Moreover, suppression of miR-342 or overexpression of Wnt5a reversed the inhibitory effect of sh-H19 on glioma growth and metastasis. Additionally, we verified that H19 promoted glioma cell proliferation, migration, and angiogenesis via miR-342/Wnt5a/ß-catenin axis in vivo. H19 regulates glioma cell growth and metastasis through miR-342 to mediate Wnt5a/ß-catenin signaling pathway, which provides new therapeutic targets for glioma treatment.


Assuntos
Glioma , MicroRNAs , RNA Longo não Codificante , Proliferação de Células/genética , Glioma/genética , Glioma/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteína Wnt-5a/genética , beta Catenina
12.
Cancer Biol Ther ; 22(5-6): 392-403, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34251962

RESUMO

A maximal surgical resection followed by radiotherapy and chemotherapy with temozolomide (TMZ) as the representative agent is the standard therapy for gliomas. However, tumor cell resistance to radiotherapy and chemotherapy leads to poor prognosis and high mortality in patients with glioma. In the present study, we demonstrated that JARID2 was downregulated and CCND1 was upregulated within glioma tissues of different grades and glioma cells. In tissue samples, JARID2 was negatively correlated with CCND1. JARID2 overexpression significantly inhibited glioma cell viability, promoted glioma cell apoptosis upon TMZ treatment, and increased p21, cleaved-PARP, and cleaved-caspase3 in TMZ-treated glioma cells. JASPAR tool predicted the possible binding sites between JARID2 and CCND1 promoter regions; through direct binding to CCND1 promoter region, JARID2 negatively regulated CCND1 expression. Under TMZ treatment, JARID2 overexpression inhibited CCND1 expression, promoted glioma cell apoptosis, and increased p21, cleaved-PARP, and cleaved-caspase3 in glioma cells treated with TMZ; meanwhile, CCND1 overexpression exerted opposite effects on glioma cells treated with TMZ and partially reversed the effects of JARID2 overexpression. In conclusion, JARID2 targets and inhibits CCND1. The JARID2/CCND1 axis modulates glioma cell growth and glioma cell sensitivity to TMZ.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Linhagem Celular Tumoral , Ciclina D1/genética , Resistencia a Medicamentos Antineoplásicos , Glioma/tratamento farmacológico , Humanos , Complexo Repressor Polycomb 2 , Temozolomida/farmacologia
13.
Lancet ; 398(10297): 303-313, 2021 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-34111416

RESUMO

BACKGROUND: Patients with locoregionally advanced nasopharyngeal carcinoma have a high risk of disease relapse, despite a high proportion of patients attaining complete clinical remission after receiving standard-of-care treatment (ie, definitive concurrent chemoradiotherapy with or without induction chemotherapy). Additional adjuvant therapies are needed to further reduce the risk of recurrence and death. However, the benefit of adjuvant chemotherapy for nasopharyngeal carcinoma remains controversial, highlighting the need for more effective adjuvant treatment options. METHODS: This multicentre, open-label, parallel-group, randomised, controlled, phase 3 trial was done at 14 hospitals in China. Patients (aged 18-65 years) with histologically confirmed, high-risk locoregionally advanced nasopharyngeal carcinoma (stage III-IVA, excluding T3-4N0 and T3N1 disease), no locoregional disease or distant metastasis after definitive chemoradiotherapy, an Eastern Cooperative Oncology Group performance status of 0 or 1, sufficient haematological, renal, and hepatic function, and who had received their final radiotherapy dose 12-16 weeks before randomisation, were randomly assigned (1:1) to receive either oral metronomic capecitabine (650 mg/m2 body surface area twice daily for 1 year; metronomic capecitabine group) or observation (standard therapy group). Randomisation was done with a computer-generated sequence (block size of four), stratified by trial centre and receipt of induction chemotherapy (yes or no). The primary endpoint was failure-free survival, defined as the time from randomisation to disease recurrence (distant metastasis or locoregional recurrence) or death due to any cause, in the intention-to-treat population. Safety was assessed in all patients who received at least one dose of capecitabine or who had commenced observation. This trial is registered with ClinicalTrials.gov, NCT02958111. FINDINGS: Between Jan 25, 2017, and Oct 25, 2018, 675 patients were screened, of whom 406 were enrolled and randomly assigned to the metronomic capecitabine group (n=204) or to the standard therapy group (n=202). After a median follow-up of 38 months (IQR 33-42), there were 29 (14%) events of recurrence or death in the metronomic capecitabine group and 53 (26%) events of recurrence or death in the standard therapy group. Failure-free survival at 3 years was significantly higher in the metronomic capecitabine group (85·3% [95% CI 80·4-90·6]) than in the standard therapy group (75·7% [69·9-81·9]), with a stratified hazard ratio of 0·50 (95% CI 0·32-0·79; p=0·0023). Grade 3 adverse events were reported in 35 (17%) of 201 patients in the metronomic capecitabine group and in 11 (6%) of 200 patients in the standard therapy group; hand-foot syndrome was the most common adverse event related to capecitabine (18 [9%] patients had grade 3 hand-foot syndrome). One (<1%) patient in the metronomic capecitabine group had grade 4 neutropenia. No treatment-related deaths were reported in either group. INTERPRETATION: The addition of metronomic adjuvant capecitabine to chemoradiotherapy significantly improved failure-free survival in patients with high-risk locoregionally advanced nasopharyngeal carcinoma, with a manageable safety profile. These results support a potential role for metronomic chemotherapy as an adjuvant therapy in the treatment of nasopharyngeal carcinoma. FUNDING: The National Natural Science Foundation of China, the Key-Area Research and Development Program of Guangdong Province, the Natural Science Foundation of Guangdong Province, the Innovation Team Development Plan of the Ministry of Education, and the Overseas Expertise Introduction Project for Discipline Innovation. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.


Assuntos
Capecitabina/administração & dosagem , Quimioterapia Adjuvante/métodos , Carcinoma Nasofaríngeo/tratamento farmacológico , Neoplasias Nasofaríngeas/tratamento farmacológico , Administração Metronômica , Adulto , Idoso , Antimetabólitos Antineoplásicos/administração & dosagem , Terapia Combinada , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
14.
Cell Prolif ; 54(3): e12988, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33442944

RESUMO

OBJECTIVES: Circadian rhythm controls complicated physiological activities in organisms. Circadian clock genes have been related to tumour progression, but its role in glioma is unknown. Therefore, we explored the relationship between dysregulated circadian clock genes and glioma progression. MATERIALS AND METHODS: Samples were divided into different groups based on circadian clock gene expression in training dataset (n = 672) and we verified the results in other four validating datasets (n = 1570). The GO and GSEA enrichment analysis were conducted to explore potential mechanism of how circadian clock genes affected glioma progression. The single-cell RNA-Seq analysis was conducted to verified previous results. The immune landscape was evaluated by the ssGSEA and CIBERSORT algorithm. Cell proliferation and viability were confirmed by the CCK8 assay, colony-forming assay and flow cytometry. RESULTS: The cluster and risk model based on circadian clock gene expression can predict survival outcome. Samples were scoring by the least absolute shrinkage and selection operator regression analysis, and high scoring tumour was associated with worse survival outcome. Samples in high-risk group manifested higher activation of immune pathway and cell cycle. Tumour immune landscape suggested high-risk tumour infiltrated more immunocytes and more sensitivity to immunotherapy. Interfering TIMELESS expression affected circadian clock gene expression, inhibited tumour cell proliferation and arrested cell cycle at the G0/G1 phase. CONCLUSIONS: Dysregulated circadian clock gene expression can affect glioma progression by affecting tumour immune landscape and cell cycle. The risk model can predict glioma survival outcome, and this model can also be applied to pan-cancer.


Assuntos
Proliferação de Células/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/fisiologia , Glioma/patologia , Ciclo Celular/fisiologia , Progressão da Doença , Glioma/mortalidade , Humanos
15.
Chin Med Sci J ; 34(3): 184-193, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31601301

RESUMO

Objective Our previous study has revealed that iASPP is elevated in human head and neck squamous cell carcinoma (HNSCC) and iASPP overexpression signifcantly correlates with tumor malignant progression and poor survival of HNSCC. This study investigated the function of iASPP playing in proliferation and invasion of HNSCC in vitro. Methods HNSCC cell line Tu686 transfected with Lentiviral vector-mediated iASPP-specific shRNA and control shRNA were named the shRNA-iASPP group and shRNA-NC group, respectively. The non-infected Tu686 cells were named the CON group. CCK-8 assay, flow cytometry, transwell invasion assay were performed to detect the effects of iASPP inhibition in vitro. Results Our results demonstrated that the proliferation of shRNA-iASPP cells at the time of 72 h (F=32.459, P=0.000), 96 h (F=51.407, P=0.000), 120 h (F=35.125, P=0.000) post-transfection, was significantly lower than that of shRNA-NC cells and CON cells. The apoptosis ratio of shRNA-iASPP cells was 9.42% ± 0.39% (F=299.490, P=0.000), which was significantly higher than that of CON cells (2.80% ± 0.42%) and shRNA-NC cells (3.18% ± 0.28%). The percentage of shRNA-iASPP cells in G0/G1 phase was 74.65% ± 1.09% (F=388.901, P=0.000), which was strikingly increased, compared with that of CON cells (55.19% ± 1.02%) and shRNA-NC cells (54.62% ± 0.88%). The number of invading cells was 56 ± 4 in the shRNA-iASPP group (F=84.965, P=0.000), which decreased significantly, compared with the CON group (111 ± 3) and the shRNA-NC group (105 ± 8). The survival rate of shRNA-iASPP cells administrated with paclitaxel was highly decreased, compared with CON cells and shRNA-NC cells (F=634.841, P=0.000). Conclusion These results suggest iASPP may play an important role in progression and aggressive behavior of HNSCC and may be an efficient chemotherapeutic target for the treatment of HNSCC.


Assuntos
Proliferação de Células/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/biossíntese , Proteínas de Neoplasias/biossíntese , Paclitaxel/farmacologia , Proteínas Repressoras/biossíntese , Carcinoma de Células Escamosas de Cabeça e Pescoço , Linhagem Celular Tumoral , Humanos , Invasividade Neoplásica , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia
16.
J Exp Clin Cancer Res ; 38(1): 298, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31291988

RESUMO

BACKGROUND: Gliomas are the most common primary tumors in central nervous system. Despite advances in diagnosis and therapy, the prognosis of glioma remains gloomy. Autophagy is a cellular catabolic process that degrades proteins and damaged organelles, which is implicated in tumorigenesis and tumor progression. Autophagy related 4C cysteine peptidase (ATG4C) is an autophagy regulator responsible for cleaving of pro-LC3 and delipidation of LC3 II. This study was designed to investigate the role of ATG4C in glioma progression and temozolomide (TMZ) chemosensitivity. METHODS: The association between ATG4C mRNA expression and prognosis of gliomas patients was analyzed using the TCGA datasets. The role of ATG4C in proliferation, apoptosis, autophagy, and TMZ chemosensitivity were investigated by silencing ATG4C in vivo. Ectopic xenograft nude mice model was established to investigate the effects of ATG4C on glioma growth in vivo. RESULTS: The median overall survival (OS) time of patients with higher ATG4C expression was significantly reduced (HR: 1.48, p = 9.91 × 10- 7). ATG4C mRNA expression was evidently increased with the rising of glioma grade (p = 2.97 × 10- 8). Knockdown ATG4C suppressed glioma cells proliferation by inducing cell cycle arrest at G1 phase. ATG4C depletion suppressed autophagy and triggered apoptosis through ROS accumulation. Depletion of ATG4C suppressed TMZ-activated autophagy and promoted sensitivity of glioma cells to TMZ. Additionally, ATG4C knockdown suppressed the growth of glioma remarkably in nude mice. CONCLUSION: ATG4C is a potential prognostic predictor for glioma patient. Targeting ATG4C may provide promising therapy strategies for gliomas treatment.


Assuntos
Proteínas Relacionadas à Autofagia/genética , Autofagia/efeitos dos fármacos , Autofagia/genética , Cisteína Endopeptidases/genética , Resistencia a Medicamentos Antineoplásicos/genética , Glioma/genética , Glioma/patologia , Adulto , Idoso , Animais , Biomarcadores Tumorais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Glioma/metabolismo , Glioma/mortalidade , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Gradação de Tumores , Estadiamento de Neoplasias , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Int J Mol Med ; 42(6): 3395-3403, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30320350

RESUMO

The positive correlation between the number of M2 phenotype TAMs (M2­TAMs) and tumour development suggests a supportive role of M2­TAMs in glioma progression. In the present study, the molecular link between glioma cells and M2­TAMs was investigated and it was demonstrated that transforming growth factor­ß1 (TGF­ß1) secreted by M2­TAMs is key in facilitating the stemness and migration of glioma cells. Cluster of differentiation (CD)133 and CD44, markers for the M2 phenotype, were assessed by western blotting. A sphere formation assay and trans­well assay were applied to test the stemness and migration abilities of glioma cells following co­cultured with M2­TAMs. Stemness markers CD133 and CD44, epithelial­mesenchymal transition­associated markers and mothers against decapentaplegic homolog (SMAD)2/3 and sex determining region Y­box 4/2 (SOX4/2) levels were also evaluated by western blotting. A xenograft tumor mouse model was used to demonstrate the tumor forming ability of glioma cells. The results showed that the U251 glioma cells co­cultured with M2­TAMs exhibited high level of sphere formation, stemness and migration ability. Recombinant TGF­ß1 protein treatment was able to achieve the same effects on U251 cells, whereas a TGF­ß pathway inhibitor reversed the stemness and migration abilities of the glioma cells induced by M2­TAMs. It was also demonstrated that TGF­ß1 secreted by M2­TAMs upregulated the phosphorylation of SMAD2/3 and the expression of SOX4/2 in glioma cells. In a mouse xenograft model, solid tumours formed by U251 cells co­cultured with M2­TAMs or pre­treated with TGF­ß1 were larger in size and had a higher growth rate. Taken together, results of the present study demonstrated that M2­TAMs promoted the stemness and migration abilities of glioma cells by secreting TGF­ß1, which activated the SMAD2/3 pathway and induced the expression of SOX4 and SOX2. These results highlight the mechanism by which M2­TAMs and glioma interact and demonstrate potential therapeutic strategies for glioma treatment.


Assuntos
Movimento Celular/fisiologia , Glioma/metabolismo , Macrófagos/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Ensaio de Imunoadsorção Enzimática , Glioma/genética , Humanos , Fosforilação/genética , Fosforilação/fisiologia , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição SOXC/genética , Fatores de Transcrição SOXC/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Proteína Smad2/genética , Proteína Smad3/genética
18.
Cell Physiol Biochem ; 47(1): 428-439, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29794476

RESUMO

BACKGROUND/AIMS: In the current study, we performed an integrated analysis of genome-wide methylation and gene expression data to find novel prognostic genes for lower-grade gliomas (LGGs). METHODS: First, TCGA methylation data were used to identify prognostic genes associated with promoter methylation. Second, candidate genes that were stably regulated by promoter methylation were explored. Third, Cox proportional hazards regression analysis was used to generate a prognostic signature, and the signature genes were used to construct a survival risk score system. RESULTS: Three genes (EMP3, GSX2 and EMILIN3) were selected as signature genes. These three signature genes were used to construct a survival risk score system. The high-risk group exhibited significantly worse overall survival (OS) and relapse-free survival (RFS) as compared to the low-risk group in the TCGA dataset. The association of the three-gene prognostic signature with patient' survival was then validated using the CGGA dataset. Moreover, Kaplan-Meier plots showed that the three-gene prognostic signature risk remarkably stratified grade II and grade III patients in terms of both OS and RFS in the TCGA cohort. There was also a significant difference between the low- and high-risk groups in IDH wild-type glioma patients, indicating that the three-gene signature may be able to help in predicting prognosis for patients with IDH wild-type gliomas. CONCLUSION: We identified and validated a three-gene (EMP3, GSX2 and EMILIN3) prognostic signature in LGGs by integrating multidimensional genomic data from the TCGA and CGGA datasets, which may help in fine-tuning the current histology-based tumors classification system and providing better stratification for future clinical trials.


Assuntos
Antígenos de Superfície/genética , Neoplasias do Sistema Nervoso Central/genética , Metilação de DNA , Glioma/genética , Proteínas de Homeodomínio/genética , Glicoproteínas de Membrana/genética , Adulto , Neoplasias do Sistema Nervoso Central/diagnóstico , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Glioma/diagnóstico , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Recidiva Local de Neoplasia/genética , Prognóstico , Regiões Promotoras Genéticas , Transcriptoma
19.
Elife ; 52016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28005008

RESUMO

Mechanisms underlying the vein development remain largely unknown. Tie2 signaling mediates endothelial cell (EC) survival and vascular maturation and its activating mutations are linked to venous malformations. Here we show that vein formation are disrupted in mouse skin and mesentery when Tie2 signals are diminished by targeted deletion of Tek either ubiquitously or specifically in embryonic ECs. Postnatal Tie2 attenuation resulted in the degeneration of newly formed veins followed by the formation of haemangioma-like vascular tufts in retina and venous tortuosity. Mechanistically, Tie2 insufficiency compromised venous EC identity, as indicated by a significant decrease of COUP-TFII protein level, a key regulator in venogenesis. Consistently, angiopoietin-1 stimulation increased COUP-TFII in cultured ECs, while Tie2 knockdown or blockade of Tie2 downstream PI3K/Akt pathway reduced COUP-TFII which could be reverted by the proteasome inhibition. Together, our results imply that Tie2 is essential for venous specification and maintenance via Akt mediated stabilization of COUP-TFII.


Assuntos
Fator II de Transcrição COUP/metabolismo , Células Endoteliais/fisiologia , Receptor TIE-2/metabolismo , Veias/crescimento & desenvolvimento , Animais , Deleção de Genes , Marcação de Genes , Mesentério/anatomia & histologia , Mesentério/embriologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor TIE-2/genética , Retina/anatomia & histologia , Pele/anatomia & histologia , Pele/embriologia , Veias/embriologia
20.
J Endod ; 39(6): 820-3, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23683285

RESUMO

INTRODUCTION: This study was conducted to evaluate the effect of a new ultrasonic tip (Jetip) for root-end preparation. METHODS: A total of 80 single-rooted teeth were endodontically treated, and the apical 3 mm of the root apex was resected. Teeth were randomly distributed into 2 experimental groups according to the ultrasonic tips used to prepare the root-end cavity. Epoxy resin replicas of root-end surfaces after root-end resection were obtained. A root-end cavity was then prepared with an ultrasonic tip, either Jetip or AS3D. Replicas of the apices were fabricated after the retropreparations, and they were processed for analysis by scanning electron microscopy (SEM) to evaluate the presence of microcracks and the quality of the root-end preparation. The morphologic characteristics of the ultrasonic tip were also assessed by SEM. The time required for root-end preparation was recorded. RESULTS: There were no statistically significant differences between the Jetip and AS3D groups in the mean time for the root-end preparation, the incidence of microcracks, or the quality of the root-end preparation (P > .05). SEM analysis showed that Jetip exhibited smoothed microprojections after the root preparations, whereas the loss of diamond particles was observed in AS3D. CONCLUSIONS: Both Jetip and AS3D provided rapid and regular root-end preparations. The cutting efficiencies of both Jetip and AS3D decreased with the number of times the tips were used. The Jetip showed smooth microprojections after root-end preparation, whereas the AS3D tip exhibited the loss of diamond particles.


Assuntos
Apicectomia/instrumentação , Procedimentos Cirúrgicos Ultrassônicos/instrumentação , Apicectomia/métodos , Diamante/química , Desenho de Equipamento , Humanos , Microscopia Eletrônica de Varredura , Microcirurgia/instrumentação , Duração da Cirurgia , Técnicas de Réplica , Obturação do Canal Radicular/métodos , Preparo de Canal Radicular/métodos , Propriedades de Superfície , Ápice Dentário/ultraestrutura , Procedimentos Cirúrgicos Ultrassônicos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA