Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Neurology ; 101(23): e2434-e2447, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-37827850

RESUMO

BACKGROUND AND OBJECTIVES: There is an urgent need to identify novel noninvasive biomarkers for Alzheimer disease (AD) diagnosis. Recent advances in blood-based measurements of phosphorylated tau (pTau) species are promising but still insufficient to address clinical needs. Epigenetics has been shown to be helpful to better understand AD pathogenesis. Epigenetic biomarkers have been successfully implemented in other medical disciplines, such as oncology. The objective of this study was to explore the diagnostic accuracy of a blood-based DNA methylation marker panel as a noninvasive tool to identify patients with late-onset Alzheimer compared with age-matched controls. METHODS: A case-control study was performed. Blood DNA methylation levels at 46 cytosine-guanine sites (21 genes selected after a comprehensive literature search) were measured by bisulfite pyrosequencing in patients with "probable AD dementia" following National Institute on Aging and the Alzheimer's Association guidelines (2011) and age-matched and sex-matched controls recruited at Neurology Department-University Hospital of Navarre, Spain, selected by convenience sampling. Plasma pTau181 levels were determined by Simoa technology. Multivariable logistic regression analysis was performed to explore the optimal model to discriminate patients with AD from controls. Furthermore, we performed a stratified analysis by sex. RESULTS: The final study cohort consisted of 80 patients with AD (age: median [interquartile range] 79 [11] years; 58.8% female) and 100 cognitively healthy controls (age 77 [10] years; 58% female). A panel including DNA methylation levels at NXN, ABCA7, and HOXA3 genes and plasma pTau181 significantly improved (area under the receiver operating characteristic curve 0.93, 95% CI 0.89-0.97) the diagnostic performance of a single pTau181-based model, adjusted for age, sex, and APOE ɛ4 genotype. The sensitivity and specificity of this panel were 83.30% and 90.00%, respectively. After sex-stratified analysis, HOXA3 DNA methylation levels showed consistent association with AD. DISCUSSION: These results highlight the potential translational value of blood-based DNA methylation biomarkers for noninvasive diagnosis of AD. REGISTRATION INFORMATION: Research Ethics Committee of the University Hospital of Navarre (PI17/02218).


Assuntos
Doença de Alzheimer , Humanos , Feminino , Idoso , Masculino , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Metilação de DNA/genética , Estudos de Casos e Controles , Biomarcadores , Genótipo , Proteínas tau/genética , Peptídeos beta-Amiloides/genética
2.
Brain Commun ; 5(2): fcad074, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056479

RESUMO

The study of sex differences in Alzheimer's disease is increasingly recognized as a key priority in research and clinical development. People with Down syndrome represent the largest population with a genetic link to Alzheimer's disease (>90% in the 7th decade). Yet, sex differences in Alzheimer's disease manifestations have not been fully investigated in these individuals, who are key candidates for preventive clinical trials. In this double-centre, cross-sectional study of 628 adults with Down syndrome [46% female, 44.4 (34.6; 50.7) years], we compared Alzheimer's disease prevalence, as well as cognitive outcomes and AT(N) biomarkers across age and sex. Participants were recruited from a population-based health plan in Barcelona, Spain, and from a convenience sample recruited via services for people with intellectual disabilities in England and Scotland. They underwent assessment with the Cambridge Cognitive Examination for Older Adults with Down Syndrome, modified cued recall test and determinations of brain amyloidosis (CSF amyloid-ß 42 / 40 and amyloid-PET), tau pathology (CSF and plasma phosphorylated-tau181) and neurodegeneration biomarkers (CSF and plasma neurofilament light, total-tau, fluorodeoxyglucose-PET and MRI). We used within-group locally estimated scatterplot smoothing models to compare the trajectory of biomarker changes with age in females versus males, as well as by apolipoprotein ɛ4 carriership. Our work revealed similar prevalence, age at diagnosis and Cambridge Cognitive Examination for Older Adults with Down Syndrome scores by sex, but males showed lower modified cued recall test scores from age 45 compared with females. AT(N) biomarkers were comparable in males and females. When considering apolipoprotein ɛ4, female ɛ4 carriers showed a 3-year earlier age at diagnosis compared with female non-carriers (50.5 versus 53.2 years, P = 0.01). This difference was not seen in males (52.2 versus 52.5 years, P = 0.76). Our exploratory analyses considering sex, apolipoprotein ɛ4 and biomarkers showed that female ɛ4 carriers tended to exhibit lower CSF amyloid-ß 42/amyloid-ß 40 ratios and lower hippocampal volume compared with females without this allele, in line with the clinical difference. This work showed that biological sex did not influence clinical and biomarker profiles of Alzheimer's disease in adults with Down syndrome. Consideration of apolipoprotein ɛ4 haplotype, particularly in females, may be important for clinical research and clinical trials that consider this population. Accounting for, reporting and publishing sex-stratified data, even when no sex differences are found, is central to helping advance precision medicine.

3.
Res Sq ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168408

RESUMO

BACKGROUND: Recently developed blood markers for Alzheimer's disease (AD) detection have high accuracy but usually require ultra-sensitive analytic tools not commonly available in clinical laboratories, and their performance in clinical practice is unknown. METHODS: We analyzed plasma samples from 290 consecutive participants that underwent lumbar puncture in routine clinical practice in a specialized memory clinic (66 cognitively unimpaired, 130 participants with mild cognitive impairment, and 94 with dementia). Participants were classified as amyloid positive (A+) or negative (A-) according to CSF Aß1-42/Aß1-40 ratio. Plasma pTau217, pTau181, Aß1-42 and Aß1-40 were measured in the fully-automated LUMIPULSE platform. We used linear regression to compare plasma biomarkers concentrations between A + and A- groups, evaluated Spearman's correlation between plasma and CSF and performed ROC analyses to assess their diagnostic accuracy to detect brain amyloidosis as determined by CSF Aß1-42/Aß1-40 ratio. We analyzed the potential of pTau217 to predict amyloidosis in CSF. RESULTS: Plasma pTau217 and pTau181 concentration were higher in A + than A- while the plasma Aß1-42/Aß1-40 ratio was lower in A + compared to A-. pTau181 and the Aß1-42/Aß1-40 ratio showed moderate correlation between plasma and CSF (Rho = 0.66 and 0.69, respectively). The areas under the ROC curve to discriminate A + from A- participants were 0.94 (95% CI 0.92-0.97) for pTau217, and 0.88 (95% CI 0.84-0.92) for both pTau181 and Aß1-42/Aß1-40. Chronic kidney disease (CKD) was related to increased plasma biomarker concentrations, but ratios were less affected. Plasma pTau217 had the highest fold change (x4.2) and showed high predictive capability in discriminating A + from A-, having 4-7% misclassification rate. The global accuracy of plasma pTau217 using a two-threshold approach was robust in symptomatic groups, exceeding 90%. CONCLUSION: The evaluation of blood biomarkers on an automated platform exhibited high diagnostic accuracy for AD pathophysiology, and pTau217 showed excellent diagnostic accuracy to identify participants with AD in a consecutive sample representing the routine clinical practice in a specialized memory unit.

4.
Alzheimers Res Ther ; 14(1): 161, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36324176

RESUMO

OBJECTIVE: The purpose of this study was to examine the levels of cerebrospinal fluid (CSF) apolipoprotein E (apoE) species in Alzheimer's disease (AD) patients. METHODS: We analyzed two CSF cohorts of AD and control individuals expressing different APOE genotypes. Moreover, CSF samples from the TgF344-AD rat model were included. Samples were run in native- and SDS-PAGE under reducing or non-reducing conditions (with or without ß-mercaptoethanol). Immunoprecipitation combined with mass spectrometry or western blotting analyses served to assess the identity of apoE complexes. RESULTS: In TgF344-AD rats expressing a unique apoE variant resembling human apoE4, a ~35-kDa apoE monomer was identified, increasing at 16.5 months compared with wild-types. In humans, apoE isoforms form disulfide-linked dimers in CSF, except apoE4, which lacks a cysteine residue. Thus, controls showed a decrease in the apoE dimer/monomer quotient in the APOE ε3/ε4 group compared with ε3/ε3 by native electrophoresis. A major contribution of dimers was found in APOE ε3/ε4 AD cases, and, unexpectedly, dimers were also found in ε4/ε4 AD cases. Under reducing conditions, two apoE monomeric glycoforms at 36 kDa and at 34 kDa were found in all human samples. In AD patients, the amount of the 34-kDa species increased, while the 36-kDa/34-kDa quotient was lower compared with controls. Interestingly, under reducing conditions, a ~100-kDa apoE complex, the identity of which was confirmed by mass spectrometry, also appeared in human AD individuals across all APOE genotypes, suggesting the occurrence of aberrantly resistant apoE aggregates. A second independent cohort of CSF samples validated these results. CONCLUSION: These results indicate that despite the increase in total apoE content the apoE protein is altered in AD CSF, suggesting that function may be compromised.


Assuntos
Doença de Alzheimer , Humanos , Animais , Ratos , Doença de Alzheimer/líquido cefalorraquidiano , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteína E3/genética , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Genótipo
5.
Nat Genet ; 54(12): 1786-1794, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411364

RESUMO

Alzheimer's disease (AD), the leading cause of dementia, has an estimated heritability of approximately 70%1. The genetic component of AD has been mainly assessed using genome-wide association studies, which do not capture the risk contributed by rare variants2. Here, we compared the gene-based burden of rare damaging variants in exome sequencing data from 32,558 individuals-16,036 AD cases and 16,522 controls. Next to variants in TREM2, SORL1 and ABCA7, we observed a significant association of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive signal in ADAM10. Additionally, the rare-variant burden in RIN3, CLU, ZCWPW1 and ACE highlighted these genes as potential drivers of respective AD-genome-wide association study loci. Variants associated with the strongest effect on AD risk, in particular loss-of-function variants, are enriched in early-onset AD cases. Our results provide additional evidence for a major role for amyloid-ß precursor protein processing, amyloid-ß aggregation, lipid metabolism and microglial function in AD.


Assuntos
Transportador 1 de Cassete de Ligação de ATP , Adenosina Trifosfatases , Doença de Alzheimer , Exossomos , Humanos , Adenosina Trifosfatases/genética , Doença de Alzheimer/genética , Transportador 1 de Cassete de Ligação de ATP/genética , Estudo de Associação Genômica Ampla , Fatores de Risco , Exossomos/genética
6.
J Vis Exp ; (186)2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35993755

RESUMO

Extracellular vesicles (EVs) are biological nanoparticles secreted by all cells for cellular communication and waste elimination. They participate in a vast range of functions by acting on and transferring their cargos to other cells in physiological and pathological conditions. Given their presence in biofluids, EVs represent an excellent resource for studying disease processes and can be considered a liquid biopsy for biomarker discovery. An attractive aspect of EV analysis is that they can be selected based on markers of their cell of origin, thus reflecting the environment of a specific tissue in their cargo. However, one of the major handicaps related to EV isolation methods is the lack of methodological consensuses and standardized protocols. Astrocytes are glial cells with essential roles in the brain. In neurodegenerative diseases, astrocyte reactivity may lead to altered EV cargo and aberrant cellular communication, facilitating/enhancing disease progression. Thus, analysis of astrocyte EVs may lead to the discovery of biomarkers and potential disease targets. This protocol describes a 2-step method of enrichment of astrocyte-derived EVs (ADEVs) from human plasma. First, EVs are enriched from defibrinated plasma via polymer-based precipitation. This is followed by enrichment of ADEVs through ACSA-1-based immunocapture with magnetic micro-beads, where resuspended EVs are loaded onto a column placed in a magnetic field. Magnetically labeled ACSA-1+ EVs are retained within the column, while other EVs flow through. Once the column is removed from the magnet, ADEVs are eluted and are ready for storage and analysis. To validate the enrichment of astrocyte markers, glial fibrillary acidic protein (GFAP), or other specific astrocytic markers of intracellular origin, can be measured in the eluate and compared with the flow-through. This protocol proposes an easy, time-efficient method to enrich ADEVs from plasma that can be used as a platform to examine astrocyte-relevant markers.


Assuntos
Astrócitos , Vesículas Extracelulares , Astrócitos/metabolismo , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Plasma/metabolismo
7.
Int J Mol Sci ; 23(13)2022 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805894

RESUMO

BACKGROUND: Clinical diagnosis of Alzheimer's disease (AD) increasingly incorporates CSF biomarkers. However, due to the intrinsic variability of the immunodetection techniques used to measure these biomarkers, establishing in-house cutoffs defining the positivity/negativity of CSF biomarkers is recommended. However, the cutoffs currently published are usually reported by using cross-sectional datasets, not providing evidence about its intrinsic prognostic value when applied to real-world memory clinic cases. METHODS: We quantified CSF Aß1-42, Aß1-40, t-Tau, and p181Tau with standard INNOTEST® ELISA and Lumipulse G® chemiluminescence enzyme immunoassay (CLEIA) performed on the automated Lumipulse G600II. Determination of cutoffs included patients clinically diagnosed with probable Alzheimer's disease (AD, n = 37) and subjective cognitive decline subjects (SCD, n = 45), cognitively stable for 3 years and with no evidence of brain amyloidosis in 18F-Florbetaben-labeled positron emission tomography (FBB-PET). To compare both methods, a subset of samples for Aß1-42 (n = 519), t-Tau (n = 399), p181Tau (n = 77), and Aß1-40 (n = 44) was analyzed. Kappa agreement of single biomarkers and Aß1-42/Aß1-40 was evaluated in an independent group of mild cognitive impairment (MCI) and dementia patients (n = 68). Next, established cutoffs were applied to a large real-world cohort of MCI subjects with follow-up data available (n = 647). RESULTS: Cutoff values of Aß1-42 and t-Tau were higher for CLEIA than for ELISA and similar for p181Tau. Spearman coefficients ranged between 0.81 for Aß1-40 and 0.96 for p181TAU. Passing-Bablok analysis showed a systematic and proportional difference for all biomarkers but only systematic for Aß1-40. Bland-Altman analysis showed an average difference between methods in favor of CLEIA. Kappa agreement for single biomarkers was good but lower for the Aß1-42/Aß1-40 ratio. Using the calculated cutoffs, we were able to stratify MCI subjects into four AT(N) categories. Kaplan-Meier analyses of AT(N) categories demonstrated gradual and differential dementia conversion rates (p = 9.815-27). Multivariate Cox proportional hazard models corroborated these findings, demonstrating that the proposed AT(N) classifier has prognostic value. AT(N) categories are only modestly influenced by other known factors associated with disease progression. CONCLUSIONS: We established CLEIA and ELISA internal cutoffs to discriminate AD patients from amyloid-negative SCD individuals. The results obtained by both methods are not interchangeable but show good agreement. CLEIA is a good and faster alternative to manual ELISA for providing AT(N) classification of our patients. AT(N) categories have an impact on disease progression. AT(N) classifiers increase the certainty of the MCI prognosis, which can be instrumental in managing real-world MCI subjects.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/psicologia , Peptídeos beta-Amiloides , Biomarcadores , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/psicologia , Estudos Transversais , Progressão da Doença , Humanos , Fragmentos de Peptídeos , Proteínas tau
8.
PLoS One ; 17(5): e0267298, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617280

RESUMO

Two genetic variants in strong linkage disequilibrium (rs9536314 and rs9527025) in the Klotho (KL) gene, encoding a transmembrane protein, implicated in longevity and associated with brain resilience during normal aging, were recently shown to be associated with Alzheimer disease (AD) risk in cognitively normal participants who are APOE ε4 carriers. Specifically, the participants heterozygous for this variant (KL-SVHET+) showed lower risk of developing AD. Furthermore, a neuroprotective effect of KL-VSHET+ has been suggested against amyloid burden for cognitively normal participants, potentially mediated via the regulation of redox pathways. However, inconsistent associations and a smaller sample size of existing studies pose significant hurdles in drawing definitive conclusions. Here, we performed a well-powered association analysis between KL-VSHET+ and five different AD endophenotypes; brain amyloidosis measured by positron emission tomography (PET) scans (n = 5,541) or cerebrospinal fluid Aß42 levels (CSF; n = 5,093), as well as biomarkers associated with tau pathology: the CSF Tau (n = 5,127), phosphorylated Tau (pTau181; n = 4,778) and inflammation: CSF soluble triggering receptor expressed on myeloid cells 2 (sTREM2; n = 2,123) levels. Our results found nominally significant associations of KL-VSHET+ status with biomarkers for brain amyloidosis (e.g., CSF Aß positivity; odds ratio [OR] = 0.67 [95% CI, 0.55-0.78], ß = 0.72, p = 0.007) and tau pathology (e.g., biomarker positivity for CSF Tau; OR = 0.39 [95% CI, 0.19-0.77], ß = -0.94, p = 0.007, and pTau; OR = 0.50 [95% CI, 0.27-0.96], ß = -0.68, p = 0.04) in cognitively normal participants, 60-80 years old, who are APOE e4-carriers. Our work supports previous findings, suggesting that the KL-VSHET+ on an APOE ε4 genotype background may modulate Aß and tau pathology, thereby lowering the intensity of neurodegeneration and incidence of cognitive decline in older controls susceptible to AD.


Assuntos
Doença de Alzheimer , Amiloidose , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Biomarcadores/líquido cefalorraquidiano , Suscetibilidade a Doenças , Endofenótipos , Humanos , Pessoa de Meia-Idade , Fragmentos de Peptídeos/genética , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano , Proteínas tau/genética
9.
Alzheimers Dement ; 18(10): 1832-1845, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34877782

RESUMO

INTRODUCTION: The evidence for characteristics of persons with subjective cognitive decline (SCD) associated with amyloid positivity is limited. METHODS: In 1640 persons with SCD from 20 Amyloid Biomarker Study cohort, we investigated the associations of SCD-specific characteristics (informant confirmation, domain-specific complaints, concerns, feelings of worse performance) demographics, setting, apolipoprotein E gene (APOE) ε4 carriership, and neuropsychiatric symptoms with amyloid positivity. RESULTS: Between cohorts, amyloid positivity in 70-year-olds varied from 10% to 76%. Only older age, clinical setting, and APOE ε4 carriership showed univariate associations with increased amyloid positivity. After adjusting for these, lower education was also associated with increased amyloid positivity. Only within a research setting, informant-confirmed complaints, memory complaints, attention/concentration complaints, and no depressive symptoms were associated with increased amyloid positivity. Feelings of worse performance were associated with less amyloid positivity at younger ages and more at older ages. DISCUSSION: Next to age, setting, and APOE ε4 carriership, SCD-specific characteristics may facilitate the identification of amyloid-positive individuals.


Assuntos
Amiloidose , Disfunção Cognitiva , Humanos , Amiloide , Proteínas Amiloidogênicas , Apolipoproteína E4/genética , Biomarcadores , Encéfalo/metabolismo , Disfunção Cognitiva/genética , Disfunção Cognitiva/psicologia , Tomografia por Emissão de Pósitrons
10.
Transl Neurodegener ; 10(1): 37, 2021 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-34565482

RESUMO

BACKGROUND: New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. METHODS: Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55). RESULTS: In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. CONCLUSIONS: These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Biomarcadores/líquido cefalorraquidiano , Córtex Cerebral/metabolismo , Disfunção Cognitiva/líquido cefalorraquidiano , Vesículas de Núcleo Denso , Humanos
11.
Alzheimers Res Ther ; 13(1): 160, 2021 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-34560885

RESUMO

BACKGROUND: Neuroleukin (NLK) is a protein with neurotrophic properties and is present in a proportion of senile plaques and amyloid laden vessels. It has been suggested that NLK is part of a neuroprotective response to amyloid ß-induced cell death. The aim of our study was to investigate the value of cerebrospinal fluid (CSF) NLK levels as a biomarker of vascular amyloid deposition in patients with cerebral amyloid angiopathy (CAA) and in patients with amnestic mild cognitive impairment (aMCI) and Alzheimer's disease (AD). METHODS: CSF NLK levels were quantified by ELISA in CAA patients (n = 25) and controls (n = 27) and in two independent samples of aMCI patients, AD patients, and controls: (1) From the Radboud University Medical Center (Nijmegen), we included n = 19 aMCI patients, n = 40 AD patients, and n = 32 controls. (2) From the Hospital of Sant Pau (Barcelona), we included n = 33 aMCI patients, n = 17 AD patients, and n = 50 controls. RESULTS: CSF NLK levels were similar in CAA patients and controls (p = 0.95). However, we found an elevated CSF concentration of NLK in aMCI (p < 0.0001) and AD patients (p < 0.0001) compared to controls in both samples sets. In addition, we found a correlation of CSF NLK with CSF YKL-40 (age-adjusted-spearman-rank-coefficient = 0.82, p < 0.0001) in aMCI/AD patients, a well-known glial marker of neuro-inflammation. CONCLUSIONS: We found that CSF NLK levels are elevated in aMCI and AD patients compared to controls, but are not increased in CAA patients. CSF NLK levels may be related to an increased neuroinflammatory state in early stages of AD, given its association with YKL-40.


Assuntos
Doença de Alzheimer , Angiopatia Amiloide Cerebral , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides , Biomarcadores , Angiopatia Amiloide Cerebral/complicações , Glucose-6-Fosfato Isomerase , Humanos , Fatores de Crescimento Neural , Proteínas Serina-Treonina Quinases
12.
Neurobiol Aging ; 99: 99.e15-99.e22, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32972771

RESUMO

Frontotemporal dementia (FTD) is a clinical, genetic, and pathologic heterogeneous group of neurodegenerative diseases. In this study, we investigated the role of APOƐ4, rs5848 in GRN, and rs1042522 in TP53 gene as disease risk factors and/or phenotype modifiers in 440 FTD patients, including 175 C9orf72 expansion carriers. We found that the C9orf72 expansion carriers showing an earlier age at onset (p < 0.001). Among the clinical groups, the FTD-MND (motoneuron disease) showed the lowest survival (hazard ratio [HR] = 4.12), and the progressive nonfluent aphasia group showed the highest onset age (p = 0.03). In our cohort, the rs1042522 in TP53 was associated with disease onset (p = 0.02) and survival (HR = 1.73) and rs5848 GRN with a significantly shorter survival in CC homozygous patients (HR = 1.98). The frequency of APOƐ4 carriers was significantly increased in the C9orf72 noncarriers (p = 0.022). Although validation of our findings is necessary, our results suggest that TP53, GRN, and APOE genes may act as phenotype modifiers in FTD and should be considered in future clinical trials.


Assuntos
Apolipoproteínas E/genética , Demência Frontotemporal/genética , Estudos de Associação Genética , Variação Genética/genética , Progranulinas/genética , Proteína Supressora de Tumor p53/genética , Proteína C9orf72 , Feminino , Heterozigoto , Humanos , Masculino , Fenótipo
13.
Neurology ; 96(5): e671-e683, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33199433

RESUMO

OBJECTIVE: To test the hypothesis that plasma total tau (t-tau) and neurofilament light chain (NfL) concentrations may have a differential role in the study of frontotemporal lobar degeneration syndromes (FTLD-S) and clinically diagnosed Alzheimer disease syndromes (AD-S), we determined their diagnostic and prognostic value in FTLD-S and AD-S and their sensitivity to pathologic diagnoses. METHODS: We measured plasma t-tau and NfL with the Simoa platform in 265 participants: 167 FTLD-S, 43 AD-S, and 55 healthy controls (HC), including 82 pathology-proven cases (50 FTLD-tau, 18 FTLD-TDP, 2 FTLD-FUS, and 12 AD) and 98 participants with amyloid PET. We compared cross-sectional and longitudinal biomarker concentrations between groups, their correlation with clinical measures of disease severity, progression, and survival, and cortical thickness. RESULTS: Plasma NfL, but not plasma t-tau, discriminated FTLD-S from HC and AD-S from HC. Both plasma NfL and t-tau were poor discriminators between FLTD-S and AD-S. In pathology-confirmed cases, plasma NfL was higher in FTLD than AD and in FTLD-TDP compared to FTLD-tau, after accounting for age and disease severity. Plasma NfL, but not plasma t-tau, predicted clinical decline and survival and correlated with regional cortical thickness in both FTLD-S and AD-S. The combination of plasma NfL with plasma t-tau did not outperform plasma NfL alone. CONCLUSION: Plasma NfL is superior to plasma t-tau for the diagnosis and prediction of clinical progression of FTLD-S and AD-S. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that plasma NfL has superior diagnostic and prognostic performance vs plasma t-tau in FTLD and AD.


Assuntos
Doença de Alzheimer/sangue , Degeneração Lobar Frontotemporal/sangue , Proteínas de Neurofilamentos/sangue , Proteínas tau/sangue , Adulto , Idoso , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Encéfalo/patologia , Estudos de Casos e Controles , Proteínas de Ligação a DNA/metabolismo , Progressão da Doença , Feminino , Degeneração Lobar Frontotemporal/diagnóstico , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Degeneração Lobar Frontotemporal/patologia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tomografia por Emissão de Pósitrons , Proteína FUS de Ligação a RNA/metabolismo , Sensibilidade e Especificidade , Taxa de Sobrevida , Proteínas tau/metabolismo
14.
Lancet ; 395(10242): 1988-1997, 2020 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-32593336

RESUMO

BACKGROUND: Alzheimer's disease and its complications are the leading cause of death in adults with Down syndrome. Studies have assessed Alzheimer's disease in individuals with Down syndrome, but the natural history of biomarker changes in Down syndrome has not been established. We characterised the order and timing of changes in biomarkers of Alzheimer's disease in a population of adults with Down syndrome. METHODS: We did a dual-centre cross-sectional study of adults with Down syndrome recruited through a population-based health plan in Barcelona (Spain) and through services for people with intellectual disabilities in Cambridge (UK). Cognitive impairment in participants with Down syndrome was classified with the Cambridge Cognitive Examination for Older Adults with Down Syndrome (CAMCOG-DS). Only participants with mild or moderate disability were included who had at least one of the following Alzheimer's disease measures: apolipoprotein E allele carrier status; plasma concentrations of amyloid ß peptides 1-42 and 1-40 and their ratio (Aß1-42/1-40), total tau protein, and neurofilament light chain (NFL); tau phosphorylated at threonine 181 (p-tau), and NFL in cerebrospinal fluid (CSF); and one or more of PET with 18F-fluorodeoxyglucose, PET with amyloid tracers, and MRI. Cognitively healthy euploid controls aged up to 75 years who had no biomarker abnormalities were recruited from the Sant Pau Initiative on Neurodegeneration. We used a first-order locally estimated scatterplot smoothing curve to determine the order and age at onset of the biomarker changes, and the lowest ages at the divergence with 95% CIs are also reported where appropriate. FINDINGS: Between Feb 1, 2013, and June 28, 2019 (Barcelona), and between June 1, 2009, and Dec 31, 2014 (Cambridge), we included 388 participants with Down syndrome (257 [66%] asymptomatic, 48 [12%] with prodromal Alzheimer's disease, and 83 [21%] with Alzheimer's disease dementia) and 242 euploid controls. CSF Aß1-42/1-40 and plasma NFL values changed in individuals with Down syndrome as early as the third decade of life, and amyloid PET uptake changed in the fourth decade. 18F-fluorodeoxyglucose PET and CSF p-tau changes occurred later in the fourth decade of life, followed by hippocampal atrophy and changes in cognition in the fifth decade of life. Prodromal Alzheimer's disease was diagnosed at a median age of 50·2 years (IQR 47·5-54·1), and Alzheimer's disease dementia at 53·7 years (49·5-57·2). Symptomatic Alzheimer's disease prevalence increased with age in individuals with Down syndrome, reaching 90-100% in the seventh decade of life. INTERPRETATION: Alzheimer's disease in individuals with Down syndrome has a long preclinical phase in which biomarkers follow a predictable order of changes over more than two decades. The similarities with sporadic and autosomal dominant Alzheimer's disease and the prevalence of Down syndrome make this population a suitable target for Alzheimer's disease preventive treatments. FUNDING: Instituto de Salud Carlos III, Fundació Bancaria La Caixa, Fundació La Marató de TV3, Medical Research Council, and National Institutes of Health.


Assuntos
Doença de Alzheimer/metabolismo , Biomarcadores/sangue , Síndrome de Down/complicações , Adulto , Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/epidemiologia , Peptídeos beta-Amiloides/metabolismo , Amiloidose/diagnóstico por imagem , Amiloidose/patologia , Apolipoproteínas E/metabolismo , Estudos de Casos e Controles , Disfunção Cognitiva/psicologia , Estudos Transversais , Síndrome de Down/epidemiologia , Síndrome de Down/mortalidade , Síndrome de Down/psicologia , Fluordesoxiglucose F18/administração & dosagem , Humanos , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Proteínas de Neurofilamentos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons/métodos , Prevalência , Espanha/epidemiologia , Reino Unido/epidemiologia , Proteínas tau/metabolismo
15.
Sci Rep ; 10(1): 4308, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152380

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease for which the pathophysiological mechanisms of motor neuron loss are not precisely clarified. Environmental and epigenetic mechanisms such as microRNAs (miRNAs) could have a role in disease progression. We studied the expression pattern of miRNAs in ALS serum from 60 patients and 29 healthy controls. We also analyzed how deregulated miRNAs found in serum affected cellular pathways such as apoptosis, autophagy and mitochondrial physiology in SH-SY5Y cells. We found that miR-335-5p was downregulated in ALS serum. SH-SY5Y cells were transfected with a specific inhibitor of miR-335-5p and showed abnormal mitochondrial morphology, with an increment of reactive species of oxygen and superoxide dismutase activity. Pro-apoptotic caspases-3 and 7 also showed an increased activity in transfected cells. The downregulation of miR-335-5p, which has an effect on mitophagy, autophagy and apoptosis in SH-SY5Y neuronal cells could have a role in the motor neuron loss observed in ALS.


Assuntos
Esclerose Lateral Amiotrófica/patologia , Apoptose , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Doenças Mitocondriais/patologia , Doenças Neurodegenerativas/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Esclerose Lateral Amiotrófica/complicações , Esclerose Lateral Amiotrófica/genética , Autofagia , Estudos de Casos e Controles , Progressão da Doença , Regulação para Baixo , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/complicações , Doenças Mitocondriais/genética , Doenças Neurodegenerativas/complicações , Doenças Neurodegenerativas/genética , Prognóstico , Células Tumorais Cultivadas
16.
Ann Clin Transl Neurol ; 6(12): 2518-2530, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31789459

RESUMO

OBJECTIVE: We aimed to investigate the relationship between cerebrospinal fluid levels (CSF) of amyloid precursor protein (APP)-derived peptides related to the amyloidogenic pathway, cortical thickness, neuropsychological performance, and cortical gene expression profiles in frontotemporal lobar degeneration (FTLD)-related syndromes, Alzheimer's disease (AD), and healthy controls. METHODS: We included 214 participants with CSF available recruited at two centers: 93 with FTLD-related syndromes, 57 patients with AD, and 64 healthy controls. CSF levels of amyloid ß (Aß)1-42, Aß1-40, Aß1-38, and soluble ß fragment of APP (sAPPß) were centrally analyzed. We compared CSF levels of APP-derived peptides between groups and, we studied the correlation between CSF biomarkers, cortical thickness, and domain-specific cognitive composites in each group. Then, we explored the relationship between cortical thickness, CSF levels of APP-derived peptides, and regional gene expression profile using a brain-wide regional gene expression data in combination with gene set enrichment analysis. RESULTS: The CSF levels of Aß1-40, Aß1-38, and sAPPß were lower in the FTLD-related syndromes group than in the AD and healthy controls group. CSF levels of all APP-derived peptides showed a positive correlation with cortical thickness and the executive cognitive composite in the FTLD-related syndromes group but not in the healthy control or AD groups. In the cortical regions where we observed a significant association between cortical thickness and CSF levels of APP-derived peptides, we found a reduced expression of genes related to synaptic function. INTERPRETATION: APP-derived peptides in CSF may reflect FTLD-related neurodegeneration. This observation has important implications as Aß1-42 levels are considered an indirect biomarker of cerebral amyloidosis.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/líquido cefalorraquidiano , Degeneração Lobar Frontotemporal/patologia , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Precursor de Proteína beta-Amiloide/líquido cefalorraquidiano , Feminino , Degeneração Lobar Frontotemporal/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Fragmentos de Peptídeos/líquido cefalorraquidiano
17.
Sci Transl Med ; 11(505)2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31413141

RESUMO

Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in cerebrospinal fluid (CSF) has been associated with Alzheimer's disease (AD). TREM2 plays a critical role in microglial activation, survival, and phagocytosis; however, the pathophysiological role of sTREM2 in AD is not well understood. Understanding the role of sTREM2 in AD may reveal new pathological mechanisms and lead to the identification of therapeutic targets. We performed a genome-wide association study (GWAS) to identify genetic modifiers of CSF sTREM2 obtained from the Alzheimer's Disease Neuroimaging Initiative. Common variants in the membrane-spanning 4-domains subfamily A (MS4A) gene region were associated with CSF sTREM2 concentrations (rs1582763; P = 1.15 × 10-15); this was replicated in independent datasets. The variants associated with increased CSF sTREM2 concentrations were associated with reduced AD risk and delayed age at onset of disease. The single-nucleotide polymorphism rs1582763 modified expression of the MS4A4A and MS4A6A genes in multiple tissues, suggesting that one or both of these genes are important for modulating sTREM2 production. Using human macrophages as a proxy for microglia, we found that MS4A4A and TREM2 colocalized on lipid rafts at the plasma membrane, that sTREM2 increased with MS4A4A overexpression, and that silencing of MS4A4A reduced sTREM2 production. These genetic, molecular, and cellular findings suggest that MS4A4A modulates sTREM2. These findings also provide a mechanistic explanation for the original GWAS signal in the MS4A locus for AD risk and indicate that TREM2 may be involved in AD pathogenesis not only in TREM2 risk-variant carriers but also in those with sporadic disease.


Assuntos
Doença de Alzheimer/líquido cefalorraquidiano , Doença de Alzheimer/genética , Glicoproteínas de Membrana/líquido cefalorraquidiano , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Família Multigênica/genética , Receptores Imunológicos/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Macrófagos/metabolismo , Masculino , Proteínas de Membrana/líquido cefalorraquidiano , Metanálise como Assunto
18.
Dev Neurobiol ; 79(7): 716-737, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31278851

RESUMO

Down syndrome (DS) is the main genetic cause of intellectual disability worldwide. The overexpression of the Amyloid Precursor Protein, present in chromosome 21, leads to ß-amyloid deposition that results in Alzheimer disease (AD) and, in most cases, also to cerebral amyloid angiopathy (CAA) neuropathology. People with DS invariably develop the neuropathological hallmarks of AD at the age of 40, and they are at an ultra high risk for suffering AD-related cognitive impairment thereafter. In the general population, cerebrovascular disease is a significant contributor to AD-related cognitive impairment, while in DS remains understudied. This review describes the current knowledge on cerebrovascular disease in DS and reviews the potential biomarkers that could be useful in the future studies, focusing on CAA. We also discuss available evidence on sporadic AD or other genetically determined forms of AD. We highlight the urgent need of large biomarker-characterized cohorts, including neuropathological correlations, to study the exact contribution of CAA and related vascular factors that play a role in cognition and occur with aging, their characterization and interrelationships. DS represents a unique context in which to perform these studies as this population is relatively protected from some conventional vascular risk factors and they develop significant CAA, DS represents a particular atheroma-free model to study AD-related vascular pathologies. Only deepening on these underlying mechanisms, new preventive and therapeutic strategies could be designed to improve the quality of life of this population and their caregivers and lead to new avenues of treatment also in the general AD population.


Assuntos
Doença de Alzheimer/metabolismo , Encéfalo/metabolismo , Angiopatia Amiloide Cerebral/metabolismo , Síndrome de Down/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/epidemiologia , Amiloidose/diagnóstico , Amiloidose/epidemiologia , Amiloidose/metabolismo , Animais , Encéfalo/patologia , Angiopatia Amiloide Cerebral/diagnóstico , Angiopatia Amiloide Cerebral/epidemiologia , Síndrome de Down/diagnóstico , Síndrome de Down/epidemiologia , Humanos
19.
Alzheimers Dement ; 15(6): 817-827, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31078433

RESUMO

INTRODUCTION: A critical and as-yet unmet need in Alzheimer's disease (AD) is the discovery of peripheral small molecule biomarkers. Given that brain pathology precedes clinical symptom onset, we set out to test whether metabolites in blood associated with pathology as indexed by cerebrospinal fluid (CSF) AD biomarkers. METHODS: This study analyzed 593 plasma samples selected from the European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery study, of individuals who were cognitively healthy (n = 242), had mild cognitive impairment (n = 236), or had AD-type dementia (n = 115). Logistic regressions were carried out between plasma metabolites (n = 883) and CSF markers, magnetic resonance imaging, cognition, and clinical diagnosis. RESULTS: Eight metabolites were associated with amyloid ß and one with t-tau in CSF, these were primary fatty acid amides (PFAMs), lipokines, and amino acids. From these, PFAMs, glutamate, and aspartate also associated with hippocampal volume and memory. DISCUSSION: PFAMs have been found increased and associated with amyloid ß burden in CSF and clinical measures.


Assuntos
Peptídeos beta-Amiloides , Amiloidose/sangue , Biomarcadores , Hipocampo , Memória/fisiologia , Metabolômica , Idoso , Peptídeos beta-Amiloides/sangue , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Amiloidose/líquido cefalorraquidiano , Amiloidose/metabolismo , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Disfunção Cognitiva/diagnóstico , Estudos de Coortes , Feminino , Hipocampo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Proteínas tau/sangue , Proteínas tau/líquido cefalorraquidiano
20.
Neurobiol Aging ; 75: 223.e1-223.e10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30448004

RESUMO

The role of genetic variability in dementia with Lewy bodies (DLB) is now indisputable; however, data regarding copy number variation (CNV) in this disease has been lacking. Here, we used whole-genome genotyping of 1454 DLB cases and 1525 controls to assess copy number variability. We used 2 algorithms to confidently detect CNVs, performed a case-control association analysis, screened for candidate CNVs previously associated with DLB-related diseases, and performed a candidate gene approach to fully explore the data. We identified 5 CNV regions with a significant genome-wide association to DLB; 2 of these were only present in cases and absent from publicly available databases: one of the regions overlapped LAPTM4B, a known lysosomal protein, whereas the other overlapped the NME1 locus and SPAG9. We also identified DLB cases presenting rare CNVs in genes previously associated with DLB or related neurodegenerative diseases, such as SNCA, APP, and MAPT. To our knowledge, this is the first study reporting genome-wide CNVs in a large DLB cohort. These results provide preliminary evidence for the contribution of CNVs in DLB risk.


Assuntos
Variações do Número de Cópias de DNA/genética , Predisposição Genética para Doença/genética , Doença por Corpos de Lewy/genética , Proteínas Oncogênicas/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Idoso de 80 Anos ou mais , Feminino , Genoma , Estudo de Associação Genômica Ampla , Humanos , Masculino , Proteínas de Membrana/genética , Polimorfismo de Nucleotídeo Único/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA