Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Dev Comp Immunol ; 156: 105175, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38574831

RESUMO

Peroxiredoxin-1 (Prdx1) is a thiol-specific antioxidant enzyme that detoxifies reactive oxygen species (ROS) and regulates the redox status of cells. In this study, the Prdx1 cDNA sequence was isolated from the pre-established Amphiprion clarkii (A. clarkii) (AcPrdx1) transcriptome database and characterized structurally and functionally. The AcPrdx1 coding sequence comprises 597 bp and encodes 198 amino acids with a molecular weight of 22.1 kDa and a predicted theoretical isoelectric point of 6.3. AcPrdx1 is localized and functionally available in the cytoplasm and nucleus of cells. The TXN domain of AcPrdx1 comprises two peroxiredoxin signature VCP motifs, which contain catalytic peroxidatic (Cp-C52) and resolving cysteine (CR-C173) residues. The constructed phylogenetic tree and sequence alignment revealed that AcPrdx1 is evolutionarily conserved, and its most closely related counterpart is Amphiprion ocellaris. Under normal physiological conditions, AcPrdx1 was ubiquitously detected in all tissues examined, with the most robust expression in the spleen. Furthermore, AcPrdx1 transcripts were significantly upregulated in the spleen, head kidney, and blood after immune stimulation by polyinosinic:polycytidylic acid (poly (I:C)), lipopolysaccharide (LPS), and Vibrio harveyi injection. Recombinant AcPrdx1 (rAcPrdx1) demonstrated antioxidant and DNA protective properties in a concentration-dependent manner, as evidenced by insulin disulfide reduction, peroxidase activity, and metal-catalyzed oxidation (MCO) assays, whereas cells transfected with pcDNA3.1(+)/AcPrdx1 showed significant cytoprotective function under oxidative and nitrosative stress. Overexpression of AcPrdx1 in fathead minnow (FHM) cells led to a lower viral copy number following viral hemorrhagic septicemia virus (VHSV) infection, along with upregulation of several antiviral genes. Collectively, this study provides insights into the function of AcPrdx1 in defense against oxidative stressors and its role in the immune response against pathogenic infections in A. clarkii.


Assuntos
Proteínas de Peixes , Peroxirredoxinas , Filogenia , Vibrioses , Animais , Peroxirredoxinas/metabolismo , Peroxirredoxinas/genética , Peroxirredoxinas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Proteínas de Peixes/imunologia , Vibrioses/imunologia , Poli I-C/imunologia , Doenças dos Peixes/imunologia , Imunidade Inata , Vibrio/imunologia , Vibrio/fisiologia , Clonagem Molecular , Sequência de Aminoácidos , Perciformes/imunologia , Lipopolissacarídeos/imunologia , Alinhamento de Sequência , Espécies Reativas de Oxigênio/metabolismo
2.
Fish Shellfish Immunol ; 143: 109172, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37858785

RESUMO

Galectin 9 (Gal9) is a tandem repeat type ß-galactoside-binding galectin that mediates various cellular biochemical and immunological functions. Many studies have investigated the functional properties of Gal9 in mammals; however, knowledge of fish Gal9 is limited to antibacterial studies. In this context, our aim was to clone Gal9 from Planiliza haematocheilus (PhGal9) and investigate its structural and functional characteristics. We discovered the PhGal9 open reading frame, which was 969 base pairs long and encoded a 322 amino acid protein. PhGal9 had a projected molecular weight of 35.385 kDa but no signal peptide sequence. PhGal9 mRNA was ubiquitously produced in all investigated tissues but was predominant in the intestine, spleen, and brain. Its mRNA expression was increased in response to stimulation by Poly(I:C), LPS, and L. garvieae. The rPhGal9 exhibited a dose-dependent agglutination potential toward gram-positive and gram-negative bacteria at a minimum concentration of 50 µg/mL. Overexpression of PhGal9 promoted M2-like phenotype changes in mouse macrophages, and RT-qPCR analysis of M1 and M2 marker genes confirmed M2 polarization with upregulation of M2 marker genes. In the antiviral assay, the expression levels of Viral Hemorrhagic Septicemia Virus (VHSV) glycoproteins, phosphoproteins, nucleoproteins, non-virion proteins, matrix proteins, and RNA polymerase were significantly reduced in PhGal9-overexpressed cells. Furthermore, the mRNA expression of autophagic genes (sqstm1, tax1bp1b, rnf13, lc3, and atg5) and antiviral genes (viperin) were upregulated in PhGal9 overexpressed cells. For the first time in teleosts, our study demonstrated that PhGal9 promotes M2 macrophage polarization by upregulating M2-associated genes (egr2 and cmyc) and suppressing M1-associated genes (iNOS and IL-6). Furthermore, our results show that exogenous and endogenous PhGal9 prevented VHSV attachment and replication by neutralizing virion and autophagy, respectively. Gal9 may be a potent modulator of the antimicrobial immune response in teleost fish.


Assuntos
Antivirais , Autofagia , Galectinas , Smegmamorpha , Replicação Viral , Animais , Camundongos , Antibacterianos/metabolismo , Anti-Inflamatórios/metabolismo , Antivirais/metabolismo , Peixes/genética , Galectinas/genética , Galectinas/metabolismo , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Macrófagos , RNA Mensageiro/metabolismo , Smegmamorpha/genética
3.
Fish Shellfish Immunol ; 138: 108804, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37207886

RESUMO

Cystatins are natural inhibitors of lysosomal cysteine proteases, including cathepsins B, L, H, and S. Cystatin C (CSTC) is a member of the type 2 cystatin family and is an essential biomarker in the prognosis of several diseases. Emerging evidence suggests the immune regulatory roles of CSTC in antigen presentation, the release of different inflammatory mediators, and apoptosis in various pathophysiologies. In this study, the 390-bp cystatin C (HaCSTC) cDNA from big-belly seahorse (Hippocampus abdominalis) was cloned and characterized by screening the pre-established cDNA library. Based on similarities in sequence, HaCSTC is a homolog of the teleost type 2 cystatin family with putative catalytic cystatin domains, signal peptides, and disulfide bonds. HaCSTC transcripts were ubiquitously expressed in all tested big-belly seahorse tissues, with the highest expression in ovaries. Immune challenge with lipopolysaccharides, polyinosinic:polycytidylic acid, Edwardsiella tarda, and Streptococcus iniae caused significant upregulation in HaCSTC transcript levels. Using a pMAL-c5X expression vector, the 14.29-kDa protein of recombinant HaCSTC (rHaCSTC) was expressed in Escherichia coli BL21 (DE3), and its protease inhibitory activity against papain cysteine protease was determined with the aid of a protease substrate. Papain was competitively blocked by rHaCSTC in a dose-dependent manner. In response to viral hemorrhagic septicemia virus (VHSV) infection, HaCSTC overexpression strongly decreased the expression of VHSV transcripts, pro-inflammatory cytokines, and pro-apoptotic genes; while increasing the expression of anti-apoptotic genes in fathead minnow (FHM) cells. Furthermore, HaCSTC overexpression protected VHSV-infected FHM cells against VHSV-induced apoptosis and increased cell viability. Our findings imply the profound role of HaCSTC against pathogen infections by modulating fish immune responses.


Assuntos
Smegmamorpha , Animais , Cistatina C/genética , Papaína/genética , Streptococcus iniae/fisiologia , Poli I-C/farmacologia , Proteínas de Peixes/química , Filogenia
4.
Fish Shellfish Immunol ; 125: 247-257, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35588907

RESUMO

Apoptosis plays a vital role in maintaining cellular homeostasis in multicellular organisms. Caspase-9 (casp-9) is one of the major initiator caspases that induces apoptosis by activating downstream intrinsic apoptosis pathway genes. Here, we isolated the cDNA sequence (1992 bp) of caspase-9 from Amphiprion clarkii (Accasp-9) that consists of a 1305 bp coding region and encodes a 434 aa protein. In silico analysis showed that Accasp-9 has a theoretical isoelectric point of 5.81 and a molecular weight of 48.45 kDa. Multiple sequence alignment revealed that the CARD domain is located at the N-terminus, whereas the large P-20 and small P-10 domains are located at the C-terminus. Moreover, a highly conserved pentapeptide active site (296QACGG301), as well as histidine and cysteine active sites, are also retained at the C-terminus. In phylogenetic analysis, Accasp-9 formed a clade with casp-9 from different species, distinct from other caspases. Accasp-9 was highly expressed in the gill and intestine compared with other tissues analyzed in healthy A. clarkii. Accasp-9 expression was significantly elevated in the blood after stimulation with Vibrio harveyi and polyinosinic:polycytidylic acid (poly I:C; 12-48 h), but not with lipopolysaccharide. The nucleoprotein expression of the viral hemorrhagic septicemia virus was significantly reduced in Accasp-9 overexpressed fathead minnow (FHM) cells compared with that in the control. In addition, other in vitro assays revealed that cell apoptosis was significantly elevated in poly I:C and UV-B-treated Accasp-9 transfected FHM cells. However, H248P or C298S mutated Accasp-9 significantly reduced apoptosis in UV-B irradiated cells. Collectively, our results show that Accasp-9 might play a defensive role against invading pathogens and UV-B radiation and H248 and C298 active residues are significantly involved in apoptosis in teleosts.


Assuntos
Cyprinidae , Perciformes , Animais , Antivirais , Caspase 3 , Caspase 9 , Filogenia , Poli I-C/farmacologia
5.
Fish Shellfish Immunol ; 125: 266-275, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35580797

RESUMO

Reactive oxygen species modulator 1 (Romo1) is a mitochondrial inner membrane protein that induces mitochondrial reactive oxygen species (ROS) generation. In this study, we identified the Romo1 homolog from the black rockfish (Sebastes schlegelii), named it as SsRomo1, and characterized it at the molecular as well as functional levels. An open reading frame consisting of 240 bp was identified in the SsRomo1 complementary DNA (cDNA) sequence that encodes a 79 amino acid-long polypeptide with a molecular weight of 8,293 Da and a theoretical isoelectric point (pI) of 9.89. The in silico analysis revealed the characteristic features of SsRomo1, namely the presence of a transmembrane domain and the lack of a signal peptide. Homology analysis revealed that SsRomo1 exhibits the highest sequence identity with its fish counterparts (>93%) and shares a similar percentage of sequence identity with mammals (>92%). Additionally, it is closely clustered together with the fish clade in the constructed phylogenetic tree. The subcellular localization analysis confirmed its mitochondrial localization within the fathead minnow (FHM) cells. Under normal physiological conditions, the SsRomo1 mRNA is highly expressed in the rockfish ovary, followed by the blood and testis, indicating the abundance of mitochondria in these tissues. Furthermore, the significant upregulation of SsRomo1 in cells treated with lipopolysachharide (LPS), polyinosinic:polycytidylic acid, and Streptococcus iniae suggest that the increased ROS production is induced by SsRomo1 to eliminate pathogens during infections. Incidentally, we believe that this study is the first to determine the involvement of SsRomo1 in LPS-mediated nitric oxide (NO) production in RAW267.4 cells, based on their higher NO production as compared to that in the control. Moreover, overexpression of SsRomo1 enhanced the wound healing ability of FHM cells, indicating its high invasion and migration properties. We also determined the hydrogen peroxide-mediated cell viability of SsRomo1-overexpressed FHM cells and observed a significant reduction in viability, which is possibly due to increased ROS production. Collectively, our observations suggest that SsRomo1 plays an important role in oxidative stress modulation upon immune stimulation and in maintenance of tissue homeostasis in black rockfish.


Assuntos
Bass , Perciformes , Sequência de Aminoácidos , Animais , DNA Complementar/genética , Feminino , Proteínas de Peixes/química , Imunidade Inata/genética , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Masculino , Mamíferos/genética , Mamíferos/metabolismo , Estresse Oxidativo , Filogenia , Espécies Reativas de Oxigênio , Alinhamento de Sequência , Cicatrização
6.
Fish Shellfish Immunol ; 126: 217-226, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35636699

RESUMO

Interleukin 17D (IL-17D), a pro-inflammatory cytokine, is a signature cytokine of T helper 17 (Th17) cells. However, studies characterizing the functions of IL-17D in teleost are scarce. Therefore, we aimed to characterize the properties of IL-17D in Amphiprion clarkii. We performed spatial and temporal expression, AcIL-17D-mediated antibacterial and inflammatory gene expression, NFκB pathway-related gene expression analyses, and bacterial colony counting and cell protection assays. We found that AcIL-17D contains a 630 bp coding sequence and encodes 210 amino acids. The spatial expression analysis of AcIL-17D in 12 tissues showed ubiquitous expression, with the highest expression in the brain, followed by blood and skin. Temporal expression analysis of AcIL-17D in blood showed upregulated expression at 6 and 24 h (polyinosinic: polycytidylic acid and lipopolysaccharide), 12 h (all stimulants), and 48 h (polyinosinic: polycytidylic acid and Vibrio harveyi). AcIL-17D expression in the blood gradually decreased at later hours in response to all the stimulants. After treatment of fathead minnow (FHM) cells with different recombinant AcIL-17D concentrations, the downstream gene expression analysis showed increased expression of antimicrobial genes in the FHM cells, namely [NK-Lysin (NKL), Hepcidin antimicrobial peptide-1 (HAMP-1), Defensin-ß (DEFB1)] and some inflammatory genes such as IL-1ß, TNF-α, IL-11, and STAT3. Further nuclear factor κB (NFκB) subunits (NFκB1, NFκB2, RelA, and Rel-B) showed upregulated gene expression at 12 and 24 h. The bacterial colony counting assay using FHM cells showed lower bacterial colony counts in rAcIL-17D-treated cells than in control. Furthermore, the Water-Soluble Tetrazolium Salt (WST -1) assay confirmed the ability of rAcIL-17D in the protection of FHM cells from bacterial infection and conducted the Hoechst 33342 staining upon treatment with rAcIL-17D and rMBP. Therefore, our findings provide important insights into the activation of IL-17D pathway genes in FHM cells, the protective role of AcIL-17D against bacterial infection, and host defense mechanisms in teleost.


Assuntos
Cyprinidae , Interleucina-27 , Perciformes , Sequência de Aminoácidos , Animais , Clonagem Molecular , Cyprinidae/genética , Cyprinidae/metabolismo , Cisteína , Citocinas/genética , Interleucina-17/química , Interleucina-27/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Perciformes/genética , Perciformes/metabolismo , Poli C
7.
Fish Shellfish Immunol ; 124: 442-453, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35460877

RESUMO

Cystatins are a diverse group of cysteine protease inhibitors widely present among various organisms. Beyond their protease inhibitor function, cystatins play a crucial role in diverse pathophysiological conditions in animals, including neurodegenerative disorders, tumor progression, inflammatory diseases, and immune response. However, the role of cystatins in immunity against viral and bacterial infections in fish remains to be elucidated. In this study, the cystatin B from big-belly seahorse, Hippocampus abdominalis, designated as HaCSTB, was identified and characterized. HaCSTB shared the highest homology with type 1 cystatin family members of teleosts and had three cystatin catalytic domains with no signal peptides or disulfide bonds. HaCSTB transcripts were mainly expressed in peripheral blood cells (PBCs), followed by the testis and pouch of healthy big-belly seahorses. Immune challenge with lipopolysaccharides (LPS), polyinosinic:polycytidylic acid (Poly I:C), and Streptococcus iniae induced upregulation of relative HaCSTB mRNA expression in PBCs. Subcellular localization analysis revealed the distribution of HaCSTB in the cytosol, mitochondria, and nuclei of fathead minnow cells (FHM). Recombinant HaCSTB (rHaCSTB) exhibited potent in vitro inhibitory activity against papain, a cysteine protease, in a concentration-, pH-, and temperature-dependent manner. Overexpression of HaCSTB in viral hemorrhagic septicemia virus (VHSV)-susceptible FHM cells increased cell viability and reduced VHSV-induced apoptosis. Collectively, these results suggest that HaCSTB might engage in the teleostean immune protection against bacteria and viruses.


Assuntos
Cyprinidae , Cistatinas , Doenças dos Peixes , Smegmamorpha , Animais , Cyprinidae/genética , Cistatina B/genética , Cistatinas/genética , Proteínas de Peixes/química , Masculino , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência
8.
Fish Shellfish Immunol ; 120: 261-270, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34848304

RESUMO

Thioredoxin, a highly conserved class of proteins involved in redox signaling, is found in a range of organisms from bacteria to higher-level eukaryotes. Thioredoxin acts as an active regulatory enzyme to eliminate excessive reactive oxygen species, thereby preventing cellular damage. In this study, the cDNA sequence of thioredoxin domain-containing 5 (AbTXNDC5) from the disk abalone transcriptomic database was characterized. An in silico analysis of AbTXNDC5 was performed, and its spatial and temporal expression patterns in hemocytes and gills in response to bacteria (Vibrio parahaemolyticus, Listeria monocytogenes), viral hemorrhagic septicemia virus, and pathogen-associated molecular pattern molecules were observed. Furthermore, AbTXNDC5 expression was examined in different developmental stages. Functional assays to explore insulin disulfide reduction, anti-apoptotic activity, and protection against hypoxic cell death of AbTXNDC5 were conducted through recombinant proteins or overexpression in cells. AbTXNDC5 contains a 1179-bp open reading frame coding for 392 amino acids. Conserved thiol-disulfide cysteine residues within two Cys-X-X-Cys motifs were found in AbTXNDC5. Quantitative real-time polymerase chain reaction indicated that healthy digestive tract and hemocyte tissues expressed high levels of AbTXNDC5 mRNA, which may protect the host from invading pathogens. Immune-challenged abalone hemocytes and gills exhibited upregulated expression of AbTXNDC5 at different time points. rAbTXNDC5 also exhibited a functional insulin disulfide reductase activity. AbTXNDC5 conferred protection to cultured cells from apoptosis and hypoxia-induced stress, compared to the pcDNA3.1(+) transfected control cells. Therefore, AbTXNDC5 can be considered an important gene in abalones in relation to the primary immune system and regulation of redox homeostasis and confers protection from stress.


Assuntos
Dissulfetos , Gastrópodes , Insulinas , Tiorredoxinas , Sequência de Aminoácidos , Animais , Gastrópodes/genética , Regulação da Expressão Gênica , Listeria monocytogenes , Novirhabdovirus , Moléculas com Motivos Associados a Patógenos , Filogenia , Tiorredoxinas/genética , Vibrio parahaemolyticus
9.
Dev Comp Immunol ; 123: 104168, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34118281

RESUMO

CD63, a member of the tetraspanin family, is involved in the activation of immune cells, antiviral immunity, and signal transduction. The economically important anemonefishes Amphiprion sp. often face disease outbreaks, and the present study aimed to characterize CD63 in Amphiprion clarkii (denoted AcCD63) to enable better disease management. The in-silico analysis revealed that the AcCD63 transcript is 723 bp long and encodes 240 amino acids. The 26.2 kDa protein has a theoretical isoelectric point of 5.51. Similar to other tetraspanins, AcCD63 consists of four domains: short N-/C-terminal domains and small/large extracellular loops. Pairwise sequence alignment revealed that AcCD63 has the highest identity (100%) and similarity (99.2%) with CD63 from Amphiprion ocellaris. Multiple sequence alignment identified a conserved tetraspanin CCG motif, PXSCC motif, and C-terminal lysosome-targeting GYEVM motif. The quantitative polymerase chain reaction analysis showed that AcCD63 was highly expressed in the spleen and head kidney tissue, with low levels of expression in the liver. Temporal expression patterns of AcCD63 were measured in the head kidney and blood tissue after injection of polyinosinic:polycytidylic acid (poly (I:C)), lipolysacharides (LPS), or Vibrio harveyi (V. harveyi). AcCD63 was upregulated at 12 h post-injection with poly (I:C) or V. harveyi, and at 24 h post-injection with all stimulants in the head kidney. At 24 h post-injection, poly (I:C) and LPS upregulated, whereas V. harveyi downregulated AcCD63 expression in the blood. All viral hemorrhagic septicemia virus transcripts (M, G, N, RdRp, P, and NV) were downregulated in response to AcCD63 overexpression, and removal of viral particles occurred via the involvement of AcCD63. The expression of antiviral genes MX dynamin-like GTPase 1, interferon regulatory factor 3, interferon-stimulated gene 15, interferon-gamma, and viperin in CD63-overexpressing fathead minnow cells was downregulated. Collectively, our findings suggest that AcCD63 is an immunologically important gene involved in the A. clarkii pathogen stress response.


Assuntos
Peixes/metabolismo , Rim Cefálico/fisiologia , Novirhabdovirus/fisiologia , Infecções por Rhabdoviridae/imunologia , Tetraspanina 30/metabolismo , Vibrioses/imunologia , Vibrio/fisiologia , Animais , Antivirais/metabolismo , Células Cultivadas , Peixes/genética , Imunidade Inata , Lipopolissacarídeos/imunologia , Poli I-C/imunologia , Domínios Proteicos/genética , Alinhamento de Sequência , Tetraspanina 30/genética
10.
Fish Shellfish Immunol ; 109: 62-70, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33348035

RESUMO

Glutathione S-transferases (GSTs) are important enzymes involved in phase II detoxification and function by conjugating with the thiol group of glutathione. In this study, we isolated an omega class GST from the big-belly seahorse (Hippocampus abdominalis; HaGSTO1) to study the putative xenobiotic responses and defense ability against viral and bacterial infections in this animal. The isolated HaGSTO1 gene, with a cording sequence of 720 bp, encodes a peptide of 239 amino acids. The predicted molecular mass and theoretical isoelectric point of HaGSTO1 was 27.47 kDa and 8.13, respectively. In-silico analysis of HaGSTO1 revealed a characteristic N-terminal thioredoxin-like domain and a C-terminal domain. Unlike other GSTs, the C-terminal of HaGSTO1 reached up to the N-terminal, and the N-terminal functional group was cysteine rather than tyrosine or serine, as observed in other GSTs. Phylogenetic analysis showed the evolutionary proximity of HaGSTO1 with other identified vertebrate and invertebrate GST orthologs. For the first time, we demonstrated the viral defense capability of HaGSTO1 against viral hemorrhagic septicemia virus (VHSV) infection. All six nucleoproteins of VHSV were significantly downregulated in HaGSTO1-overexpressing FHM cells at 24 h after infection compared with those in the control. Moreover, arsenic toxicity was significantly reduced in HaGSTO1-overexpressing FHM cells, and cell viability increased. Real-time polymerase chain reaction analysis showed that HaGSTO1 transcripts were highly expressed in the pouch and gill when compared with those in other tissues. Blood HaGSTO1 transcripts were significantly upregulated after Edwardsiella tarda, Streptococcus iniae, lipopolysaccharide, and polyinosinic:polycytidylic acid challenge experiments. Collectively, these findings suggest the involvement of HaGSTO1 in the host defense mechanism of seahorses.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Glutationa Transferase/genética , Glutationa Transferase/imunologia , Imunidade Inata/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Sequência de Aminoácidos , Animais , Feminino , Doenças dos Peixes/virologia , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Glutationa Transferase/química , Masculino , Novirhabdovirus/fisiologia , Filogenia , Infecções por Rhabdoviridae/imunologia , Infecções por Rhabdoviridae/virologia , Alinhamento de Sequência/veterinária
11.
Artigo em Inglês | MEDLINE | ID: mdl-32763336

RESUMO

Peroxiredoxins (Prxs) are cysteine-dependent antioxidant proteins that play a leading part in oxidative stress response. Peroxiredoxin 4 (Prx4) is located in the endoplasmic reticulum, where it is primarily involved in regulating the concentration of H2O2, generated during protein folding. Prx4 is also located in the extracellular space, where it activates the JAK/STAT-mediated stress response. Here, we focus on the identification and characterization of the sequence and function of Prx4 from the big-belly seahorse (Hippocampus abdominalis) (HaPrx4). The size of the HaPrx4 coding sequence was 777 bp, which encoded a 258 amino acid protein of 28.8 kDa molecular weight. The amino acid sequence comprises a signal peptide, two active sites with peroxidatic cysteine and resolving cysteine, catalytic triad, and peroxiredoxin superfamily domain. According to the tissue distribution results, ovaries exhibited the highest HaPrx4 expression level within fourteen examined tissues. The HaPrx4 transcriptional responses to four immune stimulants (lipopolysaccharides, polyinosinic: polycytidylic acid, Edwardsiella tarda, and Streptococcus iniae) were evaluated in the blood and liver tissues. Additionally, the functions of recombinant HaPrx4 protein were evaluated by metal ion-catalyzed oxidation assay, peroxidase activity assay, insulin reduction assay, cell viability assay, and Hoechst staining. The assay results confirmed that the functions of HaPrx4 involved DNA protection, hydrogen peroxide (H2O2) elimination, oxidoreductase activity, enhancing cell survival, and cell protection. The results of the current study propose that HaPrx4 is effectively involved in H2O2 scavenging activity during stress conditions and in innate immune responses of the big-belly seahorse.


Assuntos
Fatores Imunológicos/farmacologia , Peroxirredoxinas/química , Peroxirredoxinas/metabolismo , Smegmamorpha , Transcrição Gênica/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Células CHO , Núcleo Celular/metabolismo , Cricetulus , Modelos Moleculares , Peroxirredoxinas/genética , Conformação Proteica , RNA Mensageiro/genética
12.
Fish Shellfish Immunol ; 99: 495-504, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32081809

RESUMO

Thioredoxin (Trx) is a small ubiquitous multifunctional protein with a characteristic WCGPC thiol-disulfide active site that is conserved through evolution. Trx plays a crucial role in the antioxidant defense system. Further, it is involved in a variety of biological functions including gene expression, apoptosis, and growth regulation. Trx exists in several forms, with the cytosolic (Trx-1) and mitochondrial (Trx-2) forms being the most predominant. In this study, the mitochondrial Trx protein (HaTrx-2), from the big-belly seahorse (Hippocampus abdominalis) was characterized, and its molecular features and functional properties were investigated. The cDNA sequence of HaTrx-2 consists of a 519 bp ORF, and it encodes a polypeptide of 172 amino acids. This protein has a calculated molecular mass of 18.8 kDa and a calculated isoelectric point (pI) of 7.80. The highest values of identity (78.7%) and similarity (86.2%) were observed with Fundulus heteroclitus Trx-2 from the pairwise alignment results. The phylogenetic analysis revealed that HaTrx-2 is closely clustered with teleost fishes. The qPCR results showed that HaTrx-2 was prevalently expressed at various levels in all the tissues examined. The ovary showed the highest expression, followed by the brain and kidney. HaTrx-2 showed varying mRNA expression levels during the immune challenge experiment, depending on the type of tissue and the time interval. Our results confirmed the antioxidant property of HaTrx-2 by performing the MCO assay, DPPH radical scavenging activity, and cell viability assays. Further, an insulin disulfide reduction assay revealed the dithiol remove the enzymatic activity of HaTrx-2. Altogether these results indicate that HaTrx-2 plays indispensable roles in the regulation of oxidative stress and immune response in the seahorse.


Assuntos
Infecções Bacterianas/veterinária , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Smegmamorpha/imunologia , Tiorredoxinas/imunologia , Animais , Infecções Bacterianas/imunologia , DNA Complementar/genética , Doenças dos Peixes/microbiologia , Proteínas de Peixes/imunologia , Regulação da Expressão Gênica , Imunidade Inata , Filogenia , Smegmamorpha/genética , Tiorredoxinas/genética
13.
Fish Shellfish Immunol ; 92: 356-366, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31200074

RESUMO

Glutathione S-transferases (GSTs) are essential enzymes for the bioactivation of xenobiotics through the conjugation of the thiol group of glutathione (GSH). In this study, a kappa class of GST was identified from the big belly seahorse (Hippocampus abdominalis) (HaGSTκ1) and its biochemical and functional properties were analyzed. HaGSTκ1 has 231 amino acids encoded by a 696 bp open reading frame (ORF). The protein has a predicted molecular mass of 26.04 kDa and theoretical isoelectric point (pI) of 8.28. It comprised a thioredoxin domain, disulfide bond formation protein A (DsbA) general fold, and Ser15 catalytic site as well as GSH-binding and polypeptide-binding sites. Phylogenetic analysis revealed that HaGSTκ1 is closely clustered with the kappa class of GSTs from teleost fishes. The recombinant (rHaGSTκ1) protein exhibited activity toward 1-chloro-2,4-dinitrobenzene (CDNB), 4-nitrobenzyl (4-NBC), and 4-nitrophenethyl bromide (4-NPB) but not 1,2-dichloro-4-nitrobenzene (DCNB). The optimum pH and temperature were 8 and 30 °C, respectively, for the catalysis of CDNB and the universal substrate of GSTs. The rHaGSTκ1 activity was efficiently inhibited in the presence of Cibacron blue (CB) as compared with hematin. Most prominent expression of HaGSTκ1 was observed in the liver and kidney among the fourteen different tissues of normal seahorse. After challenge with lipopolysaccharide (LPS), polyinosinic-polycytidylic (poly I:C), gram-negative Edwardsiella tarda, and gram-positive Streptococcus iniae, HaGSTκ1 expression was significantly modulated in the liver and blood tissues. Altogether, our study proposes the plausible important role of HaGSTκ1 in innate immunity and detoxification of harmful xenobiotics.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Glutationa Transferase/genética , Glutationa Transferase/imunologia , Imunidade Inata/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Glutationa Transferase/química , Lipopolissacarídeos/farmacologia , Masculino , Conformação Molecular , Filogenia , Poli I-C/farmacologia , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia
14.
Fish Shellfish Immunol ; 90: 40-51, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31015065

RESUMO

Glutaredoxins (Grx) are redox enzymes conserved in viruses, eukaryotes, and prokaryotes. In this study, we characterized glutaredoxin 1 (HaGrx1) from big-belly seahorse, Hippocampus abdominalis. In-silico analysis showed that HaGrx1 contained the classical glutaredoxin 1 structure with a CSYC thioredoxin active site motif. According to multiple sequence alignment and phylogenetic reconstruction, HaGrx1 presented the highest homology to the Grx1 ortholog from Hippocampus comes. Transcriptional studies demonstrated the ubiquitous distribution of HaGrx1 transcripts in all the seahorse tissues tested. Significant modulation (p < 0.05) of HaGrx1 transcripts were observed in blood upon stimulation with pathogen-associated molecular patterns and live pathogens. The ß-hydroxyethyl disulfide reduction assay confirmed the antioxidant activity of recombinant HaGrx1. Further, dehydroascorbate reduction and insulin disulfide reduction assays revealed the oxidoreductase activity of HaGrx1. HaGrx1 utilized 1,4-dithiothreitol, l-cysteine, 2-mercaptoethanol, and reduced l-glutathione as reducing agent with different dehydroascorbate reduction activity levels. Altogether, our results suggested a vital role of HaGrx1 in redox homeostasis as well as the host innate immune defense system.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Glutarredoxinas/genética , Glutarredoxinas/imunologia , Imunidade Inata/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/veterinária , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Glutarredoxinas/química , Lipopolissacarídeos/farmacologia , Moléculas com Motivos Associados a Patógenos , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/veterinária , Streptococcus iniae/fisiologia
15.
Fish Shellfish Immunol ; 84: 158-168, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30287348

RESUMO

The structural and evolutionary linkage between tumor necrosis factor (TNF) and the globular C1q (gC1q) domain defines the C1q and TNF-related proteins (CTRPs), which are involved in diverse functions such as immune defense, inflammation, apoptosis, autoimmunity, and cell differentiation. In this study, red-lip mullet (Liza haematocheila) CTRP4-like (MuCTRP4-like), CTRP5 (MuCTRP5), CTRP6 (MuCTRP6), and CTRP7 (MuCTRP7) were identified from the red-lip mullet transcriptome database and molecularly characterized. According to in silico analysis, coding sequences of MuCTRP4-like, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of 1128, 753, 729, and 888 bp open reading frames (ORF), respectively and encoded 375, 250, 242, and 295 amino acids, respectively. All CTRPs possessed a putative C1q domain. Additionally, MuCTRP5, MuCTRP6, and MuCTRP7 consisted of a collagen region. Phylogenetic analysis exemplified that MuCTRPs were distinctly clustered with the respective CTRP orthologs. Tissue-specific expression analysis demonstrated that MuCTRP4-like was mostly expressed in the blood and intestine. Moreover, MuCTRP6 was highly expressed in the blood, whereas MuCTRP5 and MuCTRP7 were predominantly expressed in the muscle and stomach, respectively. According to the temporal expression in blood, all MuCTRPs exhibited significant modulations in response to polyinosinic:polycytidylic acid (poly I:C) and Lactococcus garvieae (L. garvieae). MuCTRP4-like, MuCTRP5, and MuCTRP6 showed significant upregulation in response to lipopolysaccharides (LPS). The results of this study suggest the potential involvement of Mullet CTRPs in post-immune responses.


Assuntos
Citocinas , Proteínas de Peixes , Moléculas com Motivos Associados a Patógenos , Smegmamorpha , Sequência de Aminoácidos , Animais , Citocinas/genética , Citocinas/imunologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Infecções por Bactérias Gram-Positivas/genética , Infecções por Bactérias Gram-Positivas/imunologia , Infecções por Bactérias Gram-Positivas/veterinária , Lactococcus , Moléculas com Motivos Associados a Patógenos/imunologia , Filogenia , Poli I-C/farmacologia , Alinhamento de Sequência , Análise de Sequência de DNA , Smegmamorpha/genética , Smegmamorpha/imunologia , Smegmamorpha/microbiologia
16.
Fish Shellfish Immunol ; 75: 181-189, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29427717

RESUMO

Thioredoxin is a highly conserved protein found in both prokaryotes and eukaryotes. Reactive oxygen species (ROS) are produced in response to metabolic processes, radiation, metal oxidation, and pathological infections. High levels of ROS lead to cell death via autophagy. However, thioredoxin acts as an active regulatory enzyme in response to excessive ROS. Here, we performed in-silico analysis, immune challenge experiments, and functional assays of seahorse thioredoxin-like protein 1 (ShTXNL1). Evolutionary identification showed that ShTXNL1 protein belongs to the thioredoxin superfamily comprising 289 amino acids. It possesses an N-terminal active thioredoxin domain and C-terminal proteasome-interacting thioredoxin domain (PITH) of ShTXNL1 which is a component of 26S proteasome and binds to the matrix or cell. Pairwise alignment results showed 99.0% identity and 99.7% similarity with the sequence of Hippocampus species. Conserved thiol-disulfide cysteine residue containing Cys-X-X-Cys motif may be found in the first few amino acids in the second beta sheet starting from the N-terminus. This motif can be discovered in ShTXNL1 as 14CRPC17 and comprised two N-linked glycosylation sites at 72NISA75 and 139NESD142. According to the quantitative real-time polymerase chain reaction analysis from healthy seahorses, highest ShTXNL1 mRNA expression was observed in muscle, followed by ovary, brain, gill, and blood tissues. Moreover, significant temporal expression of ShTXNL1 was observed in gill and blood tissues after bacterial stimuli. Thus, the ShTXNL1 gene may be identified as an immunologically important gene in seahorse.


Assuntos
Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Smegmamorpha/genética , Smegmamorpha/imunologia , Tiorredoxinas/genética , Tiorredoxinas/imunologia , Sequência de Aminoácidos , Animais , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/imunologia , Feminino , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Masculino , Filogenia , Poli I-C/farmacologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência/veterinária , Infecções Estreptocócicas/imunologia , Streptococcus iniae/fisiologia , Tiorredoxinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA