Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 788: 145666, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887368

RESUMO

BACKGROUND: Recent studies in cancer biology suggest that metabolic glucose reprogramming is a potential target for cancer treatment. However, little is known about drug intervention in the glucose metabolism of cancer stem cells (CSCs) and its related underlying mechanisms. METHODS: The crude realgar powder was Nano-grinded to meets the requirements of Nano-pharmaceutical preparations, and Nano-realgar solution (NRS) was prepared for subsequent experiments. Isolation and characterization of lung cancer stem cells (LCSCs) was performed by magnetic cell sorting (MACS) and immunocytochemistry, respectively. Cell viability and intracellular glucose concentration were detected by MTT assay and glucose oxidase (GOD) kit. Protein expressions related to metabolic reprogramming was detected by ELISA assay. Determination of the expression of HIF-1α and PI3K/Akt/mTOR pathways was carried out by RT-PCR and western blotting analysis. A subcutaneous tumor model in BALB/c-nu mice was successfully established to evaluate the effects of Nano-realgar on tumor growth and histological structure, and the expression of HIF-1α in tumor tissues was measured by immunofluorescence. RESULTS: Nano-realgar inhibits cell viability and induces glucose metabolism in LCSCs, and inhibits protein expression related to metabolic reprogramming in a time- and dose-dependent manner. Nano-realgar downregulated the expression of HIF-1α and PI3K/Akt/mTOR pathways in vitro and in vivo. Nano-realgar inhibits tumor growth and changes the histological structure of tumors through in vivo experiments and consequently inhibits the constitutive activation of HIF-1α signaling. CONCLUSIONS: These results reveal that Nano-realgar inhibits tumor growth in vitro and in vivo by repressing metabolic reprogramming. This inhibitory effect potentially related to the downregulation HIF-1α expression via PI3K/Akt/mTOR pathway.


Assuntos
Antineoplásicos/administração & dosagem , Arsenicais/administração & dosagem , Glucose/metabolismo , Neoplasias Pulmonares/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Sulfetos/administração & dosagem , Células A549 , Antígeno AC133/metabolismo , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Arsenicais/química , Arsenicais/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Pulmonares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas , Células-Tronco Neoplásicas/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Sulfetos/química , Sulfetos/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biomed Res Int ; 2019: 2063823, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31061821

RESUMO

BACKGROUND: Although several studies have proved the relationship between the prognostic value of miRNA-15a and different types of cancer, the result remains controversial. Thus, a meta-analysis was conducted to clarify the prognostic value of miRNA-15a expression level in human cancers. METHODS: We enrolled appropriate literature by searching the databases of PubMed, Embase, and Web of Science. Subsequently, we extracted HRs and their 95% CIs and calculated pooled results of miRNA-15a for overall survival (OS) and disease-free survival (DFS). Besides, subgroup analysis, sensitivity analysis, and publication bias were also revealed in this study. We also further validated this meta-analysis using the Kaplan-Meier plotter database. RESULT: 10 studies, including 1616 patients, were embraced in our meta-analysis. The result showed the lower expression of miRNA-15a significantly predicted adverse OS (HR=2.17, 95% CI: 1.41-3.34), but there is no significant association between the expressing level and DFS in cancer patient (HR=2.04, 95% CI: 0.60-6.88). Based on Kaplan-Meier plotter database, we found the same results in bladder Carcinoma, head-neck squamous cell carcinoma, liver hepatocellular carcinoma, lung squamous cell carcinoma, pancreatic ductal adenocarcinoma, rectum adenocarcinoma, stomach adenocarcinoma, and uterine corpus endometrial carcinoma, but opposite results were found in cervical squamous cell carcinoma and esophageal carcinoma. CONCLUSION: Low expressing levels of miRNA-15a indicated poor OS, while miRNA-15a can be used as a prediction biomarker in different cancer types.


Assuntos
Biomarcadores Tumorais/biossíntese , Biologia Computacional , Regulação Neoplásica da Expressão Gênica , Neoplasias/metabolismo , Neoplasias/mortalidade , RNA Neoplásico/biossíntese , Biomarcadores Tumorais/genética , Intervalo Livre de Doença , Humanos , MicroRNAs , Neoplasias/genética , Neoplasias/patologia , Valor Preditivo dos Testes , RNA Neoplásico/genética , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA