Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Med ; 29(7): 1750-1759, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37349537

RESUMO

Exposure to environmental pollution influences respiratory health. The role of the airway microbial ecosystem underlying the interaction of exposure and respiratory health remains unclear. Here, through a province-wide chronic obstructive pulmonary disease surveillance program, we conducted a population-based survey of bacterial (n = 1,651) and fungal (n = 719) taxa and metagenomes (n = 1,128) from induced sputum of 1,651 household members in Guangdong, China. We found that cigarette smoking and higher PM2.5 concentration were associated with lung function impairment through the mediation of bacterial and fungal communities, respectively, and that exposure was associated with an enhanced inter-kingdom microbial interaction resembling the pattern seen in chronic obstructive pulmonary disease. Enrichment of Neisseria was associated with a 2.25-fold increased risk of high respiratory symptom burden, coupled with an elevation in Aspergillus, in association with occupational pollution. We developed an individualized microbiome-based health index, which covaried with exposure, respiratory symptoms and diseases, with potential generalizability to global datasets. Our results may inform environmental risk prevention and guide interventions that harness airway microbiome.


Assuntos
Microbiota , Doença Pulmonar Obstrutiva Crônica , Humanos , Sistema Respiratório , Doença Pulmonar Obstrutiva Crônica/etiologia , Doença Pulmonar Obstrutiva Crônica/microbiologia , Exposição Ambiental/efeitos adversos , Escarro/microbiologia
2.
Biology (Basel) ; 12(4)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37106782

RESUMO

Both mitochondrial quality control and energy metabolism are critical in maintaining the physiological function of cardiomyocytes. When damaged mitochondria fail to be repaired, cardiomyocytes initiate a process referred to as mitophagy to clear defective mitochondria, and studies have shown that PTEN-induced putative kinase 1 (PINK1) plays an important role in this process. In addition, previous studies indicated that peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator that promotes mitochondrial energy metabolism, and mitofusin 2 (Mfn2) promotes mitochondrial fusion, which is beneficial for cardiomyocytes. Thus, an integration strategy involving mitochondrial biogenesis and mitophagy might contribute to improved cardiomyocyte function. We studied the function of PINK1 in mitophagy in isoproterenol (Iso)-induced cardiomyocyte injury and transverse aortic constriction (TAC)-induced myocardial hypertrophy. Adenovirus vectors were used to induce PINK1/Mfn2 protein overexpression. Cardiomyocytes treated with isoproterenol (Iso) expressed high levels of PINK1 and low levels of Mfn2, and the changes were time dependent. PINK1 overexpression promoted mitophagy, attenuated the Iso-induced reduction in MMP, and reduced ROS production and the apoptotic rate. Cardiac-specific overexpression of PINK1 improved cardiac function, attenuated pressure overload-induced cardiac hypertrophy and fibrosis, and facilitated myocardial mitophagy in TAC mice. Moreover, metformin treatment and PINK1/Mfn2 overexpression reduced mitochondrial dysfunction by inhibiting ROS generation leading to an increase in both ATP production and mitochondrial membrane potential in Iso-induced cardiomyocyte injury. Our findings indicate that a combination strategy may help ameliorate myocardial injury by improving mitochondrial quality.

3.
Front Cardiovasc Med ; 9: 975920, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36017104

RESUMO

Objective: The relationship between uterine fibroids (UF) and cardiovascular diseases (CVDs) in the diabetes population seemed to remain undetermined in previous studies. This study aims to explore the association between UF and CVDs by using the database from the National Health and Nutrition Examination Survey (NHANES). To further evaluate the connection between UF and CVDs we also tested the potential differences due to diabetes exposure. Materials and methods: National Health and Nutrition Examination Survey data (1999-2006) were collected and used in this study. A total of 5,509 individuals were included and analyzed. The student's t-test and the chi-squared test were used to explore the demographic characteristic between UF and non-UF groups. Logistic regression analysis was performed to determine the odds ratios of UF and covariates. Results: Female participants were divided into UF (n = 694, 12.60%) and non-UF (n = 4,815, 87.40%) groups. The incidence of CVDs in UF patients (n = 245, 35.30%) were higher than non-UF individuals (n = 776, 16.12%) (p < 0.001). In addition, each subtype of CVDs were also different, which contains hypertension (33.29 vs. 15.31%, p < 0.001), heart failure (1.59 vs. 0.52%, p < 0.01), angina (2.59 vs. 0.62%, p < 0.001), heart attack (1.73 vs. 0.58%, p < 0.01) and coronary heart disease (1.44 vs. 0.54%, p < 0.01). The odds ratios of CVDs according to logistic regression were 2.840 (95% CI: 2.387-3.379) for UF patients (p < 0.001), while the odds ratios (ORs) were 1.438 (95% CI: 1.175-1.760) after taking account for the age, body mass index (BMI), diabetes, race, education, and annual family income (p < 0.001). In addition, secondary analysis indicated more adverse effects in by UF exposure on CVDs risk among non-diabetes individuals (OR = 1.389, 95% CI = 1.124-1.718, p < 0.01) than diabetes patients (p = 0.063). Conclusion: Overall, UFs were positively associated with CVDs, and this effect seems blunted by diabetes exposure.

4.
Cardiovasc Res ; 118(8): 2018-2030, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34352088

RESUMO

AIMS: Recent studies have shown that the choline-derived metabolite trimethylamine N-oxide (TMAO) is a biomarker that promotes cardiovascular disease through the induction of inflammation and stress. Inflammatory responses and stress are involved in the progression of calcified aortic valve disease (CAVD). Here, we examined whether TMAO induces the osteogenic differentiation of aortic valve interstitial cells (AVICs) through endoplasmic reticulum (ER) and mitochondrial stress pathways in vitro and in vivo. METHODS AND RESULTS: Plasma TMAO levels were higher in patients with CAVD (n = 69) than in humans without CAVD (n = 263), as examined by liquid chromatography-tandem mass spectrometry. Western blot and staining probes showed that TMAO-induced an osteogenic response in human AVICs. Moreover, TMAO promoted ER stress, mitochondrial stress, and nuclear factor-κB (NF-κB) activation in vitro. Notably, the TMAO-mediated effects were reversed by the use of ER stress, mitochondrial stress, and NF-κB activation inhibitors and small interfering RNA. Mice treated with supplemental choline in a high-fat diet had markedly increased TMAO levels and aortic valve thicknesses, which were reduced by 3,3-dimethyl-1-butanol (an inhibitor of trimethylamine formation) treatment. CONCLUSIONS: Choline-derived TMAO promotes osteogenic differentiation through ER and mitochondrial stress pathways in vitro and aortic valve lesions in vivo.


Assuntos
Estenose da Valva Aórtica , Valva Aórtica , Calcinose , Metilaminas , Osteogênese , Animais , Valva Aórtica/patologia , Células Cultivadas , Colina , Humanos , Camundongos , NF-kappa B/metabolismo
5.
Front Nutr ; 8: 732099, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34733875

RESUMO

Background and Aims: Little is known about diet-related inflammation in chronic obstructive pulmonary disease (COPD). In this study, we aimed to explore the association between COPD and dietary inflammatory index (DII) scores in adults over 40 years old. Methods: Data were obtained from the 2013 to 2018 National Health and Nutrition Examination Survey (NHANES). In the present study, 9,929 participants were included and analyzed. The DII score was calculated and divided into tertiles. Logistic regression analysis was performed to determine the odds ratios of DII tertiles. Results: Participants were categorized into COPD (565, 5.69%) and non-COPD groups (9,364, 94.31%) according to interview information. COPD individuals had higher DII scores than non-COPD individuals (0.429 ± 1.809 vs. -0.191 ± 1.791, p < 0.001). The highest DII score tertile included 46.55% of COPD individuals was associated with lower family incomes and education and a higher smoking rate (p < 0.01). The odds ratios (95% CIs) of COPD according to logistic regression were 0.709 (0.512-0.982) for T1 and 0.645 (0.475-0.877) for T2 of the DII score (p = 0.011). Conclusion: Higher DII scores were positively correlated with COPD in participants over 40 years old. These results further support that diet can be used as an intervention strategy for COPD management.

6.
J Biosci ; 452020.
Artigo em Inglês | MEDLINE | ID: mdl-32515357

RESUMO

We aimedto detect whether the effect of apigenin (Apig) on themyocardial infarction-induced cardiomyocyte injury of mouse myocardial cells and acute myocardial infarction (AMI) mice was through regulating Parkin expression via miR-103-1-5p. The myocardial infarction cardiomyocyte model (Hypoxia/reoxygenation) was first constructed, then the mouse myocardial cells were treated with Apig, and the expression of miR-103-1-5p was decreased and the expression of Parkin was increased by qRT-PCR and Western blot. It was confirmed by miRNA pulldown and luciferase reporter system that miR-103-1-5p in mouse myocardial cells can bind to Parkin mRNA and inhibit Parkin expression.Next, a lentiviral vector silenced Parkin and overexpressingmiR-103-1-5pwas constructed and transfected into Apig-treated cells. Autophagy was detected by mitochondrial autophagy marker proteins [atypical protein kinase C (aPKC)-interacting protein (p62) and bcl-2/Adenovirus E1B 19-kd interacting protein 3 (BNIP3)] viaWestern blot, mitochondrial function was detected by JC-1 probe, and apoptosis was detected by flow cytometry. It was confirmed that Apig regulated mitochondria autophagy through miR-103-1-5p and Parkin, which ultimately affected cardiomyocyte death. Finally, an AMI mouse model was constructed, and then the mice were treated with Apig. The infarct size was detected by triphenyl tetrazolium chloride (TTC) staining, and the Apig relieved the myocardial infarction. The expression of miR-103-1-5p was decreased and the expression of Parkin was increased by qRT-PCR andWestern blot. The above results simplified that the cardio protection of Apig and miR-103-1-5p against injury of myocardial infarction cardiomyocyte by targeting Parkin. These results provided a novel treatment againstmyocardial infarction cardiomyocyte.


Assuntos
Apigenina/farmacologia , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/patologia , Ubiquitina-Proteína Ligases/metabolismo , Animais , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , Ubiquitina-Proteína Ligases/genética
7.
Front Pharmacol ; 10: 465, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31133853

RESUMO

Chromosomal maintenance 1 (CRM1) inhibitors display antihypertrophic effects and control protein trafficking between the nucleus and the cytoplasm. PGC-1α (peroxisome proliferator-activated receptor gamma coactivator-1alpha) is a type of transcriptional coactivator that predominantly resides in the nucleus and is downregulated during heart failure. NT-PGC-1α is an alternative splicing variant of PGC-1α that is primarily distributed in the cytoplasm. We hypothesized that the use of a CRM1 inhibitor could shuttle NT-PGC-1α into the nucleus and activate PGC-1α target genes to potentially improve cardiac function in a mouse model of myocardial infarction (MI). We showed that PGC-1α and NT-PGC-1α were decreased in MI-induced heart failure mice. Phenylephrine and angiotensin II were applied to induce hypertrophy in neonatal rat ventricular myocytes (NRVMs). The antihypertrophic effects of the CRM1-inhibitor Selinexor was verified through profiling the expression of ß-MHC and through visualizing the cell cross-sectional area. NRVMs were transfected with adenovirus-NT-PGC-1α or adenovirus-NLS (nucleus localization sequence)-NT-PGC-1α and then exposed to Selinexor. Confocal microscopy was then used to observe the shuttling of NT-PGC-1α. After NT-PGC-1α was shuttled into the nucleus, there was increased expression of its related genes, including PPAR-α, Tfam, ERR-γ, CPT1b, PDK4, and Nrf2. The effects of Selinexor on post-MI C57BL/6j mice were determined by echocardiography and qPCR. We found that Selinexor showed antihypertrophic effects but did not influence the ejection fraction of MI-mice. Interestingly, the antihypertrophic effects of Selinexor might be independent of NT-PGC-1α transportation.

8.
Atherosclerosis ; 284: 121-128, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30897381

RESUMO

BACKGROUND AND AIMS: Although most risk factors for cardiac valve calcification (VC) are similar to those for coronary artery disease (CAD), they differ regarding lesions and clinical symptoms. Recently, increasing evidence suggests that intestinal bacteria play essential roles in cardiovascular disease (CVD). It is plausible that the gut microbiota is linked to the occurrence of different CVDs under similar risk factors. Thus, we aimed to explore the gut microbiomes in patients with VC or CAD and determine their underlying connections. METHODS: We collected samples from 119 subjects and performed 16S rRNA gene sequencing to analyze the gut microbiomes in VC and CAD patients and in control volunteers. RESULTS: The gut microbiomes of VC and CAD patients were significantly different in terms of beta-diversity. Bacteria from Veillonella dispar, Bacteroides plebeius and Fusobacterium were enriched in the VC group, while members of Collinsella aerofaciens, Megamonas, Enterococcus, Megasphaera, Dorea and Blautia were decreased. According to the association with dyslipidemia, seven operational taxonomic units (OTUs), including Parabacteroides distasonis, Megamonas, Fusobacterium, Bacteroides sp., Bacteroides plebeius, Lactobacillus and Prevotella copri, were regarded as potential pathogens for CVDs. Additionally, Prevotella copri might be a keystone of CVDs, especially in VC patients, while Collinsella aerofaciens is a possible keystone of CAD, based on the multi-correlations of these bacteria with other OTUs in microbial communities. CONCLUSIONS: Patients with VC and CAD suffer from different gut microbial dysbiosis. The gut microbiomes are associated with the clinical characteristics in these diseases and might be potential therapeutic targets.


Assuntos
Calcinose/etiologia , Doença da Artéria Coronariana/etiologia , Disbiose/complicações , Microbioma Gastrointestinal , Doenças das Valvas Cardíacas/etiologia , Adulto , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
9.
Int J Cardiol ; 266: 198-205, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-29887448

RESUMO

BACKGROUND: Mitochondrial quality control is crucial to the development of angiotensin II (AngII)-induced cardiac hypertrophy. PTEN induced putative kinase 1 (PINK1) is rapidly degraded in normal mitochondria but accumulates in damaged mitochondria, triggering autophagy to protect cells. PINK1 mediates mitophagy in general, but whether PINK1 mediates AngII-induced mitophagy and the effects of PINK1 on AngII-induced injury are unknown. This study was designed to investigate the function of PINK1 in an AngII stimulation model and its regulation of AngII-induced mitophagy. METHODS: We studied the function of PINK1 in mitochondrial homeostasis in AngII-stimulated cardiomyocytes via RNA interference-mediated knockdown and adenovirus-mediated overexpression of the PINK1 protein. Mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, adenosine triphosphate (ATP) content, cell apoptosis rates and cardiomyocyte hypertrophy were measured. The expression of LC3B, Beclin1 and p62 was measured. Mitochondrial morphology was examined via electron microscopy. Mitophagy was detected by confocal microscopy based on the co-localization of lysosomes and mitochondria. Additionally, endogenous PINK1, phosphorylated PINK1, mito-PINK1, total Parkin, cyto-Parkin, mito-Parkin and phosphorylated Parkin protein levels were measured. RESULTS: Cardiomyocytes untreated by AngII had very low levels of total and phosphorylated PINK1. However, in the AngII stimulation model, the MMP was decreased, and the levels of total and phosphorylated PINK1 were increased. After PINK1 was knocked down, Parkin translocation to the mitochondria was inhibited. Moreover, levels of phosphorylated Parkin were reduced, and autophagy markers were downregulated. MMP and ATP contents were further reduced, ROS production and the apoptotic rate were further increased, and myocardial hypertrophy was further aggravated compared with those in the AngII group. However, PINK1 overexpression promoted Parkin translocation and phosphorylation, autophagy markers were upregulated, and myocardial injury was reduced. In addition, the effects of PINK1 overexpression were reversed by autophagy inhibitors. CONCLUSION: Decreased MMP induced by AngII maintains the stability of PINK1, causing PINK1 autophosphorylation. PINK1 activation promotes Parkin translocation and phosphorylation and increases autophagy to clear damaged mitochondria. Thus, PINK1/Parkin-mediated mitophagy has a compensatory, protective role in AngII-induced cytotoxicity.


Assuntos
Angiotensina II/toxicidade , Autofagia/fisiologia , Mitocôndrias/metabolismo , Miócitos Cardíacos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Proteínas Quinases/metabolismo , Animais , Autofagia/efeitos dos fármacos , Células Cultivadas , Mitocôndrias/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
10.
Mol Med Rep ; 18(2): 2142-2152, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29901150

RESUMO

N­terminal truncated peroxisome proliferator­activated receptor­Î³ coactivator­1α (NT­PGC­1α) is an alternative splice variant of PGC­1α. NT­PGC­1α exhibits stronger anti­obesity effects in adipose tissue than PGC­1α; however, NT­PGC­1α has not yet been investigated in neonatal rat cardiomyocytes (NRCMs). The present study aimed to investigate the role of NT­PGC­1α in mitochondrial fatty acid metabolism and its possible regulatory mechanism in NRCMs. NRCMs were exposed to phenylephrine (PE) or angiotensin II (Ang II) to induce cardiac hypertrophy. Following this, NRCMs were infected with adenovirus expressing NT­PGC­1α, and adenosine 5'­triphsophate (ATP) levels, reactive oxygen species (ROS) generation and mitochondrial membrane potential were subsequently detected. In addition, western blotting, lipid droplet staining and oxygen consumption assays were performed to examine the function of NT­PGC­1α in fatty acid metabolism. NT­PGC­1α was demonstrated to be primarily expressed in the cytoplasm, which differed from full­length PGC­1α, which was predominantly expressed in the nucleus. NT­PGC­1α overexpression alleviated mitochondrial function impairment, including ATP generation, ROS production and mitochondrial membrane potential integrity. Furthermore, NT­PGC­1α overexpression alleviated the PE­induced suppression of fatty acid metabolism­associated protein expression, increased extracellular oxygen consumption and decreased lipid droplet accumulation in NRCMs. Taken together, the present study demonstrated that NT­PGC­1α alleviated PE­induced mitochondrial impairment and decreased lipid droplet accumulation in NRCMs, indicating that NT­PGC­1α may have ameliorated mitochondrial energy defects in NRCMs, and may be considered as a potential target for the treatment of heart failure.


Assuntos
Cardiomegalia/metabolismo , Gotículas Lipídicas/metabolismo , Mitocôndrias Cardíacas/metabolismo , Miócitos Cardíacos/metabolismo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/farmacologia , Fenilefrina/efeitos adversos , Trifosfato de Adenosina/metabolismo , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/patologia , Metabolismo Energético/efeitos dos fármacos , Gotículas Lipídicas/patologia , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/patologia , Fenilefrina/farmacologia , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA