Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 452
Filtrar
1.
Adv Healthc Mater ; : e2400970, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38838184

RESUMO

Natural killer (NK) cells, serve as the frontline defense of the immune system, and are capable of surveilling and eliminating tumor cells. Their significance in tumor immunotherapy has garnered considerable attention in recent years. However, the absence of specific receptor-ligand interactions between NK cells and tumor cells hampers their selectivity, thereby limiting the therapeutic effectiveness of NK cell-based tumor immunotherapy. Herein, this work constructs polymannose-engineered NK (pM-NK) cells via metabolic glycoengineering and copper-free click chemistry. Polymannose containing dibenzocyclooctyne terminal groups (pM-DBCO) is synthesized and covalently modified on the surface of azido-labeled NK cells. Compared to the untreated NK cells, the interactions between pM-NK cells and MDA-MB-231 cells, a breast tumor cell line with overexpression of mannose receptors (MRs), are significantly increased, and lead to significantly enhanced killing efficacy. Consequently, intravenous administration of pM-NK cells will effectively inhibit the tumor growth and will prolong the survival of mice bearing MDA-MB-231 tumors. Thus, this work presents a novel strategy for tumor-targeting NK cell-based tumor immunotherapy.

2.
J Nanobiotechnology ; 22(1): 231, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720360

RESUMO

BACKGROUND: Circulating tumor cells (CTCs) are considered as a useful biomarker for early cancer diagnosis, which play a crucial role in metastatic process. Unfortunately, the tumor heterogeneity and extremely rare occurrence rate of CTCs among billions of interfering leukocytes seriously hamper the sensitivity and purity of CTCs isolation. METHODS: To address these, we firstly used microfluidic chips to detect the broad-spectrum of triple target combination biomarkers in CTCs of 10 types of cancer patients, including EpCAM, EGFR and Her2. Then, we constructed hybrid engineered cell membrane-camouflaged magnetic nanoparticles (HE-CM-MNs) for efficient capture of heterogeneous CTCs with high-purity, which was enabled by inheriting the recognition ability of HE-CM for various CTCs and reducing homologous cell interaction with leukocytes. Compared with single E-CM-MNs, HE-CM-MNs showed a significant improvement in the capture efficiency for a cell mixture, with an efficiency of 90%. And the capture efficiency of HE-CM-MNs toward 12 subpopulations of tumor cells was ranged from 70 to 85%. Furthermore, by using HE-CM-MNs, we successfully isolated heterogeneous CTCs with high purity from clinical blood samples. Finally, the captured CTCs by HE-CM-MNs could be used for gene mutation analysis. CONCLUSIONS: This study demonstrated the promising potential of HE-CM-MNs for heterogeneous CTCs detection and downstream analysis.


Assuntos
Biomarcadores Tumorais , Membrana Celular , Separação Celular , Nanopartículas de Magnetita , Células Neoplásicas Circulantes , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Humanos , Nanopartículas de Magnetita/química , Separação Celular/métodos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Membrana Celular/química , Biomarcadores Tumorais/sangue , Receptor ErbB-2 , Molécula de Adesão da Célula Epitelial/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias
3.
Nat Biomed Eng ; 8(5): 561-578, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38514774

RESUMO

Oncolytic bacteria can trigger innate immune activity. However, the antitumour efficacy of inactivated bacteria is poor, and attenuated live bacteria pose substantial safety risks. Here we show that intratumourally injected paraformaldehyde-fixed bacteria coated with manganese dioxide potently activate innate immune activity, modulate the immunosuppressive tumour microenvironment and trigger tumour-specific immune responses and abscopal antitumour responses. A single intratumoural administration of mineralized Salmonella typhimurium suppressed the growth of multiple types of subcutaneous and orthotopic tumours in mice, rabbits and tree shrews and protected the cured animals against tumour rechallenge. We also show that mineralized bacteria can be administered via arterial embolization to treat orthotopic liver cancer in rabbits. Our findings support the further translational testing of oncolytic mineralized bacteria as potent and safe antitumour immunotherapeutics.


Assuntos
Imunoterapia , Salmonella typhimurium , Microambiente Tumoral , Animais , Salmonella typhimurium/fisiologia , Camundongos , Coelhos , Imunoterapia/métodos , Óxidos , Compostos de Manganês/química , Linhagem Celular Tumoral , Humanos , Feminino , Imunidade Inata
5.
Asian J Surg ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38443251

RESUMO

BACKGROUND: Minimally invasive surgery has emerged as a favorable alternative to conventional surgery for various cardiac conditions. This study aimed to compare the perioperative outcomes and follow-up results of the robotic approach versus the sternotomy approach for left atrial myxoma (LAM) resection. METHOD: We retrospectively analyzed the perioperative outcomes and follow-up results of 94 patients who underwent left atrial myxoma resection using either the sternotomy approach (n = 64) or the robotic approach (n = 30) at our center between January 2017 and April 2023. Multiple linear regressions were employed to examine the actual impact of the surgical approach on perioperative outcomes while controlling for potential confounding factors. RESULTS: There were no in-hospital deaths or follow-up deaths in the robotic group. Univariate analyses revealed that robotic LAM resection had a longer cardiopulmonary bypass (CPB) time (99.93 ± 22.30 vs. 76.28 ± 24.92, P < 0.001), longer aortic clamping time (57.80 ± 20.27 vs. 47.89 ± 18.10, P = 0.019), reduced postoperative drainage (P < 0.001), shorter mechanical ventilation time (P = 0.005), shorter postoperative bed-stay time (P < 0.001), shorter postoperative hospitalization time (P = 0.040), and higher hospital costs (P = 0.001) compared to the sternotomy group. After adjusting for baseline characteristics in a multiple regression model, a longer CPB time (B = 28.328; CI, 18.609-38.047; P < 0.001), longer aortic clamping time (B = 11.856; CI, 4.069-19.644; P = 0.003), reduced postoperative drainage (B = -200.224; CI, -254.962- -145.486; P < 0.001), shorter mechanical ventilation time (B = -3.429; CI, -6.562- -0.295; P = 0.032), shorter postoperative bed-stay time (B = -2.230; CI, -3.267- -1.193; P < 0.001), shorter postoperative hospitalization time (B = -1.998; CI, -3.747- -0.250; P = 0.026), and higher hospital costs (B = 2096.866, P = 0.002) were found in the robotic group. Furthermore, the robotic group exhibited a faster return to exercise compared to the sternotomy group (Log-Rank χ2 = 34.527, P < 0.001). CONCLUSION: Both the robotic and sternotomy approaches are viable and safe options for LAM resection. However, despite the higher costs, longer CPB time, and longer aortic clamping time associated with robotic LAM resection, this technique was correlated with reduced postoperative drainage and faster postoperative recovery compared to the sternotomy technique.

6.
Adv Mater ; 36(23): e2314095, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38344832

RESUMO

Age-related macular degeneration (AMD) disease has become a worldwide senile disease, and frequent intravitreal injection of anti-vascular endothelial growth factor (anti-VEGF) is the mainstream treatment in the clinic, which is associated with sight-threatening complications. Herein, nintedanib, an inhibitor of angiogenesis, and lutein, a potent antioxidant, can co-assemble into nanoparticles through multiple noncovalent interactions. Interestingly, the co-assembled lutein/nintedanib nanoparticles (L/N NPs) exhibit significantly improved stability and achieve long-term sustained release of two drugs for at least two months in mice. Interestingly, in rabbit eyeball with a more complete barrier system, the L/N NPs still successfully distribute in the retina and choroid for a month. In the laser-induced mouse choroidal neovascularization model, the L/N NPs after a minimally invasive subconjunctival administration can successfully inhibit angiogenesis and achieve comparable and even better therapeutic results to that of standard intravitreal injection of anti-VEGF. Therefore, the subconjunctival injection of L/N NPs with long-term sustained drug release behavior represents a promising and innovative strategy for AMD treatment. Such minimally invasive administration together with the ability to effectively inhibit angiogenesis reduce inflammation and counteract oxidative stress and holds great potential for improving patient outcomes and quality of life in those suffering from this debilitating eye condition.


Assuntos
Neovascularização de Coroide , Preparações de Ação Retardada , Indóis , Nanopartículas , Animais , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Nanopartículas/química , Coelhos , Preparações de Ação Retardada/química , Camundongos , Indóis/química , Indóis/uso terapêutico , Inibidores da Angiogênese/química , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Liberação Controlada de Fármacos , Humanos , Portadores de Fármacos/química , Modelos Animais de Doenças
7.
Cancer Cell Int ; 24(1): 86, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402174

RESUMO

BACKGROUND: The role of Acyl-CoA dehydrogenase long chain (ACADL) in different tumor types had different inhibiting or promoting effect. However, its role in non-small cell lung cancer (NSCLC) carcinogenicity is not clear. METHOD: In this study, we utilized The Cancer Genome Atlas (TCGA) database to analyze ACADL expression in NSCLC and its correlation with overall survival. Furthermore, we investigated the function of ACADL on cellular proliferation, invasion, colony, apoptosis, cell cycle in vitro with NSCLC cells. Mechanistically, we evaluated the regulatory effect of ACADL expression on its downstream factor yes-associated protein (YAP) by assessing YAP phosphorylation levels and its cellular localization. Finally, we verified the tumorigenic effect of ACADL on NSCLC cells through xenograft experiments in vivo. RESULTS: Compared to adjacent non-cancerous samples, ACADL significantly down-regulated in NSCLC. Overexpression of ACADL, effectively reduced the proliferative, colony, and invasive capabilities of NSCLC cells, while promoting apoptosis and inducing cell cycle arrest. Moreover, ACADL overexpression significantly enhanced YAP phosphorylation and hindered its nuclear translocation. However, the inhibitory effect of the overexpression of ACADL in NSCLC cells mentioned above can be partially counteracted by YAP activator XMU-MP-1 application both in vitro and in vivo. CONCLUSION: The findings suggest that ACADL overexpression could suppress NSCLC development by modulating YAP phosphorylation and limiting its nuclear shift. This role of ACADL-YAP axis provided novel insights into NSCLC carcinogenicity and potential therapeutic strategies.

8.
Nanotechnology ; 35(18)2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38271719

RESUMO

Photothermal agent accompanying with thermally responsive materials, displays well controlled drug release property, which is well-received as an outstanding design strategy for simultaneous photothermal/chemotherapy in cancer. Cyanine dye, as the prestigious photothermal agent has shown great potential due to its preeminent near-infrared absorbance and excellent thermal conversion efficiency. However, their inherent defect such as inferior photothermal stability, high leakage risk and poor therapy efficacy limit their further application in cancer therapy. Hence, a facile and universal strategy to make up these deficiencies is developed. Chemotherapeutic drug DOX and cyanine dye were loaded into polydopamine (PDA) nanoparticles. The PDA encapsulation dramatically improved the photothermal stability of cyanine dye. Attributed by the PDA structure feature, the thermo-sensitive small molecule glyamine (Gla) is introduced into the PDA surface to lessen leakage. The Gla can form a dense encapsulation layer on the dopamine surface through hydrogen bond. This newly fabricated Cyanine/DOX@PDA-Gla nanopaltform is characterized with NIR light/pH dual-responsive property, high NIR photothermal conversion performance and fluorescence guided chemo-photothermal therapy.


Assuntos
Hipertermia Induzida , Indóis , Nanopartículas , Neoplasias , Polímeros , Humanos , Terapia Fototérmica , Doxorrubicina/química , Fototerapia , Neoplasias/tratamento farmacológico , Nanopartículas/química , Concentração de Íons de Hidrogênio , Liberação Controlada de Fármacos
9.
Cell Rep Med ; 5(2): 101375, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38278146

RESUMO

Despite considerable efforts to identify human liver cancer genomic alterations that might unveil druggable targets, the systematic translation of multiomics data remains challenging. Here, we report success in long-term culture of 64 patient-derived hepatobiliary tumor organoids (PDHOs) from a Chinese population. A divergent response to 265 metabolism- and epigenetics-related chemicals and 36 anti-cancer drugs is observed. Integration of the whole genome, transcriptome, chromatin accessibility profiles, and drug sensitivity results of 64 clinically relevant drugs defines over 32,000 genome-drug interactions. RUNX1 promoter mutation is associated with an increase in chromatin accessibility and a concomitant gene expression increase, promoting a cluster of drugs preferentially sensitive in hepatobiliary tumors. These results not only provide an annotated PDHO biobank of human liver cancer but also suggest a systematic approach for obtaining a comprehensive understanding of the gene-regulatory network of liver cancer, advancing the applications of potential personalized medicine.


Assuntos
Antineoplásicos , Neoplasias Hepáticas , Humanos , Farmacogenética , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Organoides/patologia , Cromatina/metabolismo
10.
Biomaterials ; 305: 122470, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228027

RESUMO

The efficacy of radiotherapy has not yet achieved optimal results, partially due to insufficient priming and infiltration of effector immune cells within the tumor microenvironment (TME), which often exhibits suppressive phenotypes. In particular, the infiltration of X-C motif chemokine receptor 1 (XCR1)-expressing conventional type-1 dendritic cells (cDC1s), which are critical in priming CD8+ cytotoxic T cells, within the TME is noticeably restricted. Hence, we present a facile methodology for the efficient fabrication of a calcium phosphate hydrogel loaded with X-C motif chemokine ligand 1 (XCL1) to selectively recruit cDC1s. Manganese phosphate microparticles were also loaded into this hydrogel to reprogram the TME via cGAS-STING activation, thereby facilitating the priming of cDC1s propelled specific CD8+ T cells. They also polarize tumor-associated macrophages towards the M1 phenotype and reduce the proportion of regulatory cells, effectively reversing the immunosuppressive TME into an immune-active one. The yielded XCL1@CaMnP gel exhibits significant efficacy in enhancing the therapeutic outcomes of radiotherapy, particularly when concurrently administered with postoperative radiotherapy, resulting in an impressive 60 % complete response rate. Such XCL1@CaMnP gel, which recruits cDC1s to present tumor antigens generated in situ, holds great potential as a versatile platform for enhanced cancer treatment through modulating the immunosuppressive TME.


Assuntos
Linfócitos T CD8-Positivos , Apresentação Cruzada , Linfócitos T Citotóxicos , Células Dendríticas , Hidrogéis/farmacologia , Microambiente Tumoral
11.
Nat Commun ; 15(1): 820, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38280876

RESUMO

Transdermal drug delivery has been regarded as an alternative to oral delivery and subcutaneous injection. However, needleless transdermal delivery of biomacromolecules remains a challenge. Herein, a transdermal delivery platform based on biocompatible fluorocarbon modified chitosan (FCS) is developed to achieve highly efficient non-invasive delivery of biomacromolecules including antibodies and antigens. The formed nanocomplexes exhibits effective transdermal penetration ability via both intercellular and transappendageal routes. Non-invasive transdermal delivery of immune checkpoint blockade antibodies induces stronger immune responses for melanoma in female mice and reduces systemic toxicity compared to intravenous injection. Moreover, transdermal delivery of a SARS-CoV-2 vaccine in female mice results in comparable humoral immunity as well as improved cellular immunity and immune memory compared to that achieved with subcutaneous vaccine injection. Additionally, FCS-based protein delivery systems demonstrate transdermal ability for rabbit and porcine skins. Thus, FCS-based transdermal delivery systems may provide a compelling opportunity to overcome the skin barrier for efficient transdermal delivery of bio-therapeutics.


Assuntos
Quitosana , Melanoma , Vacinas Virais , Suínos , Feminino , Humanos , Animais , Camundongos , Coelhos , Melanoma/tratamento farmacológico , Vacinas contra COVID-19 , Imunoterapia , Sistemas de Liberação de Medicamentos
12.
Adv Ther ; 41(3): 967-990, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38286960

RESUMO

Liver diseases cause a significant burden on public health worldwide. In spite of great advances during recent years, there are still many challenges in the diagnosis and treatment of liver diseases. During recent years, artificial intelligence (AI) has been widely used for the diagnosis, risk stratification, and prognostic prediction of various diseases based on clinical datasets and medical images. Accumulative studies have shown its performance for diagnosing patients with nonalcoholic fatty liver disease and liver fibrosis and assessing their severity, and for predicting treatment response and recurrence of hepatocellular carcinoma, outcomes of liver transplantation recipients, and risk of drug-induced liver injury. Herein, we aim to comprehensively summarize the current evidence regarding diagnostic, prognostic, and/or therapeutic role of AI in these common liver diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Inteligência Artificial , Cirrose Hepática/complicações , Cirrose Hepática/diagnóstico , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/terapia , Neoplasias Hepáticas/diagnóstico
13.
Angew Chem Int Ed Engl ; 63(2): e202312624, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37737971

RESUMO

Subunit vaccines based on antigen proteins or epitopes of pathogens or tumors show advantages in immunological precision and high safety, but are often limited by their low immunogenicity. Adjuvants can boost immune responses by stimulating immune cells or promoting antigen uptake by antigen presenting cells (APCs), yet existing clinical adjuvants struggle in simultaneously achieving these dual functions. Additionally, the spatial organization of antigens might be crucial to their immunogenicity. Hence, superior adjuvants should potently stimulate the immune system, precisely arrange antigens, and effectively deliver antigens to APCs. Recently, precisely organizing and delivering antigens with the unique editability of DNA nanostructures has been proposed, presenting unique abilities in significantly improving the immunogenicity of antigens. In this minireview, we will discuss the principles behind using DNA nanostructures as self-adjuvant carriers and review the latest advancements in this field. The potential and challenges associated with self-adjuvant DNA nanostructures will also be discussed.


Assuntos
Nanoestruturas , Vacinas , Adjuvantes Imunológicos , Vacinas de Subunidades Antigênicas , Antígenos , DNA
14.
Adv Mater ; 36(2): e2308477, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37985164

RESUMO

Severe systemic inflammation following myocardial infarction (MI) is a major cause of patient mortality. MI-induced inflammation can trigger the production of free radicals, which in turn ultimately leads to increased inflammation in cardiac lesions (i.e., inflammation-free radicals cycle), resulting in heart failure and patient death. However, currently available anti-inflammatory drugs have limited efficacy due to their weak anti-inflammatory effect and poor accumulation at the cardiac site. Herein, a novel Fe-Cur@TA nanozyme is developed for targeted therapy of MI, which is generated by coordinating Fe3+ and anti-inflammatory drug curcumin (Cur) with further modification of tannic acid (TA). Such Fe-Cur@TA nanozyme exhibits excellent free radicals scavenging and anti-inflammatory properties by reducing immune cell infiltration, promoting macrophage polarization toward the M2-like phenotype, suppressing inflammatory cytokine secretion, and blocking the inflammatory free radicals cycle. Furthermore, due to the high affinity of TA for cardiac tissue, Fe-Cur@TA shows an almost tenfold greater in cardiac retention and uptake than Fe-Cur. In mouse and preclinical beagle dog MI models, Fe-Cur@TA nanozyme preserves cardiac function and reduces scar size, suggesting promising potential for clinical translation in cardiovascular disease.


Assuntos
Macrófagos , Infarto do Miocárdio , Polifenóis , Humanos , Animais , Camundongos , Cães , Macrófagos/metabolismo , Infarto do Miocárdio/patologia , Inflamação/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Anti-Inflamatórios/metabolismo , Radicais Livres
15.
Angew Chem Int Ed Engl ; 63(2): e202315782, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38018480

RESUMO

Dendritic cell vaccine (DCV) holds great potential in tumor immunotherapy owing to its potent ability in eliciting tumor-specific immune responses. Aiming at engineering enhanced DCV, we report the first effort to construct a glycopolymer-engineered DC vaccine (G-DCV) via metabolicglycoengineering and copper-free click-chemistry. Model G-DCV was prepared by firstly delivering tumor antigens, ovalbumin (OVA) into dendritic cells (DC) with fluoroalkane-grafted polyethyleneimines, followed by conjugating glycopolymers with a terminal group of dibenzocyclooctyne (DBCO) onto dendritic cells. Compared to unmodified DCV, our G-DCV could induce stronger T cell activation due to the enhanced adhesion between DCs and T cells. Notably, such G-DCV could more effectively inhibit the growth of the mouse B16-OVA (expressing OVA antigen) tumor model after adoptive transfer. Moreover, by combination with an immune checkpoint inhibitor, G-DCV showed further increased anti-tumor effects in treating different tumor models. Thus, our work provides a novel strategy to enhance the therapeutic effectiveness of DC vaccines.


Assuntos
Neoplasias , Vacinas , Camundongos , Animais , Linfócitos T , Antígenos de Neoplasias , Neoplasias/metabolismo , Ovalbumina , Membrana Celular , Células Dendríticas/metabolismo
16.
Adv Mater ; 36(9): e2308254, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37918820

RESUMO

Tumor hypoxia and acidity, two general features of solid tumors, are known to have negative effect on cancer immunotherapy by directly causing dysfunction of effector immune cells and promoting suppressive immune cells inside tumors. Herein, a multifunctional colloidosomal microreactor is constructed by encapsulating catalase within calcium carbonate (CaCO3 ) nanoparticle-assembled colloidosomes (abbreviated as CaP CSs) via the classic double emulsion method. The yielded CCaP CSs exhibit well-retained proton-scavenging and hydrogen peroxide decomposition performances and can thus neutralize tumor acidity, attenuate tumor hypoxia, and suppress lactate production upon intratumoral administration. Consequently, CCaP CSs treatment can activate potent antitumor immunity and thus significantly enhance the therapeutic potency of coloaded anti-programmed death-1 (anti-PD-1) antibodies in both murine subcutaneous CT26 and orthotopic 4T1 tumor xenografts. In addition, such CCaP CSs treatment also markedly reinforces the therapeutic potency of epidermal growth factor receptor expressing chimeric antigen receptor T (EGFR-CAR-T) cells toward a human triple-negative breast cancer xenograft by promoting their tumor infiltration and effector cytokine secretion. Therefore, this study highlights that chemical modulation of tumor acidity and hypoxia can collectively reverse tumor immunosuppression and thus significantly potentiate both immune checkpoint blockade and CAR-T cell immunotherapies toward solid tumors.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Animais , Camundongos , Imunoterapia , Terapia de Imunossupressão , Ácido Láctico
17.
Eur J Gastroenterol Hepatol ; 36(1): 26-32, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37642661

RESUMO

OBJECTIVE: To externally validate the robustness of the FAMISH predicting score designed to estimate the risk of metachronous gastric lesions (MGLs) after endoscopic submucosal dissection (ESD) for early gastric cancer (EGC). METHODS: This multicenter, retrospective study included 618 patients with EGC who underwent curative ESD at two tertiary referral teaching hospitals between January 2014 and December 2019. FAMISH score was a composite indicator of age, sex, family history, corpus intestinal metaplasia, synchronous lesions, and H. pylori infection. Discrimination, calibration, and risk stratification of these scores were assessed. Associations between MGL characteristics and FAMISH scores were also explored. RESULTS: After a median follow-up period of 60 months, 83 of 618 patients (13.4%) developed MGL. The discrimination ability according to the area under the curve was 0.708 (95% CI, 0.645-0.772) for predicting the 5-year MGL. The calibration results showed good consistency between the predicted and actual MGL (Hosmer-Lemeshow, P  > 0.05). In terms of risk stratification, the 5-year MGL rates were 4.1% (95% CI, 1.6%-6.5%), 10.8% (95% CI, 7.2%-14.3%), and 32.1% (95% CI, 20.9%-41.7%) in the low-, intermediate-, and high-risk groups, respectively ( P  < 0.001). For patients with MGL, the curative resection rate of ESD was significantly higher in the low- and intermediate-risk groups than in the high-risk group (100% vs. 80%, P  = 0.037). CONCLUSION: The FAMISH predicting score was externally validated and can be generalized to an independent patient population. This adjuvant tool can assist in individual clinical decision-making.


Assuntos
Ressecção Endoscópica de Mucosa , Infecções por Helicobacter , Neoplasias Gástricas , Humanos , Estudos Retrospectivos , Gastroscopia/métodos , Neoplasias Gástricas/patologia , Ressecção Endoscópica de Mucosa/métodos , Infecções por Helicobacter/epidemiologia , Mucosa Gástrica/cirurgia , Mucosa Gástrica/patologia , Resultado do Tratamento
18.
Natl Sci Rev ; 11(1): nwad257, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38116090

RESUMO

Lipiodol chemotherapeutic emulsions remain one of the main choices for the treatment of unresectable hepatocellular carcinoma (HCC) via transarterial chemoembolization (TACE). However, the limited stability of Lipiodol chemotherapeutic emulsions would lead to rapid drug diffusion, which would reduce the therapeutic benefit and cause systemic toxicity of administrated chemotherapeutics. Therefore, the development of enhanced Lipiodol-based formulations is of great significance to enable effective and safe TACE treatment. Herein, a stable water-in-oil Lipiodol Pickering emulsion (LPE) stabilized by pH-dissociable calcium carbonate nanoparticles and hemin is prepared and utilized for efficient encapsulation of lipoxygenase (LOX). The obtained LOX-loaded CaCO3&hemin-stabilized LPE (LHCa-LPE) showing greatly improved emulsion stability could work as a pH-responsive and self-fueling microreactor to convert polyunsaturated fatty acids (PUFAs), a main component of Lipiodol, to cytotoxic lipid radicals through the cascading catalytic reaction driven by LOX and hemin, thus inducing ferroptosis of cancer cells. As a result, such LHCa-LPE upon transcatheter embolization can effectively suppress the progression of orthotopic N1S1 HCC in rats. This study highlights a concise strategy to prepare pH-responsive and stable LPE-based self-fueling microreactors, which could serve as bifunctional embolic and ferroptosis-inducing agents to enable proof-of-concept transarterial ferro-embolization therapy of HCC.

19.
Mol Biotechnol ; 66(5): 1220-1228, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38103098

RESUMO

Astaxanthin (ATX) is known for its antioxidant and anti-inflammation functions yet its role in cancers requires more research. This study is aimed to reveal the potential synergetic effect of ATX with ionizing radiation (IR) in OSCC. Cell survival was measured after human OSCC cells including CAL27 and SCC9, and normal human oral keratinocytes (NHOKs) were treated with different concentrations of ATX for 24 h. Colony formation assays were performed after OSCC cells were treated with IR, ATX (20 µ M), or combined and survival fraction was analyzed. Malondialdehyde (MDA), glutathione (GSH), and intercellular iron levels were measured. Western blot method was used to measure the ferroptosis-related proteins, GPX4, SLC7A11, and ACSL4. In xenograft mice model, we evaluated the tumor volumes, tumor growth, and examined the GPX4/ACSL4 proteins in tumor tissues using Immunohistochemistry (IHC). ATX inhibited viability of OSCC cells but not NHOK. In OSCC cells, ATX further enhanced the cell death induced by IR. In addition, ATX promoted the MDA content, Iron levels but inhibited the GSH regulated by IR in cells. ATX could synergize with IR, further inhibiting GPX4, SLC7A11 and promoting ACSL4 in OSCC cells. In vivo, ATX and IR treatment inhibited OSCC tumor growth and the group with combined treatment showed the most inhibitory effect. GPX4 was inhibited by IR and further inhibited in the combined group while ACSL4 was promoted by IR and enhanced more significantly in the combined group. ATX might synergize with IR treatment in OSCC partly via ferroptosis.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Bucais , Radiação Ionizante , Xantofilas , Ensaios Antitumorais Modelo de Xenoenxerto , Xantofilas/farmacologia , Humanos , Animais , Neoplasias Bucais/radioterapia , Neoplasias Bucais/patologia , Neoplasias Bucais/metabolismo , Neoplasias Bucais/tratamento farmacológico , Linhagem Celular Tumoral , Camundongos , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/radioterapia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/tratamento farmacológico , Coenzima A Ligases/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Ferroptose/efeitos dos fármacos , Ferroptose/efeitos da radiação , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Glutationa/metabolismo , Malondialdeído/metabolismo , Camundongos Nus , Ferro/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Queratinócitos/efeitos dos fármacos
20.
Nano Lett ; 23(22): 10522-10531, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37943583

RESUMO

Intranasal vaccines can induce protective immune responses at the mucosa surface entrance, preventing the invasion of respiratory pathogens. However, the nasal barrier remains a major challenge in the development of intranasal vaccines. Herein, a transmucosal nanovaccine based on cationic fluorocarbon modified chitosan (FCS) is developed to induce mucosal immunity. In our system, FCS can self-assemble with the model antigen ovalbumin and TLR9 agonist CpG, effectively promoting the maturation and cross-presentation of dendritic cells. More importantly, it can enhance the production of secretory immunoglobin A (sIgA) at mucosal surfaces for those intranasally vaccinated mice, which in the meantime showed effective production of immunoglobulin G (IgG) systemically. As a proof-of-concept study, such a mucosal vaccine inhibits ovalbumin-expressing B16-OVA melanoma, especially its lung metastases. Our work presents a unique intranasal delivery system to deliver antigen across mucosal epithelia and promote mucosal and systemic immunity.


Assuntos
Imunidade nas Mucosas , Vacinas , Camundongos , Animais , Ovalbumina , Adjuvantes Imunológicos , Antígenos , Mucosa , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA