Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Plants (Basel) ; 13(15)2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39124199

RESUMO

As important transcription factors, WRKYs play a vital role in the defense response of plants against the invasion of multiple pathogens. Though some WRKY members have been reported to participate in pepper immunity in response to Ralstonia solanacearum infection, the functions of the majority of WRKY members are still unknown. Herein, CaWRKY22b was cloned from the pepper genome and its function against R. solanacearum was analyzed. The transcript abundance of CaWRKY22b was significantly increased in response to the infection of R. solanacearum and the application of exogenous methyl jasmonate (MeJA). Subcellular localization assay in the leaves of Nicotiana benthamiana showed that CaWRKY22b protein was targeted to the nuclei. Agrobacterium-mediated transient expression in pepper leaves indicated that CaWRKY22b overexpression triggered intensive hypersensitive response-like cell death, H2O2 accumulation, and the up-regulation of defense- and JA-responsive genes, including CaHIR1, CaPO2, CaBPR1, and CaDEF1. Virus-induced gene silencing assay revealed that knock-down of CaWRKY22b attenuated pepper's resistance against R. solanacearum and the up-regulation of the tested defense- and jasmonic acid (JA)-responsive genes. We further assessed the role of CaWRKY22b in modulating the expression of JA-responsive CaDEF1, and the result demonstrated that CaWRKY22b trans-activated CaDEF1 expression by directly binding to its upstream promoter. Collectively, our results suggest that CaWRKY22b positively regulated pepper immunity against R. solanacearum in a manner associated with JA signaling, probably by modulating the expression of JA-responsive CaDEF1.

2.
Plants (Basel) ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999615

RESUMO

As an important member of mitogen-activated protein kinase (MAPK) cascades, MAPKs play an important role in plant defense response against biotic and abiotic stresses; however, the involvement of the majority of the MAPK family members against Ralstonia solanacearum and heat stress (HS) remains poorly understood. In the present study, CaMAPK1 was identified from the genome of pepper and its function against R. solanacearum and HS was analyzed. The transcript accumulations of CaMAPK1 and the activities of its native promoter were both significantly induced by R. solanacearum inoculation, HS, and the application of exogenous hormones, including SA, MeJA, and ABA. Transient expression of CaMAPK1 showed that CaMAPK1 can be targeted throughout the whole cells in Nicotiana benthamiana and triggered chlorosis and hypersensitive response-like cell death in pepper leaves, accompanied by the accumulation of H2O2, and the up-regulations of hormones- and H2O2-associated marker genes. The knock-down of CaMAPK1 enhanced the susceptibility to R. solanacearum partially by down-regulating the expression of hormones- and H2O2-related genes and impairing the thermotolerance of pepper probably by attenuating CaHSFA2 and CaHSP70-1 transcripts. Taken together, our results revealed that CaMAPK1 is regulated by SA, JA, and ABA signaling and coordinates responses to R. solanacearum infection and HS in pepper.

3.
Clin Respir J ; 18(5): e13770, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38783645

RESUMO

OBJECTIVE: This study aimed to explore the role and regulatory mechanism of lncRNA ZEB1-AS1 in lung cancer. METHODS: The expression of ZEB1-AS1 and miR-320b was determined by qRT-PCR. Cell viability, proliferation migration, and invasion were assessed using the CCK-8, colony-forming, and Transwell assay. EMT markers were quantified using western blot. The growth of subcutaneous tumor growth and metastatic bone tumors was evaluated in mouse model of lung cancer. Additionally, metastatic bone tumors were examined using H&E staining. RESULTS: ZEB1-AS1 expression was upregulated, while miR-320b levels were downregulated in lung cancer. Knockdown of ZEB1-AS1 resulted in a significant suppression of cell viability, proliferation, migration, invasion, and EMT in A549 cells. Furthermore, we confirmed the targeting relationship between ZEB1-AS1 and miR-320b, as well as between miR-320b and BMPR1A. Our findings suggested that ZEB1-AS1 regulated cell viability, proliferation, migration, and invasion, as well as EMT, in lung cancer cells by targeting the miR-320b/BMPR1A axis. Moreover, our in vivo experiments confirmed that ZEB1-AS1 mediated bone metastasis through targeting miR-320b/BMPR1A axis in mice with lung cancer. CONCLUSION: ZEB1-AS1 mediated bone metastasis through targeting miR-320b/BMPR1A axis in lung cancer.


Assuntos
Neoplasias Ósseas , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Masculino , Camundongos , Células A549 , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
ACS Appl Mater Interfaces ; 16(15): 19615-19624, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38587106

RESUMO

Introducing component-selective polymer chains onto the surface of a particle is an effective approach to improve the compatibilization efficiency of a particle-based compatibilizer. In this study, two particles with different kinds of component-selective polymer chains that have the same length and similar density but different graft locations were synthesized and their compatibilization effects were comparatively investigated. It was found that compared with the particle with homogeneous PMMA and PP grafts (R-P), the particle with a hemisphere of poly(methyl methacrylate) (PMMA) grafts and other hemisphere of polypropylene (PP) chains (J-P) showed a better compatibilization effect under equal loadings, although both particles exhibited high efficiency. The better compatibilization effect of particles with Janus grafts may be attributed to the stronger entanglements between grafted polymer chains and selective individual components. This work suggests that optimizing the graft location of a particle is an effective strategy for improving its compatibilization efficiency and helpful for the design of advanced particle compatibilizers.

5.
Front Immunol ; 15: 1354040, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38529273

RESUMO

Introduction: Taraxacum mongolicum (TM) is a kind of medicinal and edible homologous plant which is included in the catalogue of feed raw materials in China. It is rich in polyphenols, flavonoids, polysaccharides and other active substances, and shows many benefits to livestock, poultry and aquatic products. The study aimed to assess the potential of TM aqueous extract (TMAE) as a substitute for poultry AGPs. Methods: A total of 240 one-day-old Arbor Acker broilers were randomly assigned to four groups and fed a basal diet (Con) supplemented with 500, 1000, and 2000 mg/kg TMAE (Low, Medium, and High groups). The growth performance of the broilers was measured on day 21 and day 42. At the end of the trial, the researchers measured slaughter performance and collected serum, liver, spleen, ileum, and intestinal contents to investigate the effects of TMAE on serum biochemistry, antioxidant capacity, immune function, organ coefficient, intestinal morphology, flora composition, and short-chain fatty acids (SCFAs). Results: The results showed that broilers treated with TMAE had a significantly higher average daily gain from 22 to 42 days old compared to the Con group. Various doses of TMAE resulted in different levels of improvement in serum chemistry. High doses increased serum alkaline phosphatase and decreased creatinine. TMAE also increased the antioxidant capacity of serum, liver, and ileum in broilers. Additionally, middle and high doses of TMAE enhanced the innate immune function of the liver (IL-10) and ileum (Occludin) in broilers. Compared to the control group, the TMAE treatment group exhibited an increase in the ratio of villi length to villi crypt in the duodenum. TMAE increased the abundance of beneficial bacteria, such as Alistipes and Lactobacillus, while reducing the accumulation of harmful bacteria, such as Colidextracter and Sellimonas. The cecum's SCFAs content increased with a medium dose of TMAE. Supplementing broiler diets with TMAE at varying doses enhanced growth performance and overall health. The most significant benefits were observed at a dose of 1000 mg/kg, including improved serum biochemical parameters, intestinal morphology, antioxidant capacity of the liver and ileum, immune function of the liver and ileum, and increased SCFAs content. Lactobacillus aviarius, norank_f_norank_o__Clostridia_UCG-014, and Flavonifractor are potentially dominant members of the intestinal microflora. Conclusion: In conclusion, TMAE is a promising poultry feed additive and 1000 mg/kg is an effective reference dose.


Assuntos
Antioxidantes , Taraxacum , Animais , Antioxidantes/farmacologia , Galinhas/microbiologia , Suplementos Nutricionais , Ácidos Graxos Voláteis , Aves Domésticas
6.
Plant Physiol ; 195(1): 812-831, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38270532

RESUMO

High temperature stress (HTS) is a serious threat to plant growth and development and to crop production in the context of global warming, and plant response to HTS is largely regulated at the transcriptional level by the actions of various transcription factors (TFs). However, whether and how homeodomain-leucine zipper (HD-Zip) TFs are involved in thermotolerance are unclear. Herein, we functionally characterized a pepper (Capsicum annuum) HD-Zip I TF CaHDZ15. CaHDZ15 expression was upregulated by HTS and abscisic acid in basal thermotolerance via loss- and gain-of-function assays by virus-induced gene silencing in pepper and overexpression in Nicotiana benthamiana plants. CaHDZ15 acted positively in pepper basal thermotolerance by directly targeting and activating HEAT SHOCK FACTORA6a (HSFA6a), which further activated CaHSFA2. In addition, CaHDZ15 interacted with HEAT SHOCK PROTEIN 70-2 (CaHsp70-2) and glyceraldehyde-3-phosphate dehydrogenase1 (CaGAPC1), both of which positively affected pepper thermotolerance. CaHsp70-2 and CaGAPC1 promoted CaHDZ15 binding to the promoter of CaHSFA6a, thus enhancing its transcription. Furthermore, CaHDZ15 and CaGAPC1 were protected from 26S proteasome-mediated degradation by CaHsp70-2 via physical interaction. These results collectively indicate that CaHDZ15, modulated by the interacting partners CaGAPC1 and CaHsp70-2, promotes basal thermotolerance by directly activating the transcript of CaHSFA6a. Thus, a molecular linkage is established among CaHsp70-2, CaGAPC1, and CaHDZ15 to transcriptionally modulate CaHSFA6a in pepper thermotolerance.


Assuntos
Capsicum , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Termotolerância , Fatores de Transcrição , Capsicum/genética , Capsicum/fisiologia , Termotolerância/genética , Termotolerância/fisiologia , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Fatores de Transcrição de Choque Térmico/genética , Nicotiana/genética , Nicotiana/fisiologia , Plantas Geneticamente Modificadas , Resposta ao Choque Térmico/genética , Temperatura Alta , Ácido Abscísico/metabolismo
7.
Plant J ; 117(1): 121-144, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738430

RESUMO

Plants have evolved a sophisticated immune system to defend against invasion by pathogens. In response, pathogens deploy copious effectors to evade the immune responses. However, the molecular mechanisms used by pathogen effectors to suppress plant immunity remain unclear. Herein, we report that an effector secreted by Ralstonia solanacearum, RipAK, modulates the transcriptional activity of the ethylene-responsive factor ERF098 to suppress immunity and dehydration tolerance, which causes bacterial wilt in pepper (Capsicum annuum L.) plants. Silencing ERF098 enhances the resistance of pepper plants to R. solanacearum infection not only by inhibiting the host colonization of R. solanacearum but also by increasing the immunity and tolerance of pepper plants to dehydration and including the closure of stomata to reduce the loss of water in an abscisic acid signal-dependent manner. In contrast, the ectopic expression of ERF098 in Nicotiana benthamiana enhances wilt disease. We also show that RipAK targets and inhibits the ERF098 homodimerization to repress the expression of salicylic acid-dependent PR1 and dehydration tolerance-related OSR1 and OSM1 by cis-elements in their promoters. Taken together, our study reveals a regulatory mechanism used by the R. solanacearum effector RipAK to increase virulence by specifically inhibiting the homodimerization of ERF098 and reprogramming the transcription of PR1, OSR1, and OSM1 to boost susceptibility and dehydration sensitivity. Thus, our study sheds light on a previously unidentified strategy by which a pathogen simultaneously suppresses plant immunity and tolerance to dehydration by secreting an effector to interfere with the activity of a transcription factor and manipulate plant transcriptional programs.


Assuntos
Capsicum , Ralstonia solanacearum , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ralstonia solanacearum/fisiologia , Desidratação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Imunidade Vegetal/genética , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Capsicum/metabolismo , Resistência à Doença/genética
8.
BMC Neurol ; 23(1): 91, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859180

RESUMO

BACKGROUND: Fibromuscular dysplasia (FMD) has a high prevalence of associated nontraumatic carotid artery dissection, which could further result in transient ischaemic attack (TIA) or stroke. Limb shaking TIA is an unusual form of TIA that is commonly discribed in elderly patients with atherosclerotic backgrounds, while there are limited data about it in patients with FMD. Furthermore, discussions of limb shaking TIA in nonelderly patients are scarce. CASE PRESENTATION: An Asian 47-year-old female presented with intermittent involuntary movement of the left upper limb accompanied by neck torsion. The episode stopped soon after changing to the supine position. On native source images of time-of-flight magnetic resonance angiography (TOF-MRA), the right internal carotid artery showed a "dual lumen sign" with an intimal flap. On contrast-enhanced magnetic resonance angiography and sagittal black-blood T1WI, an intravascular haematoma with irregular lumen stenosis was observed, which overall indicated right internal carotid artery dissection. Digital subtraction angiography showed the characteristic "string-of-beads" appearance in the left internal carotid artery, and the presence of this sign pointed to the diagnosis of FMD. The patient was finally diagnosed with limb shaking TIA due to internal carotid dissection with fibromuscular dysplasia. The patient was prescribed dual anti-platelet therapy. The limb shaking vanished soon after admission with no reoccurrence in the three-month follow-up. CONCLUSIONS: This case demonstrates that limb shaking TIA can present in patients with FMD. Limb shaking TIA in nonelderly patients can be caused by multiple diseases, and more detailed patient guidance is required in clinical practice.


Assuntos
Dissecção Aórtica , Dissecação da Artéria Carótida Interna , Displasia Fibromuscular , Ataque Isquêmico Transitório , Idoso , Feminino , Humanos , Pessoa de Meia-Idade , Tremor , Artéria Carótida Interna
9.
Comput Intell Neurosci ; 2022: 9469234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35733559

RESUMO

Lung cancer accounts for the greatest number of cancer-related mortality, while the accurate evaluation of pulmonary nodules in computed tomography (CT) images can significantly increase the 5-year relative survival rate. Despite deep learning methods that have recently been introduced to the identification of malignant nodules, a substantial challenge remains due to the limited datasets. In this study, we propose a cascaded-recalibrated multiple instance learning (MIL) model based on multiattribute features transfer for pathologic-level lung cancer prediction in CT images. This cascaded-recalibrated MIL deep model incorporates a cascaded recalibration mechanism at the nodule level and attribute level, which fuses the informative attribute features into nodule embeddings and then the key nodule features can be converged into the patient-level embedding to improve the performance of lung cancer prediction. We evaluated the proposed cascaded-recalibrated MIL model on the public Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) benchmark dataset and compared it to the latest approaches. The experimental results showed a significant performance boost by the cascaded-recalibrated MIL model over the higher-order transfer learning, instance-space MIL, and embedding-space MIL models and the radiologists. In addition, the recalibration coefficients of the nodule and attribute feature for the final decision were also analyzed to reveal the underlying relationship between the confirmed diagnosis and its highly-correlated attributes. The cascaded recalibration mechanism enables the MIL model to pay more attention to those important nodules and attributes while suppressing less-useful feature embeddings, and the cascaded-recalibrated MIL model provides substantial improvements for the pathologic-level lung cancer prediction by using the CT images. The identification of the important nodules and attributes also provides better interpretability for model decision-making, which is very important for medical applications.


Assuntos
Neoplasias Pulmonares , Interpretação de Imagem Radiográfica Assistida por Computador , Bases de Dados Factuais , Humanos , Pulmão , Neoplasias Pulmonares/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Tomografia Computadorizada por Raios X/métodos
10.
Front Pharmacol ; 13: 822023, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401213

RESUMO

Metformin is a kind of widely used antidiabetic drug that regulates glucose homeostasis by inhibiting liver glucose production and increasing muscle glucose uptake. Recently, some studies showed that metformin exhibits anticancer properties in a variety of cancers. Although several antitumor mechanisms have been proposed for metformin action, its mode of action in human liver cancer remains not elucidated. In our study, we investigated the underlying molecular mechanisms of metformin's antitumor effect on Huh-7 cells of hepatocellular carcinoma (HCC) in vitro. RNA sequencing was performed to explore the effect of metformin on the transcriptome of Huh-7 cells. The results revealed that 4,518 genes (with log2 fold change > 1 or < -1, adjusted p-value < 0.05) were differentially expressed in Huh-7 cells with treatment of 25-mM metformin compared with 0-mM metformin, including 1,812 upregulated and 2,706 downregulated genes. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified 54 classical pathways that were significantly enriched, and 16 pathways are closely associated with cancer, such as cell cycle, DNA replication, extracellular matrix-receptor interaction, and so on. We selected 11 differentially expressed genes, which are closely associated with HCC, to validate their differential expressions through a quantitative real-time reverse transcription-polymerase chain reaction. The result exhibited that the genes of fatty acid synthase, mini-chromosome maintenance complex components 6 and 5, myristoylated alanine-rich C-kinase substrate, fatty acid desaturase 2, C-X-C motif chemokine ligand 1, bone morphogenetic protein 4, S-phase kinase-associated protein 2, kininogen 1, and proliferating cell nuclear antigen were downregulated, and Dual-specificity phosphatase-1 is significantly upregulated in Huh-7 cells with treatment of 25-mM metformin. These differentially expressed genes and pathways might play a crucial part in the antitumor effect of metformin and might be potential targets of metformin treating HCC. Further investigations are required to evaluate the metformin mechanisms of anticancer action in vivo.

11.
Front Oncol ; 12: 783487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35280812

RESUMO

Purpose: Our understanding of breast cancer in very young women (≤35 years old) remains limited. We aimed to assess the clinicopathological characteristics, molecular subtype, and treatment distribution and prognosis of these young patients compared with patients over 35 years. Methods: We retrospectively analyzed non-metastatic female breast cancer cases treated at three Chinese academic hospitals between January 1, 2008, and December 31, 2018. Local recurrence-free survival (LRFS), disease-free survival (DFS), and overall survival (OS) were compared between different age groups and stratified with distinct molecular subtypes. Results: A total of 11,671 women were eligible for the final analyses, and 1,207 women (10.3%) were ≤35 years at disease onset. Very young breast cancer women were more likely to be single or childless, have higher-grade disease, have more probability of lymphovascular invasion (LVI) in tumor and triple-negative subtype, and be treated by lumpectomy, chemotherapy especially more anthracycline- and paclitaxel-based chemotherapy, endocrine therapy plus ovarian function suppression (OFS), anti-HER2 therapy, and/or radiotherapy than older women (P < 0.05 for all). Very young women had the lowest 5-year LRFS and DFS among all age groups (P < 0.001 for all). When stratified by molecular subtype, very young women had the worst outcomes vs. women from the 35~50-year-old group or those from >50-year-old group for hormone receptor-positive (HR+)/human epidermal growth factor receptor 2-negative (HER2-) subtype, including LRFS, DFS, and OS (P < 0.05 for all). In terms of LRFS and DFS, multivariate analyses showed similar results among the different age groups. Conclusion: Our study demonstrated that very young women with breast cancer had higher-grade tumors, more probability of LVI in tumor, and more triple-negative subtype, when compared with older patients. They had less favorable survival outcomes, especially for patients with the HR+/HER2- subtype.

12.
Eur J Pharmacol ; 912: 174605, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34757071

RESUMO

Many studies have found that diabetes increases the risk of some cancers such as hepatocellular carcinoma. However, there are few studies on the relationship between the two diseases and their effects on intestinal flora. Therefore, we used streptozotocin and high-fat diet to establish a mouse model of type 2 diabetes, and then inoculated the Huh-7 hepatocellular carcinoma cells to obtain mouse diabetic tumor model. Mice inoculated with Huh-7 cells alone served as control. The tumor size in the diabetic tumor group was significantly higher than that in the tumor group. Our study also showed that the expression levels of inflammation-related factors (TNFα, IL-1ß, IL-6, TLR4 and MCP1) in the diabetic tumor group were significantly higher than that in the tumor group. We found that metformin alleviated blood glucose level, reduced the expressions of inflammation-related factors and retarded xenograft tumor growth in the diabetic tumor group, but it couldn't reduce the tumor growth in the tumor group. Subsequent studies found that the content of some short chain fatty acids (SCFAs) including acetic acid, propionic acid and isobutyric acid decreased significantly in diabetic tumor group. Metformin increased short chain fatty acid levels (acetic acid, butyic acid and valeric acid) and enriched the abundance of SCFA-producing bacterial genera such as Ruminococcaceae, Clostridiales, Anaerovorax, Odoribacter and Marvinbryantia. In conclusion, type 2 diabetes could promote the growth of hepatoma cells in mice. Metformin could inhibit the growth of tumor under the condition of diabetes and play a role in the intestinal homeostasis in mice.


Assuntos
Antineoplásicos/farmacologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/efeitos dos fármacos , Metformina/farmacologia , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Correlação de Dados , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Tipo 2/complicações , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos Voláteis/metabolismo , Microbioma Gastrointestinal/genética , Humanos , Inflamação/complicações , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Masculino , Metformina/uso terapêutico , Camundongos Nus , Neoplasias/complicações , Estreptozocina/toxicidade , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Front Microbiol ; 12: 664926, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34295316

RESUMO

Mitogen-activated protein kinase (MAPK) pathways play a vital role in multiple plant processes, including growth, development, and stress signaling, but their involvement in response to Ralstonia solanacearum is poorly understood, particularly in pepper plants. Herein, CaMAPK7 was identified from the pepper genome and functionally analyzed. The accumulations of CaMAPK7 transcripts and promoter activities were both significantly induced in response to R. solanacearum strain FJC100301 infection, and exogenously applied phytohormones, including methyl jasmonate (MeJA), brassinolide (BR), salicylic acid (SA), and ethephon (ETN), were decreased by abscisic acid (ABA) treatment. Virus-induced gene silencing (VIGS) of CaMAPK7 significantly enhanced the susceptibility of pepper plants to infection by R. solanacearum and downregulated the defense-related marker genes, including CaDEF1, CaPO2, CaSAR82A, and CaWRKY40. In contrast, the ectopic overexpression of CaMAPK7 in transgenic tobacco enhanced resistance to R. solanacearum and upregulated the defense-associated marker genes, including NtHSR201, NtHSR203, NtPR4, PR1a/c, NtPR1b, NtCAT1, and NtACC. Furthermore, transient overexpression of CaMAPK7 in pepper leaves triggered intensive hypersensitive response (HR)-like cell death, H2O2 accumulation, and enriched CaWRKY40 at the promoters of its target genes and drove their transcript accumulations, including CaDEF1, CaPO2, and CaSAR82A. Taken together, these data indicate that R. solanacearum infection induced the expression of CaMAPK7, which indirectly modifies the binding of CaWRKY40 to its downstream targets, including CaDEF1, CaPO2, and CaSAR82A, ultimately leading to the activation of pepper immunity against R. solanacearum. The protein that responds to CaMAPK7 in pepper plants should be isolated in the future to build a signaling bridge between CaMAPK7 and CaWRKY40.

14.
Front Genet ; 12: 603544, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33968126

RESUMO

Studies have shown the difference appearing among the prognosis of patients in different age groups. However, the molecular mechanism implicated in this disparity have not been elaborated. In this study, expression profiles of female breast cancer (BRCA) associated mRNAs, lncRNAs and miRNAs were downloaded from the TCGA database. The sample were manually classified into three groups according to their age at initial pathological diagnosis: young (age ≤ 39 years), elderly (age ≥ 65 years), and intermediate (age 40-64 years). lncRNA-miRNA-mRNA competitive endogenous RNA (ceRNA) network was respectively constructed for different age BRCA. Then, the biological functions of differentially expressed mRNAs (DEmRNAs) in ceRNA network were further investigated by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. Finally, survival analysis was used to identify prognostic biomarkers for different age BRCA patients. We identified 13 RNAs, 38 RNAs and 40 RNAs specific to patients aged ≤ 39 years, aged 40-64 years, and aged ≥ 65 years, respectively. Furthermore, the unique pathways were mainly enriched in cytokine-cytokine receptor interaction in patients aged 40-64 years, and were mainly enriched in TGF-beta signaling pathway in patients aged ≥ 65 years. According to the survival analysis, AGAP11, has-mir-301b, and OSR1 were respectively functioned as prognostic biomarkers in young, intermediate, and elderly group. In summary, our study identified the differences in the ceRNA regulatory networks and provides an effective bioinformatics basis for further understanding of the pathogenesis and predicting outcomes for different age BRCA.

15.
Int J Mol Sci ; 21(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33121168

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is the pathogenic bacterium that causes the disease Huanglongbing (HLB) in citrus and some model plants, such as Nicotiana benthamiana. After infection, CLas releases a set of effectors to modulate host responses. One of these critical effectors is Sec-delivered effector 1 (SDE1), which induces chlorosis and cell death in N. benthamiana. In this study, we revealed the DEAD-box RNA helicase (DDX3) interacts with SDE1. Gene silencing study revealed that knockdown of the NbDDX3 gene triggers leaf chlorosis, mimicking the primary symptom of CLas infection in N. benthamiana. The interactions between SDE1 and NbDDX3 were localized in the cell membrane. Overexpression of SDE1 resulted in suppression of NbDDX3 gene expression in N. benthamiana, which suggests a critical role of SDE1 in modulating NbDDX3 expression. Furthermore, we verified the interaction of SDE1 with citrus DDX3 (CsDDX3), and demonstrated that the expression of the CsDDX3 gene was significantly reduced in HLB-affected yellowing and mottled leaves of citrus. Thus, we provide molecular evidence that the downregulation of the host DDX3 gene is a crucial mechanism of leaf chlorosis in HLB-affected plants. The identification of CsDDX3 as a critical target of SDE1 and its association with HLB symptom development indicates that the DDX3 gene is an important target for gene editing, to interrupt the interaction between DDX3 and SDE1, and therefore interfere host susceptibility.


Assuntos
Citrus/microbiologia , RNA Helicases DEAD-box/metabolismo , Liberibacter/patogenicidade , Necrose e Clorose das Plantas/microbiologia , RNA Polimerase Dependente de RNA/metabolismo , Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Citrus/genética , Citrus/metabolismo , RNA Helicases DEAD-box/genética , Regulação Bacteriana da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Liberibacter/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Necrose e Clorose das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Nicotiana/genética , Nicotiana/metabolismo , Nicotiana/microbiologia
16.
Sci Rep ; 10(1): 4155, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32139705

RESUMO

Malignant gliomas are the most common tumor in central nervous system with poor prognosis. Due to the limitation of histological classification in earlier diagnosis and individualized medicine, it is necessary to combine the molecular signatures and the pathological characteristics of gliomas. Lots of microRNAs presented abnormal expression in gliomas and modulated gliomas development. Exploration the miRNAs profile is helpful for the diagnosis, therapy and prognosis of gliomas. It has been demonstrated that miR-144 plays important roles in solid tumors. However, the detail mechanisms remained unrevealed. In this study, we have demonstrated the level of miR-144 decreased in glioma tissues from patients, especially in gliomas with higher grades. MiR-144 was also validated have lower expression in glioma cell lines compared with cortical neuron cell by using qRT-PCR. The in vitro functional experiment indicated miR-144 improved gliomas progression through repressing proliferation, sensitizing to chemotherapeutics and inhibiting metastasis. We further identified fibroblast growth factor 7 (FGF7) and Caveolin 2 (CAV2) were target genes of miR-144 by luciferase reporter assay and western blotting. The mechanisms study suggested forced FGF7 expression elevated Akt activation and decreased reactive oxygen species (ROS) generation. The MTT and cell cycle assay indicated miR-144 suppressed glioma cells proliferation through modulating FGF mediated Akt signaling pathway. Meanwhile, miR-144 promoted Temozolomide (TMZ) induced apoptosis in glioma cells via increasing ROS production by using FACS. On the other hand, CAV2, as another target of miR-144, accelerated glioma cells migration and invasion via promoting glioma cells EMT progress. Retrieved expression of FGF7 or CAV2 rescued the proliferation and migration function mediated by miR-144. Furthermore, the in vivo experiments in PDX models displayed the anti-tumor function of miR-144, which could be retrieved by overexpression of FGF7 and CAV2. Taken together, these findings indicated miR-144 acted as a potential target against gliomas progression and uncovered a novel regulatory mechanism, which may provide a new therapeutic strategy and prognostic indicator for gliomas.


Assuntos
Caveolina 2/metabolismo , Fator 7 de Crescimento de Fibroblastos/metabolismo , Glioma/metabolismo , Glioma/patologia , MicroRNAs/metabolismo , Animais , Apoptose/genética , Apoptose/fisiologia , Western Blotting , Caveolina 2/genética , Ciclo Celular/genética , Ciclo Celular/fisiologia , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , Fator 7 de Crescimento de Fibroblastos/genética , Humanos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos BALB C , MicroRNAs/genética , Espécies Reativas de Oxigênio/metabolismo
17.
Pathol Oncol Res ; 26(3): 1459-1464, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31428994

RESUMO

XPC gene belongs to DNA repair pathway, which is involved in the development of uterine leiomyoma. However, its relationships with leiomyoma risk were never reported. We here hypothesized that XPC gene was associated with the risk of uterine leiomyoma. In this case-control study with a total of 391 leiomyoma cases and 493 tumor-free controls in a reproductive women population in South China, two missense polymorphisms rs2228001 A > C (Lys939Gln) and rs2228000 C > T (Ala499Val) were genotyped by quantitative polymerase chain reaction (qPCR). Then, the associations between these two polymorphisms and leiomyoma risk were investigated. It was revealed that the rs2228000 CT/TT variant genotypes had a decreased leiomyoma risk (adjusted odds ratio = 0.73, 95% confidence interval = 0.54-0.94) compared with rs2228000 CC genotype. Further stratified analysis also revealed that the protective effect of rs2228000 CT/TT on the risk of uterine leiomyoma was more evident among subjects who were younger than 35 years old compared with those with larger tumors (diameter of tumor >5 cm), and those with fewer number of myomas (only one). However, no significant association was observed for leiomyoma risk for rs2228001 A > C. This study indicated that genetic variations in XPC gene are associated with leiomyoma susceptibility in a reproductive women population. It warrants further confirmation in larger prospective studies with different populations.


Assuntos
Proteínas de Ligação a DNA/genética , Predisposição Genética para Doença/genética , Leiomioma/genética , Neoplasias Uterinas/genética , Adulto , Estudos de Casos e Controles , China , Feminino , Genótipo , Humanos , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
18.
Anticancer Agents Med Chem ; 20(4): 417-428, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31830896

RESUMO

BACKGROUND: In our previous study, we have isolated a new compound, named Fumosorinone (FU) from insect pathogenic fungi, and was found to inhibit proliferation, migration, and invasion of breast cancer MDA-MB-231 cells. OBJECTIVE: The aim of this study was to identify the underlying molecular mechanisms for FU effects on MDAMB- 231 cells. METHODS: After MDA-MB-231 cells were treated with FU for 48h, RNA sequencing was used to identify the effect of FU on the transcriptome of MDA-MB-231 cells. The validation of the relative expression of the selective genes was done using quantitative real-time PCR (qRT-PCR). RESULTS: The transcriptome results showed that 2733 genes were differentially expressed between the untreated and the FU-treated cells, including 1614 up-regulated and 1119 down-regulated genes. The multiple genes are associated with cancer cell growth, migration, and invasion. Functional analysis identified multitude of pathways related to cancer, such as cell cycle, ECM-receptor interaction, p53 signaling pathway. We selected 4 upregulated and 9 downregulated genes, which are associated with breast cancer to verify their expression using qRT-PCR. The validation showed that HSD3B1, ALOX5, AQP5, COL1A2, CCNB1, CCND1, VCAM-1, PTPN1 and PTPN11 were significantly downregulated while DUSP1, DUSP5, GADD45A, EGR1 were upregulated in FU-treated MDA-MB-231cells. CONCLUSION: These aberrantly expressed genes and pathways may play pivotal roles in the anti-cancer activity of FU, and maybe potential targets of FU treatments for TNBC. Further investigations are required to evaluate the FU mechanisms of anti-cancer action in vivo.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Ácidos Hidroxâmicos/farmacologia , Piridonas/farmacologia , Transcriptoma/efeitos dos fármacos , Animais , Antineoplásicos/química , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Fungos/química , Perfilação da Expressão Gênica , Humanos , Ácidos Hidroxâmicos/química , Insetos/microbiologia , Piridonas/química
19.
J Oncol ; 2019: 5935640, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31772580

RESUMO

Inflammation and immunity are thought as risk factors for uterine leiomyoma; however, detailed reports on this topic are scarce. The present study aimed to analyze the characteristics of immune function and clinical significance of circulating CD4/CD8 T, NK, and γδ T cells in reproductive females with uterine leiomyoma. We analyzed the above-mentioned cells in 30 reproductive females with uterine leiomyoma and 68 healthy females using flow cytometry. After that, the correlation between function of immune cells and clinical phenotypes was analyzed. Compared with healthy controls, central memory (CM) CD4/CD8 T cells as well as Treg and Tfh cells were notably increased in leiomyoma patients; however, NK and γδ T cells were decreased in patients. Moreover, such alterations of these cells in patients with leiomyoma were associated with shorter menstrual cycles, longer menstrual period, anemia, pelvic lesions, more and larger myomas, and higher levels of CA125. Additionally, the increased Tfh1/Tfh2 ratio and Tfh17 were significantly associated with longer menstrual period, more myomas, and higher CA125 levels independent of age in patients with uterine leiomyoma. In conclusion, hallmarks of peripheral immune function are remarkably correlated with clinical phenotypes in reproductive females with uterine leiomyoma. This preliminary work may provide proof-of-concept for evaluating efficacy of treatment and prognosis of reproductive females with uterine leiomyoma with the help of quantitative analysis of peripheral immune function, which may inspire performing further investigations on the relevance of immune function with different diseases.

20.
Theranostics ; 9(20): 5956-5975, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31534531

RESUMO

Mesenchymal stem cell-derived exosomes (MSC-Exo) have robust anti-inflammatory effects in the treatment of neurological diseases such as epilepsy, stroke, or traumatic brain injury. While astrocytes are thought to be mediators of these effects, their precise role remains poorly understood. To address this issue, we investigated the putative therapeutic effects and mechanism of MSC-Exo on inflammation-induced alterations in astrocytes. Methods: Lipopolysaccharide (LPS)-stimulated hippocampal astrocytes in primary culture were treated with MSC-Exo, which were also administered in pilocarpine-induced status epilepticus (SE) mice. Exosomal integration, reactive astrogliosis, inflammatory responses, calcium signaling, and mitochondrial membrane potentials (MMP) were monitored. To experimentally probe the molecular mechanism of MSC-Exo actions on the inflammation-induced astrocytic activation, we inhibited the nuclear factor erythroid-derived 2, like 2 (Nrf2, a key mediator in neuroinflammation and oxidative stress) by sgRNA (in vitro) or ML385 (Nrf2 inhibitor) in vivo. Results: MSC-Exo were incorporated into hippocampal astrocytes as well as attenuated reactive astrogliosis and inflammatory responses in vitro and in vivo. Also, MSC-Exo ameliorated LPS-induced aberrant calcium signaling and mitochondrial dysfunction in culture, and SE-induced learning and memory impairments in mice. Furthermore, the putative therapeutic effects of MSC-Exo on inflammation-induced astrocytic activation (e.g., reduced reactive astrogliosis, NF-κB deactivation) were weakened by Nrf2 inhibition. Conclusions: Our results show that MSC-Exo ameliorate inflammation-induced astrocyte alterations and that the Nrf2-NF-κB signaling pathway is involved in regulating astrocyte activation in mice. These data suggest the promising potential of MSC-Exo as a nanotherapeutic agent for the treatment of neurological diseases with hippocampal astrocyte alterations.


Assuntos
Astrócitos/imunologia , Exossomos/metabolismo , Inflamação/imunologia , Células-Tronco Mesenquimais/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Western Blotting , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Imunoquímica , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA