Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37687365

RESUMO

Polyploidy is considered a driving force in plant evolution and diversification. Chinese cherry [Cerasus pseudocerasus (Lindl.) G.Don], an economically important fruit crop native to China, has evolved at the tetraploid level, with a few pentaploid and hexaploid populations. However, its auto- or allo-polyploid origin remains unclear. To address this issue, we analyzed the ploidy levels and rDNA chromosomal distribution in self- and open-pollinated seedling progenies of tetraploid and hexaploid Chinese cherry. Genomic in situ hybridization (GISH) analysis was conducted to reveal the genomic relationships between Chinese cherry and diploid relatives from the genus Cerasus. Both self- and open-pollinated progenies of tetraploid Chinese cherry exhibited tetraploids, pentaploids, and hexaploids, with tetraploids being the most predominant. In the seedling progenies of hexaploid Chinese cherry, the majority of hexaploids and a few pentaploids were observed. A small number of aneuploids were also observed in the seedling progenies. Chromosome 1, characterized by distinct length characteristics, could be considered the representative chromosome of Chinese cherry. The basic Chinese cherry genome carried two 5S rDNA signals with similar intensity, and polyploids had the expected multiples of this copy number. The 5S rDNA sites were located at the per-centromeric regions of the short arm on chromosomes 4 and 5. Three 45S rDNA sites were detected on chr. 3, 4 and 7 in the haploid complement of Chinese cherry. Tetraploids exhibited 12 signals, while pentaploids and hexaploids showed fewer numbers than expected multiples. Based on the GISH signals, Chinese cherry demonstrated relatively close relationships with C. campanulata and C. conradinae, while being distantly related to another fruiting cherry, C. avium. In combination with the above results, our findings suggested that Chinese cherry likely originated from autotetraploidy.

2.
Nat Immunol ; 23(6): 916-926, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618833

RESUMO

At steady state, the NOD-like receptor (NLR)-containing pyrin domain (PYD) (NLRP)1 inflammasome is maintained in an auto-inhibitory complex by dipeptidyl peptidases 8 and 9 (DPP8 and DPP9) and is activated by pathogen-encoded proteases after infection. Here, we showed that the open reading frame (ORF)45 protein of the Kaposi's sarcoma-associated herpesvirus activated the human NLRP1 (hNLRP1) inflammasome in a non-protease-dependent manner, and we additionally showed that the Linker1 region of hNLRP1, situated between the PYD and NACHT domains, was required for the auto-inhibition and non-protease-dependent activation of hNLRP1. At steady state, the interaction between Linker1 and the UPA subdomain silenced the activation of hNLRP1 in auto-inhibitory complexes either containing DPP9 or not in a manner independent of DPP9. ORF45 binding to Linker1 displaced UPA from the Linker1-UPA complex and induced the release of the C-terminal domain of hNLRP1 for inflammasome assembly. The ORF45-dependent activation of the NLRP1 inflammasome was conserved in primates but was not observed for murine NLRP1b inflammasomes.


Assuntos
Herpesvirus Humano 8 , Inflamassomos , Proteínas Virais/metabolismo , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Herpesvirus Humano 8/metabolismo , Humanos , Inflamassomos/metabolismo , Camundongos , Proteínas NLR/química , Proteínas NLR/metabolismo
3.
PLoS Pathog ; 18(4): e1010504, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482828

RESUMO

RSK1, an essential cellular kinase for Kaposi's sarcoma-associated herpesvirus (KSHV) replication, is highly phosphorylated and SUMOylated during KSHV lytic cycle, which determine the substrate phosphorylation and specificity of RSK1, respectively. However, the SUMO E3 ligase responsible for attaching SUMO to RSK1 has not yet been identified. By genome-wide screening, we found that KSHV ORF45 is necessary and sufficient to enhance RSK1 SUMOylation. Mechanistically, KSHV ORF45 binds to SUMOs via two classic SUMO-interacting motifs (SIMs) and functions as a SIM-dependent SUMO E3 ligase for RSK1. Mutations on these ORF45 SIMs resulted in much lower lytic gene expressions, viral DNA replication, and mature progeny virus production. Interestingly, KSHV ORF45 controls RSK1 SUMOylation and phosphorylation via two separated functional regions: SIMs and amino acid 17-90, respectively, which do not affect each other. Similar to KSHV ORF45, ORF45 of Rhesus Macaque Rhadinovirus has only one SIM and also increases RSK1 SUMOylation in a SIM-dependent manner, while other ORF45 homologues do not have this function. Our work characterized ORF45 as a novel virus encoded SUMO E3 ligase, which is required for ORF45-RSK1 axis-mediated KSHV lytic gene expression.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Animais , Linhagem Celular , Replicação do DNA , DNA Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Macaca mulatta/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral
4.
PLoS Pathog ; 17(12): e1010123, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871326

RESUMO

RSK1, a downstream kinase of the MAPK pathway, has been shown to regulate multiple cellular processes and is essential for lytic replication of a variety of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV). Besides phosphorylation, it is not known whether other post-translational modifications play an important role in regulating RSK1 function. We demonstrate that RSK1 undergoes robust SUMOylation during KSHV lytic replication at lysine residues K110, K335, and K421. SUMO modification does not alter RSK1 activation and kinase activity upon KSHV ORF45 co-expression, but affects RSK1 downstream substrate phosphorylation. Compared to wild-type RSK1, the overall phosphorylation level of RxRxxS*/T* motif is significantly declined in RSK1K110/335/421R expressing cells. Specifically, SUMOylation deficient RSK1 cannot efficiently phosphorylate eIF4B. Sequence analysis showed that eIF4B has one SUMO-interacting motif (SIM) between the amino acid position 166 and 170 (166IRVDV170), which mediates the association between eIF4B and RSK1 through SUMO-SIM interaction. These results indicate that SUMOylation regulates the phosphorylation of RSK1 downstream substrates, which is required for efficient KSHV lytic replication.


Assuntos
Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sumoilação/fisiologia , Replicação Viral/fisiologia , Linhagem Celular , Humanos
5.
Theranostics ; 11(8): 3981-3995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664876

RESUMO

Salmonella typhimurium (S. typhimurium) infection of macrophage induces NLRC4 inflammasome-mediated production of the pro-inflammatory cytokines IL-1ß. Post-translational modifications on NLRC4 are critical for its activation. Sirtuin3 (SIRT3) is the most thoroughly studied mitochondrial nicotinamide adenine dinucleotide (NAD+) -dependent deacetylase. We wondered whether SIRT3 mediated-deacetylation could take part in NLRC4 inflammasome activation. Methods: We initially tested IL-1ß production and pyroptosis after cytosolic transfection of flagellin or S. typhimurium infection in wild type and SIRT3-deficient primary peritoneal macrophages via immunoblotting and ELISA assay. These results were confirmed in SIRT3-deficient immortalized bone marrow derived macrophages (iBMDMs) which were generated by CRISPR-Cas9 technology. In addition, in vivo experiments were conducted to confirm the role of SIRT3 in S. typhimurium-induced cytokines production. Then NLRC4 assembly was analyzed by immune-fluorescence assay and ASC oligomerization assay. Immunoblotting, ELISA and flow cytometry were performed to clarify the role of SIRT3 in NLRP3 and AIM2 inflammasomes activation. To further investigate the mechanism of SIRT3 in NLRC4 activation, co-immunoprecipitation (Co-IP), we did immunoblot, cellular fractionation and in-vitro deacetylation assay. Finally, to clarify the acetylation sites of NLRC4, we performed liquid chromatography-mass spectrometry (LC-MS) and immunoblotting analysis. Results: SIRT3 deficiency led to significantly impaired NLRC4 inflammasome activation and pyroptosis both in vitro and in vivo. Furthermore, SIRT3 promotes NLRC4 inflammasome assembly by inducing more ASC speck formation and ASC oligomerization. However, SIRT3 is dispensable for NLRP3 and AIM2 inflammasome activation. Moreover, SIRT3 interacts with and deacetylates NLRC4 to promote its activation. Finally, we proved that deacetylation of NLRC4 at Lys71 or Lys272 could promote its activation. Conclusions: Our study reveals that SIRT3 mediated-deacetylation of NLRC4 is pivotal for NLRC4 activation and the acetylation switch of NLRC4 may aid the clearance of S. typhimurium infection.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Inflamassomos/metabolismo , Sirtuína 3/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/genética , Sítios de Ligação/genética , Proteínas Adaptadoras de Sinalização CARD/química , Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular , Citocinas/biossíntese , Feminino , Técnicas de Inativação de Genes , Células HEK293 , Humanos , Inflamassomos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Knockout , Medicina de Precisão , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Sirtuína 3/deficiência , Sirtuína 3/genética
6.
Mol Biol Evol ; 38(6): 2513-2519, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33585937

RESUMO

Polyploidization is a major driving force in plant evolution. Allopolyploidization, involving hybridization and genome doubling, can cause extensive transcriptome reprogramming which confers allopolyploids higher evolutionary potential than their diploid progenitors. To date, little is known about the interplay between hybridization and genome doubling in transcriptome reprogramming. Here, we performed genome-wide analyses of transcriptome reprogramming during allopolyploidization in wheat and brassica lineages. Our results indicated that hybridization-induced transcriptional and splicing changes of genes can be largely recovered to parental levels by genome doubling in allopolyploids. As transcriptome reprogramming is an important contributor to heterosis, our finding updates a longstanding theory that heterosis in interspecific hybrids can be permanently fixed through genome doubling. Our results also indicated that much of the transcriptome reprogramming in interspecific hybrids was not caused by the merging of two parental genomes, providing novel insights into the mechanisms underlying both heterosis and hybrid speciation.


Assuntos
Brassica/genética , Genoma de Planta , Hibridização Genética , Poliploidia , Transcriptoma , Triticum/genética , Regulação da Expressão Gênica de Plantas , Transcrição Gênica
7.
Plant J ; 98(6): 1015-1032, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30891832

RESUMO

Wheat (Triticum aestivum L.), a globally important crop, is challenged by increasing temperatures (heat stress, HS). However its polyploid nature, the incompleteness of its genome sequences and annotation, the lack of comprehensive HS-responsive transcriptomes and the unexplored heat sensing and signaling of wheat hinder our full understanding of its adaptations to HS. The recently released genome sequences of wheat, as well as emerging single-molecular sequencing technologies, provide an opportunity to thoroughly investigate the molecular mechanisms of the wheat response to HS. We generated a high-resolution spatio-temporal transcriptome map of wheat flag leaves and filling grain under HS at 0 min, 5 min, 10 min, 30 min, 1 h and 4 h by combining full-length single-molecular sequencing and Illumina short reads sequencing. This hybrid sequencing newly discovered 4947 loci and 70 285 transcripts, generating the comprehensive and dynamic list of HS-responsive full-length transcripts and complementing the recently released wheat reference genome. Large-scale analysis revealed a global landscape of heat adaptations, uncovering unexpected rapid heat sensing and signaling, significant changes of more than half of HS-responsive genes within 30 min, heat shock factor-dependent and -independent heat signaling, and metabolic alterations in early HS-responses. Integrated analysis also demonstrated the differential responses and partitioned functions between organs and subgenomes, and suggested a differential pattern of transcriptional and alternative splicing regulation in the HS response. This study provided comprehensive data for dissecting molecular mechanisms of early HS responses in wheat and highlighted the genomic plasticity and evolutionary divergence of polyploidy wheat.


Assuntos
Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/genética , Transdução de Sinais , Transcriptoma , Triticum/genética , Adaptação Fisiológica , Processamento Alternativo , Produtos Agrícolas , Grão Comestível/genética , Grão Comestível/fisiologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Poliploidia , Triticum/fisiologia
8.
BMC Plant Biol ; 18(1): 28, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402221

RESUMO

BACKGROUND: Common wheat is a typical allohexaploid species (AABBDD) derived from the interspecific crossing between allotetraploid wheat (AABB) and Aegilops tauschii (DD). Wide variation in grain size and shape observed among Aegilops tauschii can be retained in synthetic allohexaploid wheats, but the underlying mechanism remains enigmatic. Here, the natural and resynthesized allohexaploid wheats with near-identical AB genomes and different D genomes (TAA10 and XX329) were employed for analysis. RESULTS: Significant differences in grain size and weight between TAA10 and XX329 were observed at the early stages of development, which could be mainly attributed to the higher growth rates of the pericarp and endosperm cells in XX329 compared to TAA10. Furthermore, comparative transcriptome analysis identified that 8891 of 69,711 unigenes (12.75%) were differentially expressed between grains at 6 days after pollination (DAP) of TAA10 and XX329, including 5314 up-regulated and 3577 down-regulated genes in XX329 compared to TAA10. The MapMan functional annotation and enrichment analysis revealed that the differentially expressed genes were significantly enriched in categories of cell wall, carbohydrate and hormone metabolism. Notably, consistent with the up-regulation of sucrose synthase genes in resynthesized relative to natural allohexaploid wheat, the resynthesized allohexaploid wheat accumulated much higher contents of glucose and fructose in 6-DAP grains than those of the natural allohexaploid wheat. CONCLUSIONS: These data indicated that the genetic variation of the D genome induced drastic alterations of gene expression in grains of the natural and resynthesized allohexaploid wheats, which may contribute to the observed differences in grain size and weight.


Assuntos
Regulação da Expressão Gênica de Plantas , Genoma de Planta , Transcriptoma , Triticum/genética , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Variação Genética , Melhoramento Vegetal , Poliploidia , Triticum/crescimento & desenvolvimento
9.
Plant Cell ; 30(1): 37-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29298834

RESUMO

Genomic imprinting is an epigenetic phenomenon that causes genes to be differentially expressed depending on their parent of origin. To evaluate the evolutionary conservation of genomic imprinting and the effects of ploidy on this process, we investigated parent-of-origin-specific gene expression patterns in the endosperm of diploid (Aegilops spp), tetraploid, and hexaploid wheat (Triticum spp) at various stages of development via high-throughput transcriptome sequencing. We identified 91, 135, and 146 maternally or paternally expressed genes (MEGs or PEGs, respectively) in diploid, tetraploid, and hexaploid wheat, respectively, 52.7% of which exhibited dynamic expression patterns at different developmental stages. Gene Ontology enrichment analysis suggested that MEGs and PEGs were involved in metabolic processes and DNA-dependent transcription, respectively. Nearly half of the imprinted genes exhibited conserved expression patterns during wheat hexaploidization. In addition, 40% of the homoeolog pairs originating from whole-genome duplication were consistently maternally or paternally biased in the different subgenomes of hexaploid wheat. Furthermore, imprinted expression was found for 41.2% and 50.0% of homolog pairs that evolved by tandem duplication after genome duplication in tetraploid and hexaploid wheat, respectively. These results suggest that genomic imprinting was evolutionarily conserved between closely related Triticum and Aegilops species and in the face of polyploid hybridization between species in these genera.


Assuntos
Evolução Biológica , Sequência Conservada/genética , Impressão Genômica , Poliploidia , Triticum/genética , Diploide , Endosperma/genética , Genoma de Planta , Polimorfismo de Nucleotídeo Único/genética , Reprodutibilidade dos Testes , Transcriptoma/genética
10.
J Immunol ; 200(5): 1889-1900, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29352002

RESUMO

Dysregulation of the immune barrier function of the intestinal epithelium can often result in dysbiosis. In this study we report a novel role of intestinal epithelial cell (IEC)-derived liver kinase B1 (LKB1) in suppressing colitogenic microbiota. IEC-specific deletion of LKB1 (LKB1ΔIEC) resulted in an increased susceptibility to dextran sodium sulfate (DSS)-induced colitis and a definitive shift in the composition of the microbial population in the mouse intestine. Importantly, transfer of the microbiota from LKB1ΔIEC mice was sufficient to confer increased susceptibility to DSS-induced colitis in wild-type recipient mice. Collectively, the data indicate that LKB1 deficiency in intestinal epithelial cells nurtures the outgrowth of colitogenic bacteria in the commensal community. In addition, LKB1 deficiency in the intestinal epithelium reduced the production of IL-18 and antimicrobial peptides in the colon. Administration of exogenous IL-18 restored the expression of antimicrobial peptides, corrected the outgrowth of several bacterial genera, and rescued the LKB1ΔIEC mice from increased sensitivity to DSS challenge. Taken together, our study reveals an important function of LKB1 in IECs for suppressing colitogenic microbiota by IL-18 expression.


Assuntos
Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Intestinos/imunologia , Microbiota/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Proteínas Quinases Ativadas por AMP , Animais , Colite/induzido quimicamente , Colite/imunologia , Colo/efeitos dos fármacos , Colo/imunologia , Sulfato de Dextrana/farmacologia , Disbiose/imunologia , Interleucina-18/imunologia , Intestinos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL
11.
Plant Biotechnol J ; 16(3): 714-726, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28834352

RESUMO

Plant can acquire tolerance to environmental stresses via transcriptome reprogramming at transcriptional and alternative splicing (AS) levels. However, how AS coordinates with transcriptional regulation to contribute to abiotic stresses responses is still ambiguous. In this study, we performed genome-wide analyses of AS responses to drought stress (DS), heat stress (HS) and their combination (HD) in wheat seedlings, and further compared them with transcriptional responses. In total, we found 200, 3576 and 4056 genes exhibiting significant AS pattern changes in response to DS, HS and HD, respectively, and combined drought and heat stress can induce specific AS compared with individual one. In addition, wheat homeologous genes exhibited differential AS responses under stress conditions that more AS events occurred on B subgenome than on A and D genomes. Comparison of genes regulated at AS and transcriptional levels showed that only 12% of DS-induced AS genes were subjected to transcriptional regulation, whereas the proportion increased to ~40% under HS and HD. Functional enrichment analysis revealed that abiotic stress-responsive pathways tended to be highly overrepresented among these overlapped genes under HS and HD. Thus, we proposed that transcriptional regulation may play a major role in response to DS, which coordinates with AS regulation to contribute to HS and HD tolerance in wheat.


Assuntos
Processamento Alternativo/genética , Secas , Triticum/genética , Processamento Alternativo/fisiologia , Regulação da Expressão Gênica de Plantas/genética , Estudo de Associação Genômica Ampla , Temperatura Alta , Proteínas de Plantas/genética , Poliploidia , Transcriptoma/genética
12.
J Exp Med ; 214(10): 3051-3066, 2017 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-28821568

RESUMO

Although genetic polymorphisms in the LRRK2 gene are associated with a variety of diseases, the physiological function of LRRK2 remains poorly understood. In this study, we report a crucial role for LRRK2 in the activation of the NLRC4 inflammasome during host defense against Salmonella enteric serovar Typhimurium infection. LRRK2 deficiency reduced caspase-1 activation and IL-1ß secretion in response to NLRC4 inflammasome activators in macrophages. Lrrk2-/- mice exhibited impaired clearance of pathogens after acute S. Typhimurium infection. Mechanistically, LRRK2 formed a complex with NLRC4 in the macrophages, and the formation of the LRRK2-NLRC4 complex led to the phosphorylation of NLRC4 at Ser533. Importantly, the kinase activity of LRRK2 is required for optimal NLRC4 inflammasome activation. Collectively, our study reveals an important role for LRRK2 in the host defense by promoting NLRC4 inflammasome activation.


Assuntos
Proteínas Reguladoras de Apoptose/fisiologia , Proteínas de Ligação ao Cálcio/fisiologia , Inflamassomos/imunologia , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/fisiologia , Salmonelose Animal/imunologia , Salmonella typhimurium/imunologia , Animais , Caspase 1/fisiologia , Inflamassomos/fisiologia , Interleucina-1beta/fisiologia , Macrófagos/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação
13.
Sci Rep ; 7(1): 2581, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28566710

RESUMO

Wheat (Triticum aestivum), one of the world's most important crops, is facing unprecedented challenges due to global warming. To evaluate the gene resources for heat adaptation in hexaploid wheat, small heat shock proteins (sHSPs), the key plant heat protection genes, were comprehensively analysed in wheat and related species. We found that the sHSPs of hexaploid wheat were massively expanded in A and B subgenomes with intrachromosomal duplications during polyploidization. These expanded sHSPs were under similar purifying selection and kept the expressional patterns with the original copies. Generally, a strong purifying selection acted on the α-crystallin domain (ACD) and theoretically constrain conserved function. Meanwhile, weaker purifying selection and strong positive selection acted on the N-terminal region, which conferred sHSP flexibility, allowing adjustments to a wider range of substrates in response to genomic and environmental changes. Notably, in CI, CV, ER, MI and MII subfamilies, gene duplications, expression variations and functional divergence occurred before wheat polyploidization. Our results indicate the massive expansion of active sHSPs in hexaploid wheat may also provide more raw materials for evolving functional novelties and generating genetic diversity to face future global climate changes, and highlight the expansion of stress response genes with wheat polyploidization.


Assuntos
Evolução Molecular , Proteínas de Choque Térmico Pequenas/genética , Poliploidia , Triticum/genética , Sequência de Aminoácidos/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica/genética , Filogenia , Estresse Fisiológico/genética
14.
Acta Pharmacol Sin ; 37(7): 873-81, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27133298

RESUMO

AIM: Duchenne muscular dystrophy (DMD) is an X-linked genetic muscular disorder with no effective treatment at present. Mesenchymal stem cell (MSC) transplantation has been used to treat DMD, but the efficiency is low. Our previous studies show that activation of Wnt3a signaling promotes myogenic differentiation of MSCs in vitro. Here we report an effective MSC transplantation therapy in mdx mice by activation of Wnt3a signaling. METHODS: MSCs were isolated from mouse bone marrow, and pretreated with Wnt3a-conditioned medium (Wnt3a-CM), then transplanted into mdx mice. The recipient mice were euthanized at 4, 8, 12, 16 weeks after the transplantation, and muscle pathological changes were examined. The expression of dystrophin in muscle was detected using immunofluorescence staining, RT-PCR and Western blotting. RESULTS: Sixteen weeks later, transplantation of Wnt3a-pretreated MSCs in mdx mice improved the characteristics of dystrophic muscles evidenced by significant reductions in centrally nucleated myofibers, the variability range of cross-sectional area (CSA) and the connective tissue area of myofibers. Furthermore, transplantation of Wnt3a-pretreated MSCs in mdx mice gradually and markedly increased the expression of dystrophin in muscle, and improved the efficiency of myogenic differentiation. CONCLUSION: Transplantation of Wnt3a-pretreated MSCs in mdx mice results in long-term amelioration of the dystrophic phenotype and restores dystrophin expression in muscle. The results suggest that Wnt3a may be a promising candidate for the treatment of DMD.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Proteína Wnt3A/metabolismo , Proteína Wnt3A/farmacologia , Animais , Células Cultivadas , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Distrofina/biossíntese , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Músculo Esquelético/fisiologia , Ratos
15.
Sci Rep ; 6: 21476, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26892368

RESUMO

Salt stress dramatically reduces crop yield and quality, but the molecular mechanisms underlying salt tolerance remain largely unknown. To explore the wheat transcriptional response to salt stress, we performed high-throughput transcriptome sequencing of 10-day old wheat roots under normal condition and 6, 12, 24 and 48 h after salt stress (HASS) in both a salt-tolerant cultivar and salt-sensitive cultivar. The results demonstrated global gene expression reprogramming with 36,804 genes that were up- or down-regulated in wheat roots under at least one stress condition compared with the controls and revealed the specificity and complexity of the functional pathways between the two cultivars. Further analysis showed that substantial expression partitioning of homeologous wheat genes occurs when the plants are subjected to salt stress, accounting for approximately 63.9% (2,537) and 66.1% (2,624) of the homeologous genes in 'Chinese Spring' (CS) and 'Qing Mai 6' (QM). Interestingly, 143 salt-responsive genes have been duplicated and tandemly arrayed on chromosomes during wheat evolution and polyploidization events, and the expression patterns of 122 (122/143, 85.3%) tandem duplications diverged dynamically over the time-course of salinity exposure. In addition, constitutive expression or silencing of target genes in Arabidopsis and wheat further confirmed our high-confidence salt stress-responsive candidates.


Assuntos
Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Tolerância ao Sal/genética , Sequências de Repetição em Tandem , Triticum/genética , Cromossomos de Plantas , Análise por Conglomerados , Perfilação da Expressão Gênica , Salinidade , Estresse Fisiológico , Transcriptoma , Triticum/metabolismo
16.
New Phytol ; 209(2): 721-32, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26334764

RESUMO

Polyploidy is a major driving force in plant evolution and speciation. Phenotypic changes often arise with the formation, natural selection and domestication of polyploid plants. However, little is known about the consequence of hybridization and polyploidization on root hair development. Here, we report that root hair length of synthetic and natural allopolyploid wheats is significantly longer than those of their diploid progenitors, whereas no difference is observed between allohexaploid and allotetraploid wheats. The expression of wheat gene TaRSL4, an orthologue of AtRSL4 controlling the root hair development in Arabidopsis, was positively correlated with the root hair length in diploid and allotetraploid wheats. Moreover, transcript abundance of TaRSL4 homoeologue from A genome (TaRSL4-A) was much higher than those of other genomes in natural allopolyploid wheat. Notably, increased root hair length by overexpression of the TaRSL4-A in wheat led to enhanced shoot fresh biomass under nutrient-poor conditions. Our observations indicate that increased root hair length in allohexaploid wheat originated in the allotetraploid progenitors and altered expression of TaRSL4 gene by genome interplay shapes root hair length in allopolyploid wheat.


Assuntos
Genes de Plantas , Raízes de Plantas/genética , Poliploidia , Triticum/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomassa , Diploide , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Raízes de Plantas/anatomia & histologia , Brotos de Planta/genética , Plantas Geneticamente Modificadas
17.
Plant Physiol ; 168(4): 1309-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002909

RESUMO

Iron homeostasis is essential for plant growth and development. Here, we report that a mutation in GENERAL CONTROL NONREPRESSED PROTEIN5 (GCN5) impaired iron translocation from the root to the shoot in Arabidopsis (Arabidopsis thaliana). Illumina high-throughput sequencing revealed 879 GCN5-regulated candidate genes potentially involved in iron homeostasis. Chromatin immunoprecipitation assays indicated that five genes (At3G08040, At2G01530, At2G39380, At2G47160, and At4G05200) are direct targets of GCN5 in iron homeostasis regulation. Notably, GCN5-mediated acetylation of histone 3 lysine 9 and histone 3 lysine 14 of FERRIC REDUCTASE DEFECTIVE3 (FRD3) determined the dynamic expression of FRD3. Consistent with the function of FRD3 as a citrate efflux protein, the iron retention defect in gcn5 was rescued and fertility was partly restored by overexpressing FRD3. Moreover, iron retention in gcn5 roots was significantly reduced by the exogenous application of citrate. Collectively, these data suggest that GCN5 plays a critical role in FRD3-mediated iron homeostasis. Our results provide novel insight into the chromatin-based regulation of iron homeostasis in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Histona Acetiltransferases/genética , Histonas/genética , Ferro/metabolismo , Proteínas de Membrana Transportadoras/genética , Acetilação , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mutação , Fenótipo , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Análise de Sequência de DNA
18.
Gene ; 550(1): 18-26, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25106859

RESUMO

Wheat (Triticum aestivum L.) is one of the major grain crops, and heat stress adversely affects wheat production in many regions of the world. Previously, we found a heat-responsive gene named Lipid Transfer Protein 3 (TaLTP3) in wheat. TaLTP3 was deduced to be regulated by cold, ABA, MeJA, Auxin and oxidative stress according to cis-acting motifs in its promoter sequences. In this study, we show that TaLTP3 is responsive to prolonged water deficit, salt or ABA treatment in wheat seedlings. Also, TaLTP3 accumulation was observed after the plant suffered from heat stress both at the seedling and the grain-filling stages. TaLTP3 protein was localized in the cell membrane and cytoplasm of tobacco epidermal cells. Overexpression of TaLTP3 in yeast imparted tolerance to heat stress compared to cells expressing the vector alone. Most importantly, transgenic Arabidopsis plants engineered to overexpress TaLTP3 showed higher thermotolerance than control plants at the seedling stage. Further investigation indicated that transgenic lines decreased H2O2 accumulation and membrane injury under heat stress. Taken together, our results demonstrate that TaLTP3 confers heat stress tolerance possibly through reactive oxygen species (ROS) scavenging.


Assuntos
Adaptação Fisiológica/genética , Arabidopsis/genética , Proteínas de Transporte/genética , Proteínas de Plantas/genética , Triticum/genética , Ácido Abscísico/farmacologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Sequência de Aminoácidos , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Transporte/metabolismo , Membrana Celular/metabolismo , Citoplasma/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Temperatura Alta , Peróxido de Hidrogênio/metabolismo , Microscopia Confocal , Dados de Sequência Molecular , Estresse Oxidativo , Epiderme Vegetal/citologia , Epiderme Vegetal/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/fisiologia , Homologia de Sequência de Aminoácidos , Fatores de Tempo , Nicotiana/citologia , Nicotiana/genética , Nicotiana/metabolismo , Triticum/metabolismo , Triticum/fisiologia
19.
Hum Mol Genet ; 23(24): 6448-57, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25027325

RESUMO

Immunodeficiency, centromeric instability and facial anomalies type I (ICF1) syndrome is a rare genetic disease caused by mutations in DNA methyltransferase (DNMT) 3B, a de novo DNA methyltransferase. However, the molecular basis of how DNMT3B deficiency leads to ICF1 pathogenesis is unclear. Induced pluripotent stem cell (iPSC) technology facilitates the study of early human developmental diseases via facile in vitro paradigms. Here, we generate iPSCs from ICF Type 1 syndrome patient fibroblasts followed by directed differentiation of ICF1-iPSCs to mesenchymal stem cells (MSCs). By performing genome-scale bisulfite sequencing, we find that DNMT3B-deficient iPSCs exhibit global loss of non-CG methylation and select CG hypomethylation at gene promoters and enhancers. Further unbiased scanning of ICF1-iPSC methylomes also identifies large megabase regions of CG hypomethylation typically localized in centromeric and subtelomeric regions. RNA sequencing of ICF1 and control iPSCs reveals abnormal gene expression in ICF1-iPSCs relevant to ICF syndrome phenotypes, some directly associated with promoter or enhancer hypomethylation. Upon differentiation of ICF1 iPSCs to MSCs, we find virtually all CG hypomethylated regions remained hypomethylated when compared with either wild-type iPSC-derived MSCs or primary bone-marrow MSCs. Collectively, our results show specific methylome and transcriptome defects in both ICF1-iPSCs and differentiated somatic cell lineages, providing a valuable stem cell system for further in vitro study of the molecular pathogenesis of ICF1 syndrome. GEO accession number: GSE46030.


Assuntos
DNA (Citosina-5-)-Metiltransferases/genética , Epigênese Genética , Genoma Humano , Síndromes de Imunodeficiência/genética , Células-Tronco Pluripotentes Induzidas/enzimologia , Células-Tronco Mesenquimais/enzimologia , Diferenciação Celular , DNA (Citosina-5-)-Metiltransferases/deficiência , Metilação de DNA , Elementos Facilitadores Genéticos , Fibroblastos/enzimologia , Fibroblastos/patologia , Humanos , Síndromes de Imunodeficiência/enzimologia , Síndromes de Imunodeficiência/patologia , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Mesenquimais/patologia , Regiões Promotoras Genéticas , DNA Metiltransferase 3B
20.
PLoS One ; 9(3): e91416, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24638073

RESUMO

Using the paradigm of in vitro differentiation of hESCs/iPSCs into retinal pigment epithelial (RPE) cells, we have recently profiled mRNA and miRNA transcriptomes to define a set of RPE mRNA and miRNA signature genes implicated in directed RPE differentiation. In this study, in order to understand the role of DNA methylation in RPE differentiation, we profiled genome-scale DNA methylation patterns using the method of reduced representation bisulfite sequencing (RRBS). We found dynamic waves of de novo methylation and demethylation in four stages of RPE differentiation. Integrated analysis of DNA methylation and RPE transcriptomes revealed a reverse-correlation between levels of DNA methylation and expression of a subset of miRNA and mRNA genes that are important for RPE differentiation and function. Gene Ontology (GO) analysis suggested that genes undergoing dynamic methylation changes were related to RPE differentiation and maturation. We further compared methylation patterns among human ESC- and iPSC-derived RPE as well as primary fetal RPE (fRPE) cells, and discovered that specific DNA methylation pattern is useful to classify each of the three types of RPE cells. Our results demonstrate that DNA methylation may serve as biomarkers to characterize the cell differentiation process during the conversion of human pluripotent stem cells into functional RPE cells.


Assuntos
Diferenciação Celular/genética , Metilação de DNA , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Células-Tronco Pluripotentes/metabolismo , Epitélio Pigmentado da Retina/citologia , Transcriptoma , Adesão Celular , Linhagem Celular , Análise por Conglomerados , Células-Tronco Embrionárias/metabolismo , Matriz Extracelular , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , MicroRNAs/genética , Especificidade de Órgãos/genética , Células-Tronco Pluripotentes/citologia , Regiões Promotoras Genéticas , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA