Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Br J Cancer ; 129(5): 811-818, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37488446

RESUMO

BACKGROUND: The first-in-class brain-penetrating synthetic hydroxylated lipid idroxioleic acid (2-OHOA; sodium 2-hydroxyoleate), activates sphingomyelin synthase expression and regulates membrane-lipid composition and mitochondrial energy production, inducing cancer cell autophagy. We report the findings of a multicentric first-in-human Phase 1/2A trial (NCT01792310) of 2-OHOA, identifying the maximum tolerated dose (MTD) and assessing safety and preliminary efficacy. METHODS: We performed an open-label, non-randomised trial to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and anti-tumour activity of daily oral treatment with 2-OHOA monotherapy (BID/TID) in 54 patients with glioma and other advanced solid tumours. A dose-escalation phase using a standard 3 + 3 design was performed to determine safety and tolerability. This was followed by two expansion cohorts at the MTD to determine the recommended Phase-2 dose (RP2D). RESULTS: In total, 32 recurrent patients were enrolled in the dose-escalation phase (500-16,000 mg/daily). 2-OHOA was rapidly absorbed with dose-proportional exposure. Treatment was well-tolerated overall, with reversible grade 1-2 nausea, vomiting, and diarrhoea as the most common treatment-related adverse events (AEs). Four patients had gastrointestinal dose-limiting toxicities (DLTs) of nausea, vomiting, diarrhoea (three patients at 16,000 mg and one patient at 12,000 mg), establishing an RP2D at 12,000 mg/daily. Potential activity was seen in patients with recurrent high-grade gliomas (HGG). Of the 21 patients with HGG treated across the dose escalation and expansion, 5 (24%) had the clinical benefit (RANO CR, PR and SD >6 cycles) with one exceptional response lasting >2.5 years. CONCLUSIONS: 2-OHOA demonstrated a good safety profile and encouraging activity in this difficult-to-treat malignant brain-tumour patient population, placing it as an ideal potential candidate for the treatment of glioma and other solid tumour malignancies. CLINICAL TRIAL REGISTRATION: EudraCT registration number: 2012-001527-13; Clinicaltrials.gov registration number: NCT01792310.


Assuntos
Glioma , Neoplasias , Humanos , Diarreia , Glioma/tratamento farmacológico , Dose Máxima Tolerável , Náusea , Recidiva Local de Neoplasia , Neoplasias/tratamento farmacológico , Esfingolipídeos/uso terapêutico , Vômito
2.
Biomedicines ; 11(5)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37239036

RESUMO

Pediatric neurological tumors are a heterogeneous group of cancers, many of which carry a poor prognosis and lack a "standard of care" therapy. While they have similar anatomic locations, pediatric neurological tumors harbor specific molecular signatures that distinguish them from adult brain and other neurological cancers. Recent advances through the application of genetics and imaging tools have reshaped the molecular classification and treatment of pediatric neurological tumors, specifically considering the molecular alterations involved. A multidisciplinary effort is ongoing to develop new therapeutic strategies for these tumors, employing innovative and established approaches. Strikingly, there is increasing evidence that lipid metabolism is altered during the development of these types of tumors. Thus, in addition to targeted therapies focusing on classical oncogenes, new treatments are being developed based on a broad spectrum of strategies, ranging from vaccines to viral vectors, and melitherapy. This work reviews the current therapeutic landscape for pediatric brain tumors, considering new emerging treatments and ongoing clinical trials. In addition, the role of lipid metabolism in these neoplasms and its relevance for the development of novel therapies are discussed.

3.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077299

RESUMO

Pancreatic cancer has a high mortality rate due to its aggressive nature and high metastatic rate. When coupled to the difficulties in detecting this type of tumor early and the lack of effective treatments, this cancer is currently one of the most important clinical challenges in the field of oncology. Melitherapy is an innovative therapeutic approach that is based on modifying the composition and structure of cell membranes to treat different diseases, including cancers. In this context, 2-hydroxycervonic acid (HCA) is a melitherapeutic agent developed to combat pancreatic cancer cells, provoking the programmed cell death by apoptosis of these cells by inducing ER stress and triggering the production of ROS species. The efficacy of HCA was demonstrated in vivo, alone and in combination with gemcitabine, using a MIA PaCa-2 cell xenograft model of pancreatic cancer in which no apparent toxicity was evident. HCA is metabolized by α-oxidation to C21:5n-3 (heneicosapentaenoic acid), which in turn also showed anti-proliferative effect in these cells. Given the unmet clinical needs associated with pancreatic cancer, the data presented here suggest that the use of HCA merits further study as a potential therapy for this condition.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias Pancreáticas , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Ácidos Docosa-Hexaenoicos/uso terapêutico , Humanos , Hidroxiácidos , Imidazóis , Neoplasias Pancreáticas/patologia , Sulfonamidas , Tiofenos , Neoplasias Pancreáticas
4.
Cells ; 11(3)2022 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35159387

RESUMO

The synthetic fatty acid 2-hydroxyoleic acid (2OHOA) has been extensively investigated as a cancer therapy mainly based on its regulation of membrane lipid composition and structure, activating various cell fate pathways. We discovered, additionally, that 2OHOA can uncouple oxidative phosphorylation, but this has never been demonstrated mechanistically. Here, we explored the effect of 2OHOA on mitochondria isolated by ultracentrifugation from U118MG glioblastoma cells. Mitochondria were analyzed by shotgun lipidomics, molecular dynamic simulations, spectrophotometric assays for determining respiratory complex activity, mass spectrometry for assessing beta oxidation and Seahorse technology for bioenergetic profiling. We showed that the main impact of 2OHOA on mitochondrial lipids is their hydroxylation, demonstrated by simulations to decrease co-enzyme Q diffusion in the liquid disordered membranes embedding respiratory complexes. This decreased co-enzyme Q diffusion can explain the inhibition of disjointly measured complexes I-III activity. However, it doesn't explain how 2OHOA increases complex IV and state 3 respiration in intact mitochondria. This increased respiration probably allows mitochondrial oxidative phosphorylation to maintain ATP production against the 2OHOA-mediated inhibition of glycolytic ATP production. This work correlates 2OHOA function with its modulation of mitochondrial lipid composition, reflecting both 2OHOA anticancer activity and adaptation to it by enhancement of state 3 respiration.


Assuntos
Antineoplásicos , Trifosfato de Adenosina , Antineoplásicos/farmacologia , Mitocôndrias/metabolismo , Ácidos Oleicos , Respiração
5.
Membranes (Basel) ; 11(12)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34940418

RESUMO

Membranes are mainly composed of a lipid bilayer and proteins, constituting a checkpoint for the entry and passage of signals and other molecules. Their composition can be modulated by diet, pathophysiological processes, and nutritional/pharmaceutical interventions. In addition to their use as an energy source, lipids have important structural and functional roles, e.g., fatty acyl moieties in phospholipids have distinct impacts on human health depending on their saturation, carbon length, and isometry. These and other membrane lipids have quite specific effects on the lipid bilayer structure, which regulates the interaction with signaling proteins. Alterations to lipids have been associated with important diseases, and, consequently, normalization of these alterations or regulatory interventions that control membrane lipid composition have therapeutic potential. This approach, termed membrane lipid therapy or membrane lipid replacement, has emerged as a novel technology platform for nutraceutical interventions and drug discovery. Several clinical trials and therapeutic products have validated this technology based on the understanding of membrane structure and function. The present review analyzes the molecular basis of this innovative approach, describing how membrane lipid composition and structure affects protein-lipid interactions, cell signaling, disease, and therapy (e.g., fatigue and cardiovascular, neurodegenerative, tumor, infectious diseases).

6.
Cancers (Basel) ; 13(17)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34503102

RESUMO

Glioblastoma (GBM) is the most common and aggressive type of primary brain tumor in adults, and the median survival of patients with GBM is 14.5 months. Melitherapy is an innovative therapeutic approach to treat different diseases, including cancer, and it is based on the regulation of cell membrane composition and structure, which modulates relevant signal pathways. Here, we have tested the effects of 2-hydroxycervonic acid (HCA) on GBM cells and xenograft tumors. HCA was taken up by cells and it compromised the survival of several human GBM cell lines in vitro, as well as the in vivo growth of xenograft tumors (mice) derived from these cells. HCA appeared to enhance ER stress/UPR signaling, which consequently induced autophagic cell death of the GBM tumor cells. This negative effect of HCA on GBM cells may be mediated by the JNK/c-Jun/CHOP/BiP axis, and it also seems to be provoked by the cellular metabolite of HCA, C21:5n-3 (heneicosapentaenoic acid). These results demonstrate the efficacy of the melitherapeutic treatment used and the potential of using C21:5n-3 as an efficacy biomarker for this treatment. Given the safety profile in animal models, the data presented here provide evidence that HCA warrants further clinical study as a potential therapy for GBM, currently an important unmet medical need.

7.
Front Physiol ; 12: 782525, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35126175

RESUMO

Cell proliferation in pancreatic cancer is determined by a complex network of signaling pathways. Despite the extensive understanding of these protein-mediated signaling processes, there are no significant drug discoveries that could considerably improve a patient's survival. However, the recent understanding of lipid-mediated signaling gives a new perspective on the control of the physiological state of pancreatic cells. Lipid signaling plays a major role in the induction of cytocidal autophagy and can be exploited using synthetic lipids to induce cell death in pancreatic cancer cells. In this work, we studied the activity of a synthetic lipid, tri-2-hydroxyarachidonein (TGM4), which is a triacylglycerol mimetic that contains three acyl moieties with four double bonds each, on cellular and in vivo models of pancreatic cancer. We demonstrated that TGM4 inhibited proliferation of Mia-PaCa-2 (human pancreatic carcinoma) and PANC-1 (human pancreatic carcinoma of ductal cells) in in vitro models and in an in vivo xenograft model of Mia-PaCa-2 cells. In vitro studies demonstrated that TGM4 induced cell growth inhibition paralleled with an increased expression of PARP and CHOP proteins together with the presence of sub-G0 cell cycle events, indicating cell death. This cytocidal effect was associated with elevated ER stress or autophagy markers such as BIP, LC3B, and DHFR. In addition, TGM4 activated peroxisome proliferator-activated receptor gamma (PPAR-γ), which induced elevated levels of p-AKT and downregulation of p-c-Jun. We conclude that TGM4 induced pancreatic cell death by activation of cytocidal autophagy. This work highlights the importance of lipid signaling in cancer and the use of synthetic lipid structures as novel and potential approaches to treat pancreatic cancer and other neoplasias.

8.
Cancers (Basel) ; 11(1)2019 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-30646599

RESUMO

Background: 2-Hydroxyoleic acid (2OHOA) is particularly active against glioblastoma multiforme (GBM) and successfully finished a phase I/IIA trial in patients with glioma and other advanced solid tumors. However, its mechanism of action is not fully known. Methods: The relationship between SMS1 and SMS2 expressions (mRNA) and overall survival in 329 glioma patients was investigated, and so was the correlation between SMS expression and 2OHOA's efficacy. The opposing role of SMS isoforms in 2OHOA's mechanism of action and in GBM cell growth, differentiation and death, was studied overexpressing or silencing them in human GBM cells. Results: Patients with high-SMS1 plus low-SMS2 expression had a 5-year survival ~10-fold higher than patients with low-SMS1 plus high-SMS2 expression. SMS1 and SMS2 also had opposing effect on GBM cell survival and 2OHOA's IC50 correlated with basal SMS1 levels and treatment induced changes in SMS1/SMS2 ratio. SMSs expression disparately affected 2OHOA's cancer cell proliferation, differentiation, ER-stress and autophagy. Conclusions: SMS1 and SMS2 showed opposite associations with glioma patient survival, glioma cell growth and response to 2OHOA treatment. SMSs signature could constitute a valuable prognostic biomarker, with high SMS1 and low SMS2 being a better disease prognosis. Additionally, low basal SMS1 mRNA levels predict positive response to 2OHOA.

9.
Biosci Rep ; 39(1)2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602451

RESUMO

This work tests bioenergetic and cell-biological implications of the synthetic fatty acid Minerval (2-hydroxyoleic acid), previously demonstrated to act by activation of sphingomyelin synthase in the plasma membrane (PM) and lowering of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) and their carcinogenic signaling. We show here that Minerval also acts, selectively in cancer cell lines, as an ATP depleting uncoupler of mitochondrial oxidative phosphorylation (OxPhos). As a function of its exposure time, Minerval compromised the capacity of glioblastoma U87-MG cells to compensate for aberrant respiration by up-modulation of glycolysis. This effect was not exposure time-dependent in the lung carcinoma A549 cell line, which was more sensitive to Minerval. Compared with OxPhos inhibitors FCCP (uncoupler), rotenone (electron transfer inhibitor), and oligomycin (F1F0-ATPase inhibitor), Minerval action was similar only to that of FCCP. This similarity was manifested by mitochondrial membrane potential (MMP) depolarization, facilitation of oxygen consumption rate (OCR), restriction of mitochondrial and cellular reactive oxygen species (ROS) generation and mitochondrial fragmentation. Additionally, compared with other OxPhos inhibitors, Minerval uniquely induced ER stress in cancer cell lines. These new modes of action for Minerval, capitalizing on the high fatty acid requirements of cancer cells, can potentially enhance its cancer-selective toxicity and improve its therapeutic capacity.


Assuntos
Metabolismo Energético/efeitos dos fármacos , Neoplasias Pulmonares/tratamento farmacológico , Ácidos Oleicos/farmacologia , Células A549 , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
10.
Cell Rep ; 23(4): 1178-1191, 2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29694894

RESUMO

Most colorectal cancer (CRC)-related deaths are due to liver metastases. PKCζ is a tumor suppressor in CRC with reduced expression in metastasis. Given the importance of microRNAs (miRNAs) in regulating cellular plasticity, we performed an unbiased screening and identified the miR-200 family as the most relevant miRNAs downregulated by PKCζ deficiency. The regulation of the intracellular levels of miR-200 by PKCζ is post-transcriptional and involves their secretion in extracellular vesicles. Here, we identified ADAR2 as a direct substrate of PKCζ in CRC cells. Phosphorylation of ADAR2 regulates its editing activity, which is required to maintain miR-200 steady-state levels, suggesting that the PKCζ/ADAR2 axis regulates miR-200 secretion through RNA editing. Loss of this axis results in epithelial-to-mesenchymal transition (EMT) and increased liver metastases, which can be inhibited in vivo by blocking miR-200 release. Therefore, the PKCζ/ADAR2 axis is a critical regulator of CRC metastases through modulation of miR-200 levels.


Assuntos
Adenosina Desaminase , MicroRNA Circulante , Neoplasias Colorretais , Neoplasias Hepáticas , MicroRNAs , Proteínas de Neoplasias , Proteína Quinase C , RNA Neoplásico , Proteínas de Ligação a RNA , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Animais , Micropartículas Derivadas de Células/genética , Micropartículas Derivadas de Células/metabolismo , Micropartículas Derivadas de Células/patologia , MicroRNA Circulante/genética , MicroRNA Circulante/metabolismo , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/secundário , Camundongos , Camundongos Knockout , MicroRNAs/genética , Metástase Neoplásica , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , RNA Neoplásico/genética , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
11.
Cell Rep ; 16(12): 3297-3310, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27653691

RESUMO

Paneth cells are a highly specialized population of intestinal epithelial cells located in the crypt adjacent to Lgr5(+) stem cells, from which they differentiate through a process that requires downregulation of the Notch pathway. Their ability to store and release antimicrobial peptides protects the host from intestinal pathogens and controls intestinal inflammation. Here, we show that PKCλ/ι is required for Paneth cell differentiation at the level of Atoh1 and Gfi1, through the control of EZH2 stability by direct phosphorylation. The selective inactivation of PKCλ/ι in epithelial cells results in the loss of mature Paneth cells, increased apoptosis and inflammation, and enhanced tumorigenesis. Importantly, PKCλ/ι expression in human Paneth cells decreases with progression of Crohn's disease. Kaplan-Meier survival analysis of colorectal cancer (CRC) patients revealed that low PRKCI levels correlated with significantly worse patient survival rates. Therefore, PKCλ/ι is a negative regulator of intestinal inflammation and cancer through its role in Paneth cell homeostasis.


Assuntos
Transformação Celular Neoplásica/metabolismo , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Isoenzimas/metabolismo , Celulas de Paneth/metabolismo , Proteína Quinase C/metabolismo , Animais , Diferenciação Celular/imunologia , Transformação Celular Neoplásica/patologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/mortalidade , Neoplasias Colorretais/patologia , Doença de Crohn/metabolismo , Doença de Crohn/patologia , Humanos , Inflamação/patologia , Mucosa Intestinal/patologia , Estimativa de Kaplan-Meier , Camundongos , Camundongos Endogâmicos C57BL , Celulas de Paneth/patologia
12.
Cell Rep ; 10(5): 740-754, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25660024

RESUMO

Intestinal epithelial homeostasis requires continuous renewal supported by stem cells located in the base of the crypt. Disruption of this balance results in failure to regenerate and initiates tumorigenesis. The ß-catenin and Yap pathways in Lgr5+ stem cells have been shown to be central to this process. However, the precise mechanisms by which these signaling molecules are regulated in the stem cell population are not totally understood. Protein kinase C ζ (PKCζ) has been previously demonstrated to be a negative regulator of intestinal tumorigenesis. Here, we show that PKCζ suppresses intestinal stem cell function by promoting the downregulation of ß-catenin and Yap through direct phosphorylation. PKCζ deficiency results in increased stem cell activity in organoid cultures and in vivo, accounting for the increased tumorigenic and regenerative activity response of Lgr5+-specific PKCζ-deficient mice. This demonstrates that PKCζ is central to the control of stem cells in intestinal cancer and homeostasis.

13.
Biochim Biophys Acta ; 1838(6): 1619-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24525074

RESUMO

This review summarizes the cellular bases of the effects of NaCHOleate (2-hydroxyoleic acid; 2OHOA; Minerval) against glioma and other types of tumors. NaCHOleate, activates sphingomyelin synthase (SGMS) increasing the levels of cell membrane sphingomyelin (SM) and diacylglycerol (DAG) together with reductions of phosphatidylethanolamine (PE) and phosphatidylcholine (PC). The increases in the membrane levels of NaCHOleate itself and of DAG induce a translocation and overexpression of protein kinase C (PKC) and subsequent reductions of Cyclin D, cyclin-dependent kinases 4 and 6 (CDKs 4 and 6), hypophosphorylation of the retinoblastoma protein, inhibition of E2F1 and knockdown of dihydrofolate reductase (DHFR) impairing DNA synthesis. In addition in some cancer cells, the increases in SM are associated with Fas receptor (FasR) capping and ligand-free induction of apoptosis. In glioma cell lines, the increases in SM are associated with the inhibition of the Ras/MAPK and PI3K/Akt pathways, in association with p27Kip1 overexpression. Finally, an analysis of the Repository of Molecular Brain Neoplasia Data (REMBRANDT) database for glioma patient survival shows that the weight of SM-related metabolism gene expression in glioma patients' survival is similar to glioma-related genes. Due to its low toxicity and anti-tumoral effect in cell and animal models its status as an orphan drug for glioma treatment by the European Medicines Agency (EMA) was recently acknowledged and a phase 1/2A open label, non-randomized study was started in patients with advanced solid tumors including malignant glioma. This article is part of a Special Issue entitled: Membrane Structure and Function: Relevance in the Cell's Physiology, Pathology and Therapy.


Assuntos
Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Glioma/tratamento farmacológico , Lipídeos de Membrana/química , Ácidos Oleicos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Glioma/metabolismo , Glioma/patologia , Humanos , Lipídeos de Membrana/metabolismo
14.
Cell ; 152(3): 599-611, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23374352

RESUMO

Tumor cells have high-energetic and anabolic needs and are known to adapt their metabolism to be able to survive and keep proliferating under conditions of nutrient stress. We show that PKCζ deficiency promotes the plasticity necessary for cancer cells to reprogram their metabolism to utilize glutamine through the serine biosynthetic pathway in the absence of glucose. PKCζ represses the expression of two key enzymes of the pathway, PHGDH and PSAT1, and phosphorylates PHGDH at key residues to inhibit its enzymatic activity. Interestingly, the loss of PKCζ in mice results in enhanced intestinal tumorigenesis and increased levels of these two metabolic enzymes, whereas patients with low levels of PKCζ have a poor prognosis. Furthermore, PKCζ and caspase-3 activities are correlated with PHGDH levels in human intestinal tumors. Taken together, this demonstrates that PKCζ is a critical metabolic tumor suppressor in mouse and human cancer.


Assuntos
Adenocarcinoma/metabolismo , Adenoma/metabolismo , Neoplasias do Colo/metabolismo , Proteína Quinase C/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Proteína da Polipose Adenomatosa do Colo/metabolismo , Animais , Vias Biossintéticas , Transformação Celular Neoplásica , Glucose/metabolismo , Humanos , Camundongos , Serina/biossíntese , Organismos Livres de Patógenos Específicos , Estresse Fisiológico
15.
Autophagy ; 8(10): 1542-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22892762

RESUMO

The very high mortality rate of gliomas reflects the unmet therapeutic need associated with this type of brain tumor. We have discovered that the plasma membrane fulfills a critical role in the propagation of tumorigenic signals, whereby changes in membrane lipid content can either activate or silence relevant pathways. We have designed a synthetic fatty acid, 2-hydroxyoleic acid (2OHOA), that specifically activates sphingomyelin synthase (SGMS), thereby modifying the lipid content of cancer cell membranes and restoring lipid levels to those found in normal cells. In reverting, the structure of the membrane by activating SGMS, 2OHOA inhibits the RAS-MAPK pathway, which in turn fails to activate the CCND (Cyclin D)-CDK4/CDK6 and PI3K-AKT1 pathways. The overall result in SF767 cancer cells, a line that is resistant to apoptosis, is the sequential induction of cell cycle arrest, cell differentiation and autophagy. Such effects are not observed in normal cells (MRC-5) and thus, this specific activation of programmed cell death infers greater efficacy and lower toxicity to 2OHOA than that associated with temozolomide (TMZ), the reference drug for the treatment of glioma.


Assuntos
Autofagia/efeitos dos fármacos , Glioma/patologia , Ácidos Oleicos/farmacologia , Esfingomielinas/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Humanos , Modelos Biológicos , Transdução de Sinais/efeitos dos fármacos
16.
Proc Natl Acad Sci U S A ; 109(22): 8489-94, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586083

RESUMO

Despite recent advances in the development of new cancer therapies, the treatment options for glioma remain limited, and the survival rate of patients has changed little over the past three decades. Here, we show that 2-hydroxyoleic acid (2OHOA) induces differentiation and autophagy of human glioma cells. Compared to the current reference drug for this condition, temozolomide (TMZ), 2OHOA combated glioma more efficiently and, unlike TMZ, tumor relapse was not observed following 2OHOA treatment. The novel mechanism of action of 2OHOA is associated with important changes in membrane-lipid composition, primarily a recovery of sphingomyelin (SM) levels, which is markedly low in glioma cells before treatment. Parallel to membrane-lipid regulation, treatment with 2OHOA induced a dramatic translocation of Ras from the membrane to the cytoplasm, which inhibited the MAP kinase pathway, reduced activity of the PI3K/Akt pathway, and downregulated Cyclin D-CDK4/6 proteins followed by hypophosphorylation of the retinoblastoma protein (RB). These regulatory effects were associated with induction of glioma cell differentiation into mature glial cells followed by autophagic cell death. Given its high efficacy, low toxicity, ease of oral administration, and good distribution to the brain, 2OHOA constitutes a new and potentially valuable therapeutic tool for glioma patients.


Assuntos
Antineoplásicos/farmacologia , Autofagia/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Ácidos Oleicos/farmacologia , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Membrana Celular/química , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/farmacologia , Relação Dose-Resposta a Droga , Glioma/metabolismo , Glioma/patologia , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Masculino , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Camundongos , Camundongos Nus , Microscopia Confocal , Ácidos Oleicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida , Fatores de Tempo , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas ras/metabolismo
17.
Am J Pathol ; 179(3): 1494-503, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21763261

RESUMO

Chitinase 3-like-1 (CHI3L1/YKL-40) is a protein secreted from restricted cell types including colonic epithelial cells (CECs) and macrophages. CHI3L1 is an inflammation-associated molecule, and its expression is enhanced in persons with colitis and colon cancer. The biological function of CHI3L1 on CECs is unclear. In this study, we investigated the role of CHI3L1 on CECs during the development of colitis-associated neoplasia. We analyzed colonic samples obtained from healthy persons and from persons with ulcerative colitis with or without premalignant or malignant changes. DNA microarray and RT-PCR analyses significantly increased CHI3L1 expression in non-dysplastic mucosa from patients with inflammatory bowel disease (IBD) who had dysplasia/adenocarcinoma compared with that in healthy persons and in patients with IBD who did not have dysplasia. As determined by IHC, CHI3L1 was expressed in specific cell types in the crypts of colonic biopsies obtained from patients with ulcerative colitis who have remote dysplasia. Purified CHI3L1 efficiently activated the NF-κB signaling pathway and enhanced the secretion of IL-8 and TNF-α in SW480 human colon cancer cells. In addition, colon cancer cell proliferation and migration were significantly promoted in response to CHI3L1 in these cells. In summary, CHI3L1 may contribute to the proliferation, migration, and neoplastic progression of CECs under inflammatory conditions and could be a useful biomarker for neoplastic changes in patients with IBD.


Assuntos
Adipocinas/metabolismo , Biomarcadores Tumorais/metabolismo , Colite Ulcerativa/diagnóstico , Neoplasias Colorretais/diagnóstico , Lectinas/metabolismo , Movimento Celular/fisiologia , Células Cultivadas , Proteína 1 Semelhante à Quitinase-3 , Colo/metabolismo , Relação Dose-Resposta a Droga , Células Epiteliais/metabolismo , Feminino , Humanos , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Síndrome do Intestino Irritável/diagnóstico , Masculino , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Lesões Pré-Cancerosas/diagnóstico , Fator de Necrose Tumoral alfa/metabolismo
18.
Clin Immunol ; 140(3): 268-75, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21546314

RESUMO

Host-microbial interactions play a key role during the development of colitis. We have previously shown that chinase 3-like 1 (CHI3L1) is an inducible molecule overexpressed in colonic epithelial cells (CECs) under inflammatory conditions. In this study, we found that chitin-binding motif (CBM) of CHI3L1 is specifically associated with the CHI3L1-mediated activation of the Akt-signaling in CEC by transfecting the CBM-mutant CHI3L1 vectors in SW480 CECs. Downstream, CHI3L1 enhanced the secretion of IL-8 and TNFα in a dose-dependent manner. We previously show that 325 through 339 amino-acids in CBM are crucial for the biological function of CHI3L1. Here we demonstrated that 325th-339th residues of CBM in CHI3L1 is a critical region for the activation of Akt, IL-8 production, and for a specific cellular localization of CHI3L1. In conclusion, CBM region of CHI3L1 is critical in activating Akt signaling in CECs, and the activation may be associated with the development of chronic colitis.


Assuntos
Colo/enzimologia , Glicoproteínas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Motivos de Aminoácidos , Animais , Linhagem Celular , Proteína 1 Semelhante à Quitinase-3 , Células Epiteliais/metabolismo , Humanos , Interleucina-8/biossíntese , Camundongos , Fator de Necrose Tumoral alfa/metabolismo
19.
J Cell Mol Med ; 14(3): 659-70, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19413889

RESUMO

Minerval is an oleic acid synthetic analogue that impairs lung cancer (A549) cell proliferation upon modulation of the plasma membrane lipid structure and subsequent regulation of protein kinase C localization and activity. However, this mechanism does not fully explain the regression of tumours induced by this drug in animal models of cancer. Here we show that Minerval also induced apoptosis in Jurkat T-lymphoblastic leukaemia and other cancer cells. Minerval inhibited proliferation of Jurkat cells, concomitant with a decrease of cyclin D3 and cdk2 (cyclin-dependent kinase2). In addition, the changes that induced on Jurkat cell membrane organization caused clustering (capping) of the death receptor Fas (CD95), caspase-8 activation and initiation of the extrinsic apoptosis pathway, which finally resulted in programmed cell death. The present results suggest that the intrinsic pathway (associated with caspase-9 function) was activated downstream by caspase-8. In a xenograft model of human leukaemia, Minerval also inhibited tumour progression and induced tumour cell death. Studies carried out in a wide variety of cancer cell types demonstrated that apoptosis was the main molecular mechanism triggered by Minerval. This is the first report on the pro-apoptotic activity of Minerval, and in part explains the effectiveness of this non-toxic anticancer drug and its wide spectrum against different types of cancer.


Assuntos
Apoptose/efeitos dos fármacos , Leucemia Experimental/tratamento farmacológico , Ácidos Oleicos/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Animais , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ciclina D3/metabolismo , Quinase 2 Dependente de Ciclina/metabolismo , Relação Dose-Resposta a Droga , Citometria de Fluxo , Células HL-60 , Células HT29 , Células HeLa , Humanos , Immunoblotting , Células Jurkat , Leucemia Experimental/patologia , Leucemia de Células T/metabolismo , Leucemia de Células T/patologia , Masculino , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Fatores de Tempo
20.
Proc Natl Acad Sci U S A ; 106(33): 13754-8, 2009 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-19666584

RESUMO

alpha-Hydroxy-9-cis-octadecenoic acid, a synthetic fatty acid that modifies the composition and structure of lipid membranes. 2-Hydroxyoleic acid (HOA) generated interest due to its potent, yet nontoxic, anticancer activity. It induces cell cycle arrest in human lung cancer (A549) cells and apoptosis in human leukemia (Jurkat) cells. These two pathways may explain how HOA induces regression of a variety of cancers. We showed that HOA repressed the expression of dihydrofolate reductase (DHFR), the enzyme responsible for tetrahydrofolate (THF) synthesis. Folinic acid, which readily produces THF without the participation of DHFR, reverses the antitumor effects of HOA in A549 and Jurkat cells, as well as the inhibitory influence on cyclin D and cdk2 in A549 cells, and on DNA and PARP degradation in Jurkat cells. This effect was very specific, because either elaidic acid (an analog of HOA) or other lipids, failed to alter A549 or Jurkat cell growth. THF is a cofactor necessary for DNA synthesis. Thus, impairment of DNA synthesis appears to be a common mechanism involved in the different responses elicited by cancer cells following treatment with HOA, namely cell cycle arrest or apoptosis. Compared with other antifolates, such as methotrexate, HOA did not directly inhibit DHFR but rather, it repressed its expression, a mode of action that offers certain therapeutic advantages. These results not only demonstrate the effect of a fatty acid on the expression of DHFR, but also emphasize the potential of HOA to be used as a wide-spectrum drug against cancer.


Assuntos
Antineoplásicos/farmacologia , Ácidos Oleicos/química , Tetra-Hidrofolato Desidrogenase/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Ácidos Graxos/química , Antagonistas do Ácido Fólico/farmacologia , Humanos , Células Jurkat , Leucovorina/química , Lipídeos/química , Metotrexato/farmacologia , Neoplasias/tratamento farmacológico , Ácidos Oleicos/farmacologia , Especificidade por Substrato , Tetra-Hidrofolato Desidrogenase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA