Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 15836, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34349170

RESUMO

Acute myocardial infarction (MI) is one of the leading causes of death in humans. Our previous studies showed that gastrin alleviated acute myocardial ischaemia-reperfusion injury. We hypothesize that gastrin might protect against heart injury after MI by promoting angiogenesis. An MI model was simulated by ligating the anterior descending coronary artery in adult male C57BL/6J mice. Gastrin was administered twice daily by intraperitoneal injection for 2 weeks after MI. We found that gastrin reduced mortality, improved myocardial function with reduced infarct size and promoted angiogenesis. Gastrin increased HIF-1α and VEGF expression. Downregulation of HIF-1α expression by siRNA reduced the proliferation, migration and tube formation of human umbilical vein endothelial cells. These results indicate that gastrin restores cardiac function after MI by promoting angiogenesis via the HIF-1α/VEGF pathway.


Assuntos
Gastrinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto do Miocárdio/tratamento farmacológico , Neovascularização Patológica/prevenção & controle , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Proliferação de Células , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/patologia , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/genética
2.
Am J Physiol Renal Physiol ; 313(4): F854-F858, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28724607

RESUMO

The incretin hormone, glucagon-like peptide-1 (GLP-1), is known for responding to dietary fat and carbohydrate. It elicits effects on pancreas, gut, and brain to stabilize blood glucose levels. We have previously reported that the GLP-1 agonist, exenatide, vasodilates the kidney and suppresses proximal reabsorption. The present study was undertaken to determine whether the renal effects of exenatide are mediated by nitric oxide (NO) and/or prostaglandins. Inulin clearance (glomerular filtration rate, GFR) and urine flow rate (UV) were measured in anesthetized rats before and during exenatide infusion (1 nmol/h iv). Animals were pretreated with cyclooxygenase (COX) inhibitor (meclofenamate), NO synthase (NOS) inhibitor (NG-monomethyl-l-arginine, l-NMMA), NO clamp (l-NMMA + sodium nitroprusside), or placebo. Effectiveness of COX inhibition was tested by measuring urinary prostaglandin E2 (UPGE2). Effectiveness of NOS blockade and NO clamp was determined by urinary NO degradation products (UNOx). Exenatide increased GFR, UV, UPGE2, and UNOx. Pretreatment with meclofenamate reduced UPGE2 by 75% and reduced the effect of exenatide on UPGE2 by 30% but did not modify the effects of exenatide on GFR or UV. Pretreatment with l-NMMA reduced UNOx and the impact of exenatide on GFR and UV by 50%. Pretreatment by NO clamp did not prevent UNOx from increasing during exenatide but blunted the effects of exenatide on GFR and UV. In conclusion, exenatide is a potent renal vasodilator and diuretic in the rat. These effects of exenatide are insensitive to COX inhibition but are mediated, in part, by NO.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/agonistas , Óxido Nítrico/metabolismo , Peptídeos/farmacologia , Prostaglandinas/metabolismo , Circulação Renal/efeitos dos fármacos , Peçonhas/farmacologia , Animais , Exenatida , Masculino , Ratos Wistar
3.
Sci Rep ; 6: 37089, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27845391

RESUMO

Numerous studies have focused on generation of unfixed bovine pericardium (BP) extracellular matrix (ECM) for clinical application. However, the extent to which maintenance of native ECM niche is capable of directing behavior of repopulating cells remains relatively unexplored. By exploiting the sidedness of BP scaffolds (i.e., serous or fibrous surface), this study aims to determine the effect of ECM niche preservation on cellular repopulation using different scaffold generation methods. BP underwent either sodium dodecyl sulfate (SDS) decellularization or stepwise, solubilization-based antigen removal using amidosulfobetaine-14 (ASB-14). SDS scaffolds were toxic to repopulating human mesenchymal stem cells (hMSC). Scanning electron microscopy revealed distinct surface ultrastructure of ASB-14 scaffolds based on native BP sidedness. Basement membrane structures on the serous side stimulated hMSC cell monolayer formation, whereas fibrous side facilitated cell penetration into scaffold. Additionally, serous side seeding significantly increased hMSC adhesion and proliferation rate compared to the fibrous side. Furthermore, scaffold ECM niche stimulated sidedness dependent differential hMSC human leukocyte antigen expression, angiogenic and inflammatory cytokine secretion. This work demonstrates that ECM scaffold preparation method and preservation of BP side-based niches critically affects in vitro cell growth patterns and behavior, which has implications for use of such ECM biomaterials in clinical practice.


Assuntos
Matriz Extracelular/química , Células-Tronco Mesenquimais/metabolismo , Pericárdio/química , Alicerces Teciduais/química , Animais , Bovinos , Técnicas de Cultura de Células/métodos , Humanos , Células-Tronco Mesenquimais/citologia
4.
Am J Physiol Endocrinol Metab ; 310(7): E495-504, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26786778

RESUMO

Neuregulin-1 (NRG-1) is an endothelium-derived growth factor with cardioprotective and antiatherosclerotic properties and is currently being tested in clinical trials as a treatment for systolic heart failure. In clinical practice, heart failure often coexists with renal failure, sharing an overlapping pathophysiological background. In this study, we hypothesized that NRG-1 might protect against cardiomyopathy, atherosclerosis, and nephropathy within one disease process. We tested this hypothesis in a hypercholesterolemic apolipoprotein E-deficient (apoE(-/-)) type 1 diabetes mouse model prone to the development of cardiomyopathy, atherosclerosis, and nephropathy and compared the effects of NRG-1 with insulin. Upon onset of hyperglycemia induced by streptozotocin, apoE(-/-)mice were treated with vehicle, insulin, or recombinant human (rh)NRG-1 for 14 wk and were compared with nondiabetic apoE(-/-)littermates. Vehicle-treated diabetic apoE(-/-)mice developed left ventricular (LV) dilatation and dysfunction, dense atherosclerotic plaques, and signs of nephropathy. Nephropathy was characterized by abnormalities including hyperfiltration, albuminuria, increased urinary neutrophil gelatinase-associated lipocalin (NGAL), upregulation of renal fibrotic markers, and glomerulosclerosis. rhNRG-1 treatment induced systemic activation of ErbB2 and ErbB4 receptors in both heart and kidneys and prevented LV dilatation, improved LV contractile function, and reduced atherosclerotic plaque size. rhNRG-1 also significantly reduced albuminuria, NGALuria, glomerular fibrosis, and expression of fibrotic markers. Regarding the renal effects of rhNRG-1, further analysis showed that rhNRG-1 inhibited collagen synthesis of glomerular mesangial cells in vitro but did not affect AngII-induced vasoconstriction of glomerular arterioles. In conclusion, systemic administration of rhNRG-1 in hypercholesterolemic type 1 diabetic mice simultaneously protects against complications in the heart, arteries and kidneys.


Assuntos
Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 1/complicações , Nefropatias Diabéticas/patologia , Coração/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Insulina/farmacologia , Rim/efeitos dos fármacos , Neuregulina-1/farmacologia , Placa Aterosclerótica/patologia , Animais , Apolipoproteínas E/genética , Arteríolas/efeitos dos fármacos , Doenças Cardiovasculares , Colágeno/biossíntese , Colágeno/efeitos dos fármacos , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Nefropatias Diabéticas/etiologia , Nefropatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Ventrículos do Coração/efeitos dos fármacos , Hipercolesterolemia/complicações , Hipercolesterolemia/genética , Glomérulos Renais/efeitos dos fármacos , Células Mesangiais/efeitos dos fármacos , Camundongos , Camundongos Knockout , Contração Miocárdica/efeitos dos fármacos , Receptor ErbB-2/efeitos dos fármacos , Receptor ErbB-4/efeitos dos fármacos , Proteínas Recombinantes , Risco , Vasoconstrição/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA