Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Biol Chem ; 299(9): 105072, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37474104

RESUMO

Eukaryotic protein kinases (EPKs) adopt an active conformation following phosphorylation of a particular activation loop residue. Most EPKs spontaneously autophosphorylate this residue. While structure-function relationships of the active conformation are essentially understood, those of the "prone-to-autophosphorylate" conformation are unclear. Here, we propose that a site within the αC-helix of EPKs, occupied by Arg in the mitogen-activated protein kinase (MAPK) Erk1/2 (Arg84/65), impacts spontaneous autophosphorylation. MAPKs lack spontaneous autoactivation, but we found that converting Arg84/65 of Erk1/2 to various residues enables spontaneous autophosphorylation. Furthermore, Erk1 molecules mutated in Arg84 are oncogenic. Arg84/65 thus obstructs the adoption of the "prone-to-autophosphorylate" conformation. All MAPKs harbor an Arg that is equivalent to Arg84/65 of Erks, whereas Arg is rarely found at the equivalent position in other EPKs. We observed that Arg84/65 of Erk1/2 interacts with the DFG motif, suggesting that autophosphorylation may be inhibited by the Arg84/65-DFG interactions. Erk1/2s mutated in Arg84/65 autophosphorylate not only the TEY motif, known as critical for catalysis, but also on Thr207/188. Our MS/MS analysis revealed that a large proportion of the Erk2R65H population is phosphorylated on Thr188 or on Tyr185 + Thr188, and a small fraction is phosphorylated on the TEY motif. No molecules phosphorylated on Thr183 + Thr188 were detected. Thus, phosphorylation of Thr183 and Thr188 is mutually exclusive suggesting that not only TEY-phosphorylated molecules are active but perhaps also those phosphorylated on Tyr185 + Thr188. The effect of mutating Arg84/65 may mimic a physiological scenario in which allosteric effectors cause Erk1/2 activation by autophosphorylation.


Assuntos
Arginina , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Fosforilação , Arginina/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular , Células HEK293 , Ativação Enzimática/genética , Mutação , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estrutura Terciária de Proteína , Modelos Moleculares , Cristalização , Sequência de Aminoácidos
2.
Mol Biol Cell ; 27(6): 1026-39, 2016 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-26658610

RESUMO

The receptor-tyrosine kinase (RTK)/Ras/Raf pathway is an essential cascade for mediating growth factor signaling. It is abnormally overactive in almost all human cancers. The downstream targets of the pathway are members of the extracellular regulated kinases (Erk1/2) family, suggesting that this family is a mediator of the oncogenic capability of the cascade. Although all oncogenic mutations in the pathway result in strong activation of Erks, activating mutations in Erks themselves were not reported in cancers. Here we used spontaneously active Erk variants to check whether Erk's activity per se is sufficient for oncogenic transformation. We show that Erk1(R84S) is an oncoprotein, as NIH3T3 cells that express it form foci in tissue culture plates, colonies in soft agar, and tumors in nude mice. We further show that Erk1(R84S) and Erk2(R65S) are intrinsically active due to an unusual autophosphorylation activity they acquire. They autophosphorylate the activatory TEY motif and also other residues, including the critical residue Thr-207 (in Erk1)/Thr-188 (in Erk2). Strikingly, Erk2(R65S) efficiently autophosphorylates its Thr-188 even when dually mutated in the TEY motif. Thus this study shows that Erk1 can be considered a proto-oncogene and that Erk molecules possess unusual autoregulatory properties, some of them independent of TEY phosphorylation.


Assuntos
Transformação Celular Neoplásica/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , Mutação de Sentido Incorreto , Motivos de Aminoácidos , Animais , Transformação Celular Neoplásica/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Células NIH 3T3 , Fosforilação , Proto-Oncogene Mas , Ratos
3.
Acta Crystallogr D Biol Crystallogr ; 70(Pt 6): 1572-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24914968

RESUMO

NAF-1 is an important [2Fe-2S] NEET protein associated with human health and disease. A mis-splicing mutation in NAF-1 results in Wolfram Syndrome type 2, a lethal childhood disease. Upregulation of NAF-1 is found in epithelial breast cancer cells, and suppression of NAF-1 expression by knockdown significantly suppresses tumor growth. Key to NAF-1 function is the NEET fold with its [2Fe-2S] cluster. In this work, the high-resolution structure of native NAF-1 was determined to 1.65 Šresolution (R factor = 13.5%) together with that of a mutant in which the single His ligand of its [2Fe-2S] cluster, His114, was replaced by Cys. The NAF-1 H114C mutant structure was determined to 1.58 Šresolution (R factor = 16.0%). All structural differences were localized to the cluster binding site. Compared with native NAF-1, the [2Fe-2S] clusters of the H114C mutant were found to (i) be 25-fold more stable, (ii) have a redox potential that is 300 mV more negative and (iii) have their cluster donation/transfer function abolished. Because no global structural differences were found between the mutant and the native (wild-type) NAF-1 proteins, yet significant functional differences exist between them, the NAF-1 H114C mutant is an excellent tool to decipher the underlying biological importance of the [2Fe-2S] cluster of NAF-1 in vivo.


Assuntos
Proteínas Ferro-Enxofre/genética , Mutação Puntual , Cristalografia por Raios X , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/metabolismo , Ligantes , Eletroforese em Gel de Poliacrilamida Nativa , Espectrofotometria Ultravioleta
4.
J Mol Neurosci ; 53(3): 306-15, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24258317

RESUMO

Selective serotonin reuptake inhibitors (SSRIs) show anti-inflammatory effects, suggesting a possible interaction with both Toll-like-receptor 4 (TLR4) responses and cholinergic signaling through as yet unclear molecular mechanism(s). Our results of structural modeling support the concept that the antidepressant fluoxetine physically interacts with the TLR4-myeloid differentiation factor-2 complex at the same site as bacterial lipopolysaccharide (LPS). We also demonstrate reduced LPS-induced pro-inflammatory interleukin-6 and tumor necrosis factor alpha in human peripheral blood mononuclear cells preincubated with fluoxetine. Furthermore, we show that fluoxetine intercepts the LPS-induced decreases in intracellular acetylcholinesterase (AChE-S) and that AChE-S interacts with the nuclear factor kappa B (NFκB)-activating intracellular receptor for activated C kinase 1 (RACK1). This interaction may prevent NFκB activation by residual RACK1 and its interacting protein kinase PKCßII. Our findings attribute the anti-inflammatory properties of SSRI to surface membrane interference with leukocyte TLR4 activation accompanied by intracellular limitation of pathogen-inducible changes in AChE-S, RACK1, and PKCßII.


Assuntos
Acetilcolinesterase/metabolismo , Anti-Inflamatórios/farmacologia , Fluoxetina/farmacologia , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Neoplasias/metabolismo , Receptores de Superfície Celular/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Acetilcolinesterase/química , Sequência de Aminoácidos , Sítios de Ligação , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/metabolismo , Proteínas de Ligação ao GTP/química , Humanos , Interleucina-6/genética , Interleucina-6/metabolismo , Lipopolissacarídeos/farmacologia , Simulação de Acoplamento Molecular , Dados de Sequência Molecular , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Proteínas de Neoplasias/química , Ligação Proteica , Proteína Quinase C beta/metabolismo , Receptores de Quinase C Ativada , Receptores de Superfície Celular/química , Receptor 4 Toll-Like/química , Receptor 4 Toll-Like/metabolismo
5.
J Biol Chem ; 288(27): 19537-47, 2013 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-23671282

RESUMO

Signaling processes are primarily promoted by molecular recognition and corresponding protein-protein interactions. One of the key eukaryotic signaling pathways is the MAP kinase cascade involved in vital cellular processes such as cell proliferation, differentiation, apoptosis, and stress response. The principle recognition site of MAP kinases, the common docking (CD) region, forms selective interactions with substrates, upstream activators, and phosphatases. A second docking site, defined as the DEF site interaction pocket (DEF pocket), is formed subsequent to ERK2 and p38α activation. Both crystal structures of p38α in its dually phosphorylated form and of intrinsically active mutants showed the DEF pocket, giving motivation for studying its role in substrate activation and selectivity. Mutating selected DEF pocket residues significantly decreased the phosphorylation levels of three p38α substrates (ATFII, Elk-1, and MBP) with no apparent effect on the phosphorylation of MK2 kinase. Conversely, mutating the CD region gave the opposite effect, suggesting p38α substrates can be classified into DEF-dependent and DEF-independent substrates. In addition, mutating DEF pocket residues decreased the autophosphorylation capability of intrinsically active p38α mutants, suggesting DEF-mediated trans-autophosphorylation in p38α. These results could contribute to understanding substrate selectivity of p38α and serve as a platform for designing p38α-selective DEF site blockers, which partially inhibit p38α binding DEF-dependent substrates, whereas maintaining its other functions intact. In this context, preliminary results using synthetic peptides reveal significant inhibition of substrate phosphorylation by activated p38α.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/química , Peptídeos/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Mutação , Peptídeos/genética , Peptídeos/metabolismo , Fosforilação/fisiologia , Especificidade por Substrato
6.
J Mol Biol ; 424(5): 339-53, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23079240

RESUMO

p38α mitogen-activated protein kinase (MAPK) is generally activated by dual phosphorylation but has also been shown to exhibit alternative activation modes. One of these modes included a direct interaction with phosphatidylinositol ether lipid analogues (PIA) inducing p38α autoactivation and apoptosis. Perifosine, an Akt inhibitor in phase II clinical trials, also showed p38α activation properties similarly to those of PIAs. The crystal structures of p38α in complex with PIA23, PIA24 and perifosine provide insights into this unique activation mode. The activating molecules bind a unique hydrophobic binding site in the kinase C'-lobe formed in part by the MAPK insert region. In addition, there are conformational changes in the short αEF/αF loop region that acts as an activation switch, inducing autophosphorylation. Structural and biochemical characterization of the αEF/αF loop identified Trp197 as a key residue in the lipid binding and in p38α catalytic activity. The lipid binding site also accommodates hydrophobic inhibitor molecules and, thus, can serve as a novel p38α-target for specific activation or inhibition, with novel therapeutic implications.


Assuntos
Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fosfatos de Fosfatidilinositol/química , Fosfatos de Fosfatidilinositol/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Conformação Proteica , Alinhamento de Sequência
7.
Plant Cell ; 24(5): 2139-54, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22562611

RESUMO

The NEET family is a newly discovered group of proteins involved in a diverse array of biological processes, including autophagy, apoptosis, aging, diabetes, and reactive oxygen homeostasis. They form a novel structure, the NEET fold, in which two protomers intertwine to form a two-domain motif, a cap, and a unique redox-active labile 2Fe-2S cluster binding domain. To accelerate the functional study of NEET proteins, as well as to examine whether they have an evolutionarily conserved role, we identified and characterized a plant NEET protein. Here, we show that the Arabidopsis thaliana At5g51720 protein (At-NEET) displays biochemical, structural, and biophysical characteristics of a NEET protein. Phenotypic characterization of At-NEET revealed a key role for this protein in plant development, senescence, reactive oxygen homeostasis, and Fe metabolism. A role in Fe metabolism was further supported by biochemical and cell biology studies of At-NEET in plant and mammalian cells, as well as mutational analysis of its cluster binding domain. Our findings support the hypothesis that NEET proteins have an ancient role in cells associated with Fe metabolism.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ferro/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos
8.
Mol Cell Biol ; 31(17): 3515-30, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21730285

RESUMO

The extracellular signal-regulated kinases (ERK) 1 and 2 (ERK1/2) are members of the mitogen-activated protein kinase [MAPK] family. Upon stimulation, these kinases translocate from the cytoplasm to the nucleus, where they induce physiological processes such as proliferation and differentiation. The mechanism of translocation of this kinase involves phosphorylation of two Ser residues within a nuclear translocation signal (NTS), which allows binding to importin7 and a subsequent penetration via nuclear pores. Here we show that the phosphorylation of both Ser residues is mediated mainly by casein kinase 2 (CK2) and that active ERK may assist in the phosphorylation of the N-terminal Ser. We also demonstrate that the phosphorylation is dependent on the release of ERK from cytoplasmic anchoring proteins. Crystal structure of the phosphomimetic ERK revealed that the NTS phosphorylation creates an acidic patch in ERK. Our model is that in resting cells ERK is bound to cytoplasmic anchors, which prevent its NTS phosphorylation. Upon stimulation, phosphorylation of the ERK TEY domain releases ERK and allows phosphorylation of its NTS by CK2 and active ERK to generate a negatively charged patch in ERK, binding to importin 7 and nuclear translocation. These results provide an important role of CK2 in regulating nuclear ERK activities.


Assuntos
Caseína Quinase II/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Serina/metabolismo , Animais , Western Blotting , Células CHO , Caseína Quinase II/química , Caseína Quinase II/genética , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Cricetinae , Cricetulus , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Células HeLa , Humanos , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/química , Proteína Quinase 3 Ativada por Mitógeno/genética , Modelos Moleculares , Mutação , Sinais de Localização Nuclear/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Transporte Proteico , Interferência de RNA , Serina/genética
9.
J Biol Chem ; 284(25): 17170-17179, 2009 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-19383604

RESUMO

The K variant of butyrylcholinesterase (BChE-K, 20% incidence) is a long debated risk factor for Alzheimer disease (AD). The A539T substitution in BChE-K is located at the C terminus, which is essential both for BChE tetramerization and for its capacity to attenuate beta-amyloid (Abeta) fibril formation. Here, we report that BChE-K is inherently unstable as compared with the "usual" BChE (BChE-U), resulting in reduced hydrolytic activity and predicting prolonged acetylcholine maintenance and protection from AD. A synthetic peptide derived from the C terminus of BChE-K (BSP-K), which displayed impaired intermolecular interactions, was less potent in suppressing Abeta oligomerization than its BSP-U counterpart. Correspondingly, highly purified recombinant human rBChE-U monomers suppressed beta-amyloid fibril formation less effectively than dimers, which also protected cultured neuroblastoma cells from Abeta neurotoxicity. Dual activity structurally derived changes due to the A539T substitution can thus account for both neuroprotective characteristics caused by sustained acetylcholine levels and elevated AD risk due to inefficient interference with amyloidogenic processes.


Assuntos
Doença de Alzheimer/enzimologia , Doença de Alzheimer/genética , Butirilcolinesterase/química , Butirilcolinesterase/genética , Idoso , Doença de Alzheimer/etiologia , Sequência de Aminoácidos , Substituição de Aminoácidos , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Sequência de Bases , Butirilcolinesterase/metabolismo , Linhagem Celular , Primers do DNA/genética , Feminino , Variação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Neurônios/metabolismo , Fármacos Neuroprotetores/metabolismo , Polimorfismo de Nucleotídeo Único , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fatores de Risco
10.
Biochemistry ; 46(16): 4716-24, 2007 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-17397140

RESUMO

We describe a novel, potent peptide substrate mimetic inhibitor of protein kinase B (PKB/Akt). The compound selectively kills prostate cancer cells, in which PKB is highly activated, but not normal cells, or cancer cells in which PKB is not activated. The inhibitor induces apoptosis and inhibits the phosphorylation of PKB substrates in prostate cancer cell lines and significantly increases the efficacy of chemotherapy agents to induce prostate cancer cell death, when given in combination. In vivo, the inhibitor exhibits a strong antitumor effect in two prostate cancer mouse models. Moreover, treated animals develop significantly less lung metastases compared to untreated ones, and the effect is accompanied by a significant decrease in blood PSA [prostate-specific antigen] levels in treated animals. This compound and its potential analogues may be developed into novel, potent, and safe anticancer agents, both as stand-alone treatment and in combination with other chemotherapy agents.


Assuntos
Ésteres do Colesterol/uso terapêutico , Inibidores Enzimáticos/uso terapêutico , Oligopeptídeos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Masculino , Camundongos , Mitoxantrona/farmacologia , Modelos Moleculares , Antígeno Prostático Específico/sangue , Transdução de Sinais/efeitos dos fármacos
11.
J Mol Biol ; 365(1): 66-76, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17059827

RESUMO

p38 mitogen-activated protein (MAP) kinases function in numerous signaling processes and are crucial for normal functions of cells and organisms. Abnormal p38 activity is associated with inflammatory diseases and cancers making the understanding of its activation mechanisms highly important. p38s are commonly activated by phosphorylation, catalyzed by MAP kinase kinases (MKKs). Moreover, it was recently revealed that the p38alpha is also activated via alternative pathways, which are MKK independent. The structural basis of p38 activation, especially in the alternative pathways, is mostly unknown. This lack of structural data hinders the study of p38's biology as well as the development of novel strategies for p38 inhibition. We have recently discovered and optimized a novel set of intrinsically active p38 mutants whose activities are independent of any upstream activation. The high-resolution crystal structures of the intrinsically active p38alpha mutants reveal that local alterations in the L16 loop region promote kinase activation. The L16 loop can be thus regarded as a molecular switch that upon conformational changes promotes activation. We suggest that similar conformational changes in L16 loop also occur in natural activation mechanisms of p38alpha in T-cells. Our biochemical studies reveal novel mechanistic insights into the activation process of p38. In this regard, the results indicate that the activation mechanism of the mutants involves dimerization and subsequent trans autophosphorylation on Thr180 (on the phosphorylation lip). Finally, we suggest a model of in vivo p38alpha activation induced by the L16 switch with auto regulatory characteristics.


Assuntos
Proteínas Quinases p38 Ativadas por Mitógeno/química , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Dimerização , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Mutação , Fosforilação , Estrutura Terciária de Proteína , Proteínas Quinases p38 Ativadas por Mitógeno/genética
12.
J Biol Chem ; 282(1): 91-9, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17088247

RESUMO

The p38 family of kinases is a subgroup of the mitogen-activated protein kinase family. It is composed of four isoforms and is involved in critical biological processes as well as in inflammatory diseases. The exact unique role of each p38 isoform in these processes is not understood well. To approach this question we have been developing intrinsically active variants of p38s. Recently we described a series of mutants of the human p38alpha, which were spontaneously active as recombinant proteins purified from Escherichia coli cells. We show here that some of these mutants are spontaneously active in several mammalian cells in culture. The spontaneous activity of some mutants is higher than the activity of the fully activated wild type counterpart. We further produced mutants of the other p38 isoforms and found that p38beta(D176A), p38gamma(D179A), p38delta(D176A), and p38delta(F324S) are spontaneously active in vivo. The active mutants are also spontaneously phosphorylated. To test whether the mutants actually fulfill downstream duties of p38 proteins, we tested their effect on activating protein 1(AP-1)-mediated transcription. Active mutants of p38alpha induced AP-1-driven reporter genes, as well as the c-jun and c-fos promoters. An active variant of p38gamma suppressed AP-1-mediated transcription. When active variants of p38alpha and p38gamma were co-expressed, AP-1 activity was not induced, showing that p38gamma is dominant over p38alpha with respect to AP-1 activation. Thus, intrinsically active variants that are spontaneously active in vivo have been obtained for all p38 isoforms. These variants have disclosed different effects of each isoform on AP-1 activity.


Assuntos
Proteína Quinase 12 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Sequência de Aminoácidos , Animais , Escherichia coli/metabolismo , Humanos , Camundongos , Dados de Sequência Molecular , Mutação , Células NIH 3T3 , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética , Homologia de Sequência de Aminoácidos
13.
Proc Natl Acad Sci U S A ; 103(23): 8628-33, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16731619

RESUMO

In Alzheimer's disease, both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) colocalize with brain fibrils of amyloid-beta (Abeta) peptides, and synaptic AChE-S facilitates fibril formation by association with insoluble Abeta fibrils. Here, we report that human BChE and BSP41, a synthetic peptide derived from the BChE C terminus, inversely associate with the soluble Abeta conformers and delay the onset and decrease the rate of Abeta fibril formation in vitro, at a 1:100 BChE/Abeta molar ratio and in a dose-dependent manner. The corresponding AChE synthetic peptide (ASP)40 peptide, derived from the homologous C terminus of synaptic human (h)AChE-S, failed to significantly affect Abeta fibril formation, attributing the role of enhancing this process to an AChE domain other than the C terminus. Circular dichroism and molecular modeling confirmed that both ASP40 and BChE synthetic peptide (BSP)41 are amphipathic alpha-helices. However, ASP40 shows symmetric amphipathicity, whereas BSP41 presented an aromatic tryptophan residue in the polar side of the C terminus. That this aromatic residue is causally involved in the attenuating effect of BChE was further supported by mutagenesis experiments in which (W8R) BSP41 showed suppressed capacity to attenuate fibril formation. In Alzheimer's disease, BChE may have thus acquired an inverse role to that of AChE by adopting imperfect amphipathic characteristics of its C terminus.


Assuntos
Amiloide/química , Amiloide/metabolismo , Butirilcolinesterase/metabolismo , Acetilcolinesterase/química , Sequência de Aminoácidos , Amiloide/biossíntese , Butirilcolinesterase/química , Sequência Conservada , Humanos , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/química , Solubilidade , Relação Estrutura-Atividade
14.
FEBS Lett ; 537(1-3): 47-52, 2003 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-12606029

RESUMO

Glutathione-S-transferase (GST)-pp60(c-Src) (GST-Src) expressed in Escherichia coli is as catalytically active as purified, activated pp60(c-Src) protein derived from human platelets. We utilized the bacterially expressed enzyme, together with information about the structures of Src family kinases in complex with their inhibitors PP1 and PP2, to modify PP1 in a quest for improved inhibitors. Despite the detailed structural information on Hck-PP1 and Lck-PP2 complexes, which shows that PP1 and PP2 bind to the adenosine triphosphate (ATP) pocket, we were unable to improve the affinity between modified PP1 and Src. Puzzled, we examined in detail the mechanism by which PP1 inhibits the kinase activity of Src. Here we report that PP1 is non-competitive with ATP for the inhibition of Src, at variance with what is currently accepted, and is a 'mixed competitive inhibitor' vis-à-vis the substrate. These findings shed new light on the mechanism whereby PP1-like molecules inhibit Src. Examination of the homology between the kinase domain of Src and those of Hck and Lck reveals significant differences outside the ATP binding pocket, whereas they are identical within the ATP binding domain. These results suggest that PP1 may be a leading compound for ATP non-competitive inhibitors of Src family kinases. Since Src in its active form is the hallmark of numerous cancers, understanding how PP1 inhibits activated Src will aid in the discovery of potent and selective Src kinase inhibitors.


Assuntos
Trifosfato de Adenosina/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas Proto-Oncogênicas pp60(c-src)/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Trifosfato de Adenosina/farmacologia , Adenilil Imidodifosfato/metabolismo , Plaquetas , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Humanos , Cinética , Modelos Moleculares , Fosforilação , Fosfotirosina/metabolismo , Estrutura Secundária de Proteína , Proteínas Proto-Oncogênicas pp60(c-src)/química , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/química , Quinases da Família src/antagonistas & inibidores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA