Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Surg Case Rep ; 106: 108200, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37080154

RESUMO

INTRODUCTION: Lymphoma hygroma (LH) that is the most common type of lymphangioma, but it rarely occurs in the forearm. It may show localized invasive behavior, but is benign. CASE PRESENTATION: A 42-year-old woman presented to our hospital with a growing strip-like mass in the right forearm that had been detected 3 years earlier. Ultrasound examination showed a subcutaneous strip of low back vocal cords on the right forearm. Further magnetic resonance imaging (MRI) showed irregular strip-like dilated lymphatic vessels characteristic of LH with low T1 signal intensity and high T2 signal intensity. After radical surgical resection, hematoxylin-eosin (H & E) and immunohistochemical (IHC) staining of cystic LH endothelial cells labeled with monoclonal antibody D2-40 showed a dilated lymphangioma with no evidence of malignancy. After 7 months of follow-up, no tumor recurrence was seen and the effect was satisfactory. CLINICAL DISCUSSION: A combination of previous trauma history, signs and symptoms, and imaging evaluation are necessary to provide clues to LH, but the final diagnosis is likely to be made by pathologic evaluation of the resected specimen. Although there are many treatment modalities, all also have different outcomes. The absence of complete resection resulting in a tumor remnant is the foremost cause of LH recurrence, so we believe that the preferred approach against LH remains complete surgical resection. CONCLUSIONS: LH is benign and generally asymptomatic lesions with mild bio-behavior. As there are occasional confusing presentations, similar cystic lesions should still be considered with caution for the disease. Although MRI provides superior advantages for its diagnosis, the confirmation of diagnosis still requires histological examination. Radical lesion resection is a very safe and effective option for the treatment of LH.

2.
J Neurol Surg A Cent Eur Neurosurg ; 84(6): 570-577, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35354217

RESUMO

Traumatic spinal cord injury (TSCI) is frequent. Timely diagnosis and treatment have reduced the mortality, but the long-term recovery of neurologic functions remains ominous. After TSCI, tissue bleeding, edema, and adhesions lead to an increase in the intraspinal pressure, further causing the pathophysiologic processes of ischemia and hypoxia and eventually accelerating the cascade of secondary spinal cord injury. Timely surgery with appropriate decompression strategies can reduce that secondary injury. However, disagreement about the safety and effectiveness of decompression surgery and the timing of surgery still exists. The level and severity of spinal cord injury do have an impact on the timing of surgery; therefore, TSCI subpopulations may benefit from early surgery. Early surgery perhaps has little effect on recovery from complete TSCI but might be of benefit in patients with incomplete injury. Early decompression should be considered in patients with incomplete cervical TSCI. Patient age should not be used as an exclusion criterion for early surgery. The best time point for early surgery is although influenced by the shortest duration to thoroughly examine the patient's condition and stabilize the patient's state. After the patient's condition is fully evaluated, we can perform the surgical modality of emergency myelotomy and decompression. Therefore, a number of conditions should be considered, such as standardized decompression methods, indications and operation timing to ensure the effectiveness and safety of early surgical intervention, and promotion of the functional recovery of residual nerve tissue.


Assuntos
Descompressão Cirúrgica , Traumatismos da Medula Espinal , Humanos , Descompressão Cirúrgica/métodos , Traumatismos da Medula Espinal/cirurgia , Recuperação de Função Fisiológica , Fatores de Tempo , Tempo para o Tratamento , Medula Espinal/cirurgia
3.
Front Pharmacol ; 13: 944147, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36081952

RESUMO

In many organisms, antimicrobial peptides (AMPs) display wide activities in innate host defense against microbial pathogens. Mammalian AMPs include the cathelicidin and defensin families. LL37 is the only one member of the cathelicidin family of host defense peptides expressed in humans. Since its discovery, it has become clear that they have pleiotropic effects. In addition to its antibacterial properties, many studies have shown that LL37 is also involved in a wide variety of biological activities, including tissue repair, inflammatory responses, hemotaxis, and chemokine induction. Moreover, recent studies suggest that LL37 exhibits the intricate and contradictory effects in promoting or inhibiting tumor growth. Indeed, an increasing amount of evidence suggests that human LL37 including its fragments and analogs shows anticancer effects on many kinds of cancer cell lines, although LL37 is also involved in cancer progression. Focusing on recent information, in this review, we explore and summarize how LL37 contributes to anticancer effect as well as discuss the strategies to enhance delivery of this peptide and selectivity for cancer cells.

4.
J Transl Med ; 20(1): 320, 2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35842634

RESUMO

As an important component of the immunosuppressive tumor microenvironment (TME), it has been established that mesenchymal stem cells (MSCs) promote the progression of tumor cells. MSCs can directly promote the proliferation, migration, and invasion of tumor cells via cytokines and chemokines, as well as promote tumor progression by regulating the functions of anti-tumor immune and immunosuppressive cells. MSCs-derived extracellular vesicles (MSCs-EVs) contain part of the plasma membrane and signaling factors from MSCs; therefore, they display similar effects on tumors in the immunosuppressive TME. The tumor-promoting role of macrophage migration inhibitory factor (MIF) in the immunosuppressive TME has also been revealed. Interestingly, MIF exerts similar effects to those of MSCs in the immunosuppressive TME. In this review, we summarized the main effects and related mechanisms of tumor-associated MSCs (TA-MSCs), TA-MSCs-EVs, and MIF on tumors, and described their relationships. On this basis, we hypothesized that TA-MSCs-EVs, the MIF axis, and TA-MSCs form a positive feedback loop with tumor cells, influencing the occurrence and development of tumors. The functions of these three factors in the TME may undergo dynamic changes with tumor growth and continuously affect tumor development. This provides a new idea for the targeted treatment of tumors with EVs carrying MIF inhibitors.


Assuntos
Vesículas Extracelulares , Fatores Inibidores da Migração de Macrófagos , Células-Tronco Mesenquimais , Neoplasias , Vesículas Extracelulares/metabolismo , Humanos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Microambiente Tumoral
5.
Curr Med Chem ; 29(30): 5139-5154, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35579165

RESUMO

BACKGROUND: Recent studies have indicated that epigallocatechin gallate (EGCG) benefits a variety of neurological insults. This study was performed to investigate the neuroprotective effect of EGCG after brachial plexus root avulsion in SD rats. METHODS: One hundred twenty SD rats were randomized into the following three groups: an EGCG group, an Avulsion group, and a Sham group. There were 40 rats in each group. EGCG (100 mg/kg, i.p.) or normal saline was administered to rats immediately following the injuries. The treatment was continued from day 1 to day 7, and the animals were sacrificed on days 3, 7, 14, and 28 post-surgery for the harvesting of spinal cord samples for Nissl staining, immunohistochemistry (caspase-3, p-JNK, p-c-Jun), and western blot analysis (p-JNK, JNK, p-c-Jun, c-Jun). RESULTS: EGCG treatment caused significant increases in the percentage of surviving motoneurons on days 14 and 28 (p<0.05) compared to the control animals. On days 3 and 7 after avulsion, the numbers of caspase-3-positive motoneurons in the EGCG-treated animals were significantly fewer than in the control animals (p<0.05). The numbers of p- JNK-positive motoneurons and the ratio of p-JNK/JNK were no significant differences between the Avulsion group and the EGCG-treated group after injury at any time point. The numbers of p-c-Jun-positive motoneurons and the ratio of p-c-Jun/c-Jun were significantly lower in the EGCG-treated group compared with the Avulsion group at 3d and 7d after injury (p<0.05). CONCLUSION: Our results indicated that motoneurons were protected by EGCG against the cell death induced by brachial plexus root avulsion, and this effect was correlated with inhibiting c-Jun phosphorylation.


Assuntos
Plexo Braquial , Neurônios Motores , Animais , Plexo Braquial/lesões , Plexo Braquial/metabolismo , Caspase 3/metabolismo , Caspase 3/farmacologia , Catequina/análogos & derivados , Ratos , Ratos Sprague-Dawley
6.
J Mol Histol ; 53(2): 149-157, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35048213

RESUMO

As a key signaling molecule, cationic antimicrobial peptide LL37 helps mediate intracellular and extracellular signal transduction. It interacts with various cells facilitating tissue repair and plays a vital role in the defense against pathogens. LL37 acts as a broad-spectrum antimicrobial, possessing antitumor and antiviral properties. It promotes angiogenesis, co-operates with growth factors, antagonizes inflammatory media, participates in immune regulation, and helps tissue repair and growth. These biological effects are closely related to the information exchange between LL37 and various cells, in particular mesenchymal stem cells. Gaining a thorough understanding of the molecular mechanism of communication between LL37 and bone marrow-derived mesenchymal stem cells is crucial. However, work on tissue repair remains at an early stage. This paper reviews the main signal transduction mechanisms operating between LL37 and mesenchymal stem cells in bone and subsequent effects on cell proliferation, migration, and osteogenic differentiation.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Medula Óssea/metabolismo , Diferenciação Celular/fisiologia , Células-Tronco Mesenquimais/metabolismo , Osteogênese/fisiologia , Transdução de Sinais
7.
Nucleic Acids Res ; 49(8): 4203-4219, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33706382

RESUMO

Sirtuin 3 (SIRT3) is an NAD+-dependent deacetylase linked to a broad range of physiological and pathological processes, including aging and aging-related diseases. However, the role of SIRT3 in regulating human stem cell homeostasis remains unclear. Here we found that SIRT3 expression was downregulated in senescent human mesenchymal stem cells (hMSCs). CRISPR/Cas9-mediated depletion of SIRT3 led to compromised nuclear integrity, loss of heterochromatin and accelerated senescence in hMSCs. Further analysis indicated that SIRT3 interacted with nuclear envelope proteins and heterochromatin-associated proteins. SIRT3 deficiency resulted in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, increased chromatin accessibility and aberrant repetitive sequence transcription. The re-introduction of SIRT3 rescued the disorganized heterochromatin and the senescence phenotypes. Taken together, our study reveals a novel role for SIRT3 in stabilizing heterochromatin and counteracting hMSC senescence, providing new potential therapeutic targets to ameliorate aging-related diseases.


Assuntos
Envelhecimento/metabolismo , Heterocromatina/metabolismo , Sirtuína 3/fisiologia , Envelhecimento/genética , Animais , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Células Cultivadas , Senescência Celular/genética , Senescência Celular/fisiologia , Técnicas de Inativação de Genes , Células HEK293 , Heterocromatina/genética , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/fisiologia , Camundongos , Camundongos Nus , Camundongos SCID , Membrana Nuclear/metabolismo , Domínios Proteicos , Sirtuína 3/química , Sirtuína 3/genética
9.
Cell Res ; 31(2): 187-205, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32737416

RESUMO

Accumulating evidence indicates an association between the circadian clock and the aging process. However, it remains elusive whether the deregulation of circadian clock proteins underlies stem cell aging and whether they are targetable for the alleviation of aging-associated syndromes. Here, we identified a transcription factor-independent role of CLOCK, a core component of the molecular circadian clock machinery, in counteracting human mesenchymal stem cell (hMSC) decay. CLOCK expression was decreased during hMSC aging. In addition, CLOCK deficiency accelerated hMSC senescence, whereas the overexpression of CLOCK, even as a transcriptionally inactive form, rejuvenated physiologically and pathologically aged hMSCs. Mechanistic studies revealed that CLOCK formed complexes with nuclear lamina proteins and KAP1, thus maintaining heterochromatin architecture and stabilizing repetitive genomic sequences. Finally, gene therapy with lentiviral vectors encoding CLOCK promoted cartilage regeneration and attenuated age-related articular degeneration in mice. These findings demonstrate a noncanonical role of CLOCK in stabilizing heterochromatin, promoting tissue regeneration, and mitigating aging-associated chronic diseases.


Assuntos
Proteínas CLOCK/metabolismo , Cartilagem Articular/fisiologia , Senescência Celular/genética , Heterocromatina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Regeneração/genética , Rejuvenescimento , Envelhecimento/metabolismo , Animais , Proteínas CLOCK/genética , Relógios Circadianos/genética , Ritmo Circadiano/genética , Terapia Genética/métodos , Vetores Genéticos/uso terapêutico , Células HEK293 , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Camundongos , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID , Transfecção
10.
Protein Cell ; 11(7): 483-504, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32504224

RESUMO

SIRT7, a sirtuin family member implicated in aging and disease, is a regulator of metabolism and stress responses. It remains elusive how human somatic stem cell populations might be impacted by SIRT7. Here, we found that SIRT7 expression declines during human mesenchymal stem cell (hMSC) aging and that SIRT7 deficiency accelerates senescence. Mechanistically, SIRT7 forms a complex with nuclear lamina proteins and heterochromatin proteins, thus maintaining the repressive state of heterochromatin at nuclear periphery. Accordingly, deficiency of SIRT7 results in loss of heterochromatin, de-repression of the LINE1 retrotransposon (LINE1), and activation of innate immune signaling via the cGAS-STING pathway. These aging-associated cellular defects were reversed by overexpression of heterochromatin proteins or treatment with a LINE1 targeted reverse-transcriptase inhibitor. Together, these findings highlight how SIRT7 safeguards chromatin architecture to control innate immune regulation and ensure geroprotection during stem cell aging.


Assuntos
Senescência Celular , Heterocromatina/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sirtuínas/metabolismo , Animais , Células Cultivadas , Células HEK293 , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Camundongos , Camundongos Nus , Sirtuínas/deficiência
11.
Nucleic Acids Res ; 48(11): 6001-6018, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32427330

RESUMO

Zinc finger protein with KRAB and SCAN domains 3 (ZKSCAN3) has long been known as a master transcriptional repressor of autophagy. Here, we identify a novel role for ZKSCAN3 in alleviating senescence that is independent of its autophagy-related activity. Downregulation of ZKSCAN3 is observed in aged human mesenchymal stem cells (hMSCs) and depletion of ZKSCAN3 accelerates senescence of these cells. Mechanistically, ZKSCAN3 maintains heterochromatin stability via interaction with heterochromatin-associated proteins and nuclear lamina proteins. Further study shows that ZKSCAN3 deficiency results in the detachment of genomic lamina-associated domains (LADs) from the nuclear lamina, loss of heterochromatin, a more accessible chromatin status and consequently, aberrant transcription of repetitive sequences. Overexpression of ZKSCAN3 not only rescues premature senescence phenotypes in ZKSCAN3-deficient hMSCs but also rejuvenates physiologically and pathologically senescent hMSCs. Together, these data reveal for the first time that ZKSCAN3 functions as an epigenetic modulator to maintain heterochromatin organization and thereby attenuate cellular senescence. Our findings establish a new functional link among ZKSCAN3, epigenetic regulation, and stem cell aging.


Assuntos
Senescência Celular , Epigênese Genética , Heterocromatina/metabolismo , Fatores de Transcrição/metabolismo , Animais , Senescência Celular/genética , Regulação para Baixo , Heterocromatina/genética , Humanos , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Fatores de Transcrição/deficiência
12.
Cell ; 180(3): 585-600.e19, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32004457

RESUMO

Molecular mechanisms of ovarian aging and female age-related fertility decline remain unclear. We surveyed the single-cell transcriptomic landscape of ovaries from young and aged non-human primates (NHPs) and identified seven ovarian cell types with distinct gene-expression signatures, including oocyte and six types of ovarian somatic cells. In-depth dissection of gene-expression dynamics of oocytes revealed four subtypes at sequential and stepwise developmental stages. Further analysis of cell-type-specific aging-associated transcriptional changes uncovered the disturbance of antioxidant signaling specific to early-stage oocytes and granulosa cells, indicative of oxidative damage as a crucial factor in ovarian functional decline with age. Additionally, inactivated antioxidative pathways, increased reactive oxygen species, and apoptosis were observed in granulosa cells from aged women. This study provides a comprehensive understanding of the cell-type-specific mechanisms underlying primate ovarian aging at single-cell resolution, revealing new diagnostic biomarkers and potential therapeutic targets for age-related human ovarian disorders.


Assuntos
Envelhecimento/genética , Ovário/fisiologia , Análise de Célula Única/métodos , Transcriptoma , Idoso , Animais , Antioxidantes/metabolismo , Apoptose/fisiologia , Atlas como Assunto , Biomarcadores , Linhagem Celular Tumoral , Feminino , Células da Granulosa/metabolismo , Humanos , Macaca fascicularis , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/fisiologia
13.
Protein Cell ; 11(1): 1-22, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31037510

RESUMO

Cockayne syndrome (CS) is a rare autosomal recessive inherited disorder characterized by a variety of clinical features, including increased sensitivity to sunlight, progressive neurological abnormalities, and the appearance of premature aging. However, the pathogenesis of CS remains unclear due to the limitations of current disease models. Here, we generate integration-free induced pluripotent stem cells (iPSCs) from fibroblasts from a CS patient bearing mutations in CSB/ERCC6 gene and further derive isogenic gene-corrected CS-iPSCs (GC-iPSCs) using the CRISPR/Cas9 system. CS-associated phenotypic defects are recapitulated in CS-iPSC-derived mesenchymal stem cells (MSCs) and neural stem cells (NSCs), both of which display increased susceptibility to DNA damage stress. Premature aging defects in CS-MSCs are rescued by the targeted correction of mutant ERCC6. We next map the transcriptomic landscapes in CS-iPSCs and GC-iPSCs and their somatic stem cell derivatives (MSCs and NSCs) in the absence or presence of ultraviolet (UV) and replicative stresses, revealing that defects in DNA repair account for CS pathologies. Moreover, we generate autologous GC-MSCs free of pathogenic mutation under a cGMP (Current Good Manufacturing Practice)-compliant condition, which hold potential for use as improved biomaterials for future stem cell replacement therapy for CS. Collectively, our models demonstrate novel disease features and molecular mechanisms and lay a foundation for the development of novel therapeutic strategies to treat CS.


Assuntos
Senilidade Prematura , Síndrome de Cockayne , DNA Helicases/genética , Enzimas Reparadoras do DNA/genética , Edição de Genes/métodos , Modelos Biológicos , Proteínas de Ligação a Poli-ADP-Ribose/genética , Reparo Gênico Alvo-Dirigido/métodos , Senilidade Prematura/patologia , Senilidade Prematura/terapia , Animais , Sistemas CRISPR-Cas , Células Cultivadas , Síndrome de Cockayne/patologia , Síndrome de Cockayne/terapia , Reparo do DNA , Humanos , Células-Tronco Pluripotentes Induzidas/patologia , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Mutação , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Transcriptoma
15.
Nat Commun ; 10(1): 3329, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31350386

RESUMO

DiGeorge syndrome critical region 8 (DGCR8) is a critical component of the canonical microprocessor complex for microRNA biogenesis. However, the non-canonical functions of DGCR8 have not been studied. Here, we demonstrate that DGCR8 plays an important role in maintaining heterochromatin organization and attenuating aging. An N-terminal-truncated version of DGCR8 (DR8dex2) accelerated senescence in human mesenchymal stem cells (hMSCs) independent of its microRNA-processing activity. Further studies revealed that DGCR8 maintained heterochromatin organization by interacting with the nuclear envelope protein Lamin B1, and heterochromatin-associated proteins, KAP1 and HP1γ. Overexpression of any of these proteins, including DGCR8, reversed premature senescent phenotypes in DR8dex2 hMSCs. Finally, DGCR8 was downregulated in pathologically and naturally aged hMSCs, whereas DGCR8 overexpression alleviated hMSC aging and mouse osteoarthritis. Taken together, these analyses uncovered a novel, microRNA processing-independent role in maintaining heterochromatin organization and attenuating senescence by DGCR8, thus representing a new therapeutic target for alleviating human aging-related disorders.


Assuntos
Heterocromatina/metabolismo , Osteoartrite/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Senescência Celular , Heterocromatina/genética , Humanos , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , MicroRNAs/genética , Osteoartrite/genética , Osteoartrite/fisiopatologia , Estabilidade Proteica , Proteínas de Ligação a RNA/genética , Proteína 28 com Motivo Tripartido/genética , Proteína 28 com Motivo Tripartido/metabolismo
16.
PLoS Biol ; 17(4): e3000201, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30933975

RESUMO

Cellular senescence is a driver of various aging-associated disorders, including osteoarthritis. Here, we identified a critical role for Yes-associated protein (YAP), a major effector of Hippo signaling, in maintaining a younger state of human mesenchymal stem cells (hMSCs) and ameliorating osteoarthritis in mice. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR associated protein 9 nuclease (Cas9)-mediated knockout (KO) of YAP in hMSCs resulted in premature cellular senescence. Mechanistically, YAP cooperated with TEA domain transcriptional factor (TEAD) to activate the expression of forkhead box D1 (FOXD1), a geroprotective protein. YAP deficiency led to the down-regulation of FOXD1. In turn, overexpression of YAP or FOXD1 rejuvenated aged hMSCs. Moreover, intra-articular administration of lentiviral vector encoding YAP or FOXD1 attenuated the development of osteoarthritis in mice. Collectively, our findings reveal YAP-FOXD1, a novel aging-associated regulatory axis, as a potential target for gene therapy to alleviate osteoarthritis.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Osteoartrite/metabolismo , Osteoartrite/patologia , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Proliferação de Células/genética , Senescência Celular/fisiologia , Fatores de Transcrição Forkhead/genética , Xenoenxertos , Humanos , Masculino , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Osteoartrite/genética , Transdução de Sinais , Fatores de Transcrição/genética , Ativação Transcricional , Regulação para Cima , Proteínas de Sinalização YAP
17.
Cell Rep ; 26(13): 3643-3656.e7, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917318

RESUMO

CBX4, a component of polycomb repressive complex 1 (PRC1), plays important roles in the maintenance of cell identity and organ development through gene silencing. However, whether CBX4 regulates human stem cell homeostasis remains unclear. Here, we demonstrate that CBX4 counteracts human mesenchymal stem cell (hMSC) aging via the maintenance of nucleolar homeostasis. CBX4 protein is downregulated in aged hMSCs, whereas CBX4 knockout in hMSCs results in destabilized nucleolar heterochromatin, enhanced ribosome biogenesis, increased protein translation, and accelerated cellular senescence. CBX4 maintains nucleolar homeostasis by recruiting nucleolar protein fibrillarin (FBL) and heterochromatin protein KRAB-associated protein 1 (KAP1) at nucleolar rDNA, limiting the excessive expression of rRNAs. Overexpression of CBX4 alleviates physiological hMSC aging and attenuates the development of osteoarthritis in mice. Altogether, our findings reveal a critical role of CBX4 in counteracting cellular senescence by maintaining nucleolar homeostasis, providing a potential therapeutic target for aging-associated disorders.


Assuntos
Nucléolo Celular/fisiologia , Senescência Celular/fisiologia , Homeostase , Ligases/fisiologia , Células-Tronco Mesenquimais/fisiologia , Osteoartrite/terapia , Proteínas do Grupo Polycomb/fisiologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Técnicas de Inativação de Genes , Terapia Genética , Células HEK293 , Humanos , Ligases/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Proteínas do Grupo Polycomb/genética
18.
Protein Cell ; 10(9): 649-667, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30796637

RESUMO

RAP1 is a well-known telomere-binding protein, but its functions in human stem cells have remained unclear. Here we generated RAP1-deficient human embryonic stem cells (hESCs) by using CRISPR/Cas9 technique and obtained RAP1-deficient human mesenchymal stem cells (hMSCs) and neural stem cells (hNSCs) via directed differentiation. In both hMSCs and hNSCs, RAP1 not only negatively regulated telomere length but also acted as a transcriptional regulator of RELN by tuning the methylation status of its gene promoter. RAP1 deficiency enhanced self-renewal and delayed senescence in hMSCs, but not in hNSCs, suggesting complicated lineage-specific effects of RAP1 in adult stem cells. Altogether, these results demonstrate for the first time that RAP1 plays both telomeric and nontelomeric roles in regulating human stem cell homeostasis.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Mesenquimais/citologia , Proteínas do Tecido Nervoso/metabolismo , Células-Tronco Neurais/citologia , Serina Endopeptidases/metabolismo , Proteínas de Ligação a Telômeros/fisiologia , Telômero/metabolismo , Animais , Humanos , Masculino , Metilação , Camundongos Endogâmicos NOD , Camundongos SCID , Proteína Reelina , Complexo Shelterina
19.
Cell Stem Cell ; 24(3): 447-461.e8, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30661960

RESUMO

FOXO3 is an evolutionarily conserved transcription factor that has been linked to longevity. Here we wanted to find out whether human vascular cells could be functionally enhanced by engineering them to express an activated form of FOXO3. This was accomplished via genome editing at two nucleotides in human embryonic stem cells, followed by differentiation into a range of vascular cell types. FOXO3-activated vascular cells exhibited delayed aging and increased resistance to oxidative injury compared with wild-type cells. When tested in a therapeutic context, FOXO3-enhanced vascular cells promoted vascular regeneration in a mouse model of ischemic injury and were resistant to tumorigenic transformation both in vitro and in vivo. Mechanistically, constitutively active FOXO3 conferred cytoprotection by transcriptionally downregulating CSRP1. Taken together, our findings provide mechanistic insights into FOXO3-mediated vascular protection and indicate that FOXO3 activation may provide a means for generating more effective and safe biomaterials for cell replacement therapies.


Assuntos
Células-Tronco Embrionárias/citologia , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Engenharia Genética , Regeneração , Adulto , Animais , Diferenciação Celular , Modelos Animais de Doenças , Células-Tronco Embrionárias/metabolismo , Proteína Forkhead Box O3/deficiência , Humanos , Isquemia/metabolismo , Isquemia/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos Nus , Camundongos SCID
20.
Protein Cell ; 10(6): 417-435, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30069858

RESUMO

Aging increases the risk of various diseases. The main goal of aging research is to find therapies that attenuate aging and alleviate aging-related diseases. In this study, we screened a natural product library for geroprotective compounds using Werner syndrome (WS) human mesenchymal stem cells (hMSCs), a premature aging model that we recently established. Ten candidate compounds were identified and quercetin was investigated in detail due to its leading effects. Mechanistic studies revealed that quercetin alleviated senescence via the enhancement of cell proliferation and restoration of heterochromatin architecture in WS hMSCs. RNA-sequencing analysis revealed the transcriptional commonalities and differences in the geroprotective effects by quercetin and Vitamin C. Besides WS hMSCs, quercetin also attenuated cellular senescence in Hutchinson-Gilford progeria syndrome (HGPS) and physiological-aging hMSCs. Taken together, our study identifies quercetin as a geroprotective agent against accelerated and natural aging in hMSCs, providing a potential therapeutic intervention for treating age-associated disorders.


Assuntos
Senilidade Prematura/tratamento farmacológico , Células-Tronco Mesenquimais , Progéria/tratamento farmacológico , Quercetina/farmacologia , Síndrome de Werner/tratamento farmacológico , Envelhecimento/efeitos dos fármacos , Ácido Ascórbico/farmacologia , Linhagem Celular , Proliferação de Células , Senescência Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/patologia , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA