Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Histochem ; 113(1): 49-52, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19740530

RESUMO

Body stiffness is important during undulatory locomotion in fish. In amphioxus, the myosepta play an important role in transmission of muscular forces to the notochord. In order to define the specific supporting role of the notochord in amphioxus during locomotion, the ultrastructure of 10 adult amphioxus specimens was analyzed using transmission electron microscopy. Numerous cilia-like structures were found on the surface of each notochordal cell at the sites of their attachment to the notochordal sheath. Ultrastructurally, these structures consisted of the characteristic arrangement of peripheral and central microtubular doublets and were anchored to the inner layer of the notochordal sheath. Immunohistochemically, a positive reaction to applied dynein and ß-tubulin antibodies characterized the area of the cilia-like structures. We propose that reduced back-and-forth movements of the cilia-like structures might contribute to the flow of the fluid content inside the notochord, thus modulating the stiffness of the amphioxus body during its undulatory locomotion.


Assuntos
Cordados não Vertebrados , Cílios/ultraestrutura , Dineínas/análise , Locomoção , Notocorda , Tubulina (Proteína)/análise , Animais , Cordados não Vertebrados/anatomia & histologia , Cordados não Vertebrados/ultraestrutura , Imuno-Histoquímica , Locomoção/fisiologia , Microscopia Eletrônica de Transmissão , Microtúbulos/ultraestrutura , Notocorda/anatomia & histologia , Notocorda/ultraestrutura
2.
Toxicol In Vitro ; 20(3): 286-94, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16182506

RESUMO

Two kinds of nanosize V(2)O(5) particles were synthesized in our own laboratory and concomitantly applied to V79 and L929 fibroblasts and SCCVII, B16F10 and FsaR tumor cells. The morphologies of the cells were monitored using an inverted inverse microscope equipped with digital camera, while quantitative determination of the cytotoxicity of nanosize V(2)O(5) particles was measured using crystal violet bioassay. Twenty four hours after the addition of nanosize V(2)O(5) particles (20muM), noticeable changes in the morphology and density of fibroblast and cancer cells were observed. Reculturing in a freshly prepared medium for the next 24h showed a high recovery effect on V79, SCCVII and B16F10 cells, while FsaR and L929 cells were seriously damaged and unable to recover. At a higher concentration of nanosize V(2)O(5) particles (100muM), the cytotoxicity of V(2)O(5) prevailed against the recovery effect in all cell types. Quantitative measurements have shown that the resistance of investigated cell cultures to the cytotoxicity of nanosize V(2)O(5) particles decreases in the order V79>SCCVII>B16F10>FsaR>L929. The high cytotoxic effect found on FsaR cells suggests that nanosize V(2)O(5) particles could be regarded as poisoning material in the treatment of FsaR fibrosarcoma cells. Possible mechanisms involved in the cytotoxicity of nanosize V(2)O(5) particles were discussed.


Assuntos
Fibroblastos/efeitos dos fármacos , Compostos de Vanádio/toxicidade , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Violeta Genciana , Glucose/farmacologia , Humanos , Microscopia Eletrônica de Transmissão , Nanoestruturas , Espectrofotometria Ultravioleta , Compostos de Vanádio/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA