Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Andrology ; 10(4): 789-799, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35224888

RESUMO

BACKGROUND: Glucose-dependent insulinotropic polypeptide receptor (Gipr) gene expression has been reported in mouse spermatids and Gipr knockout male mice have previously been reported to have decreased in vitro fertilization, although the role of Gipr signaling in male mouse fertility is not well understood. OBJECTIVES: The purposes of these studies were to determine the role of glucose-dependent insulinotropic polypeptide receptor in male fertility using Gipr knockout mice and anti-glucose-dependent insulinotropic polypeptide receptor antibody-treated wild-type mice and to determine if the expression of Gipr in mouse testes is similar in non-human and human primates. METHODS AND MATERIALS: Adiponectin promoter-driven Gipr knockout male mice (GiprAdipo-/- ) were assessed for in vitro and in vivo fertility, sperm parameters, and testicular histology. CD1 male mice were administered an anti-glucose-dependent insulinotropic polypeptide receptor antibody (muGIPR-Ab) prior to and during mating for assessment of in vivo fertility and sperm parameters. Expression of Gipr/GIPR mRNA in the mouse, cynomolgus monkey, and human testes was assessed by in situ hybridization methods using species-specific probes. RESULTS: GiprAdipo-/- male mice are infertile in vitro and in vivo, despite normal testis morphology, sperm counts, and sperm motility. In contrast, administration of muGIPR-Ab to CD1 male mice did not impact fertility. While Gipr mRNA expression is detectable in the mouse testes, GIPR mRNA expression is not detectable in monkey or human testes. DISCUSSION: The infertility of GiprAdipo-/- male mice correlated with the lack of Gipr expression in the testis and/or adipocyte tissue. However, as administration of muGIPR-Ab did not impact the fertility of adult male mice, it is possible that the observations in genetically deficient male mice are related to Gipr deficiency during development. CONCLUSION: Our data support a role for Gipr expression in the mouse testis during the development of sperm fertilization potential, but based on gene expression data, a similar role for glucose-dependent insulinotropic polypeptide receptor in non-human primate or human male fertility is unlikely.


Assuntos
Polipeptídeo Inibidor Gástrico , Testículo , Animais , Feminino , Fertilidade , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Expressão Gênica , Humanos , Macaca fascicularis/genética , Macaca fascicularis/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores dos Hormônios Gastrointestinais , Motilidade dos Espermatozoides , Testículo/metabolismo
2.
Cell Rep Med ; 2(5): 100263, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34095876

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) regulate glucose and energy homeostasis. Targeting both pathways with GIP receptor (GIPR) antagonist antibody (GIPR-Ab) and GLP-1 receptor (GLP-1R) agonist, by generating GIPR-Ab/GLP-1 bispecific molecules, is an approach for treating obesity and its comorbidities. In mice and monkeys, these molecules reduce body weight (BW) and improve many metabolic parameters. BW loss is greater with GIPR-Ab/GLP-1 than with GIPR-Ab or a control antibody conjugate, suggesting synergistic effects. GIPR-Ab/GLP-1 also reduces the respiratory exchange ratio in DIO mice. Simultaneous receptor binding and rapid receptor internalization by GIPR-Ab/GLP-1 amplify endosomal cAMP production in recombinant cells expressing both receptors. This may explain the efficacy of the bispecific molecules. Overall, our GIPR-Ab/GLP-1 molecules promote BW loss, and they may be used for treating obesity.


Assuntos
Peso Corporal/fisiologia , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Obesidade/metabolismo , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Animais , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/farmacologia , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Teste de Tolerância a Glucose/métodos , Haplorrinos/metabolismo , Camundongos Obesos
3.
Nat Commun ; 11(1): 4981, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-33020469

RESUMO

Antagonism or agonism of the glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) prevents weight gain and leads to dramatic weight loss in combination with glucagon-like peptide-1 receptor agonists in preclinical models. Based on the genetic evidence supporting GIPR antagonism, we previously developed a mouse anti-murine GIPR antibody (muGIPR-Ab) that protected diet-induced obese (DIO) mice against body weight gain and improved multiple metabolic parameters. This work reconciles the similar preclinical body weight effects of GIPR antagonists and agonists in vivo, and here we show that chronic GIPR agonism desensitizes GIPR activity in primary adipocytes, both differentiated in vitro and adipose tissue in vivo, and functions like a GIPR antagonist. Additionally, GIPR activity in adipocytes is partially responsible for muGIPR-Ab to prevent weight gain in DIO mice, demonstrating a role of adipocyte GIPR in the regulation of adiposity in vivo.


Assuntos
Adipócitos/efeitos dos fármacos , Fármacos Antiobesidade/farmacologia , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Adipócitos/metabolismo , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Fármacos Antiobesidade/química , Fármacos Antiobesidade/uso terapêutico , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Peso Corporal/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/patologia , Receptores dos Hormônios Gastrointestinais/deficiência , Receptores dos Hormônios Gastrointestinais/metabolismo
4.
MAbs ; 12(1): 1710047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31905038

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin hormone involved in regulating glucose and lipid metabolism. GIP receptor (GIPR) antagonism is believed to offer therapeutic potential for various metabolic diseases. Pharmacological intervention of GIPR, however, has limited success due to lack of effective antagonistic reagents. Previously we reported the discovery of two mouse anti-murine GIPR monoclonal antibodies (mAbs) with distinctive properties in rodent models. Here, we report the detailed structural and biochemical characterization of these two antibodies, mAb1 and mAb2. In vitro and in vivo characterizations demonstrated mAb2 is a full GIPR antagonistic antibody and mAb1 is a non-neutralizing GIPR binder. To understand the molecular basis of these two antibodies, we determined the co-crystal structures of GIPR extracellular domain in complex with mAb1 and with mAb2 at resolutions of 2.1 and 2.6 Å, respectively. While the non-neutralizing mAb1 binds to GIPR without competing with the ligand peptide, mAb2 not only partially occludes the ligand peptide binding, but also recognizes the GIPR C-terminal stalk region in a helical conformation that acts as a molecular mimic of the ligand peptide and locks GIPR in a novel auto-inhibited state. Furthermore, administration of mAb2 in diet-induced obesity mice for 7 weeks leads to both reduction in body weight gain and improvement of metabolic profiles. In contrast, mAb1 has no effect on body weight or other metabolic improvement. Together, our studies reveal the unique molecular mechanism of action underlying the superior antagonistic activity of mAb2 and signify the promising therapeutic potential of effective GIPR antagonism for the treatment of metabolic disorders.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacologia , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Aumento de Peso/efeitos dos fármacos , Animais , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Conformação Proteica
5.
Endocr Rev ; 41(1)2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31511854

RESUMO

Glucose-dependent insulinotropic polypeptide receptor (GIPR) is associated with obesity in human genome-wide association studies. Similarly, mouse genetic studies indicate that loss of function alleles and glucose-dependent insulinotropic polypeptide overexpression both protect from high-fat diet-induced weight gain. Together, these data provide compelling evidence to develop therapies targeting GIPR for the treatment of obesity. Further, both antagonists and agonists alone prevent weight gain, but result in remarkable weight loss when codosed or molecularly combined with glucagon-like peptide-1 analogs preclinically. Here, we review the current literature on GIPR, including biology, human and mouse genetics, and pharmacology of both agonists and antagonists, discussing the similarities and differences between the 2 approaches. Despite opposite approaches being investigated preclinically and clinically, there may be viability of both agonists and antagonists for the treatment of obesity, and we expect this area to continue to evolve with new clinical data and molecular and pharmacological analyses of GIPR function.


Assuntos
Fármacos Antiobesidade/uso terapêutico , Terapia de Alvo Molecular , Obesidade/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Animais , Estudo de Associação Genômica Ampla , Humanos , Camundongos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Obesidade/genética , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/fisiologia
6.
Sci Transl Med ; 10(472)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567927

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) receptor (GIPR) has been identified in multiple genome-wide association studies (GWAS) as a contributor to obesity, and GIPR knockout mice are protected against diet-induced obesity (DIO). On the basis of this genetic evidence, we developed anti-GIPR antagonistic antibodies as a potential therapeutic strategy for the treatment of obesity and observed that a mouse anti-murine GIPR antibody (muGIPR-Ab) protected against body weight gain, improved multiple metabolic parameters, and was associated with reduced food intake and resting respiratory exchange ratio (RER) in DIO mice. We replicated these results in obese nonhuman primates (NHPs) using an anti-human GIPR antibody (hGIPR-Ab) and found that weight loss was more pronounced than in mice. In addition, we observed enhanced weight loss in DIO mice and NHPs when anti-GIPR antibodies were codosed with glucagon-like peptide-1 receptor (GLP-1R) agonists. Mechanistic and crystallographic studies demonstrated that hGIPR-Ab displaced GIP and bound to GIPR using the same conserved hydrophobic residues as GIP. Further, using a conditional knockout mouse model, we excluded the role of GIPR in pancreatic ß-cells in the regulation of body weight and response to GIPR antagonism. In conclusion, these data provide preclinical validation of a therapeutic approach to treat obesity with anti-GIPR antibodies.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Obesidade/tratamento farmacológico , Receptores dos Hormônios Gastrointestinais/antagonistas & inibidores , Adipócitos/metabolismo , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Dieta , Quimioterapia Combinada , Comportamento Alimentar , Polipeptídeo Inibidor Gástrico/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Peptídeos Semelhantes ao Glucagon/análogos & derivados , Peptídeos Semelhantes ao Glucagon/farmacologia , Peptídeos Semelhantes ao Glucagon/uso terapêutico , Humanos , Fragmentos Fc das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Liraglutida/farmacologia , Liraglutida/uso terapêutico , Camundongos Obesos , Obesidade/patologia , Primatas , Receptores dos Hormônios Gastrointestinais/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Proteínas Recombinantes de Fusão/uso terapêutico , Respiração , Aumento de Peso/efeitos dos fármacos , Redução de Peso/efeitos dos fármacos
7.
PLoS One ; 9(10): e110226, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25329148

RESUMO

In a screen for genes that affect the metabolic response to high-fat diet (HFD), we selected one line of N-ethyl-N-nitrosourea (ENU)-mutagenized mice, Jll, with dominantly inherited resistance to diet-induced obesity (DIO). Mutant animals had dramatically reduced body weight and fat mass, and low basal insulin and glucose levels relative to unaffected controls. Both white adipose tissue (WAT) and brown adipose tissue (BAT) depots were smaller in mutant animals. Mutant animals fed a HFD gained only slightly more weight than animals fed regular chow, and were protected from hepatic lipid accumulation. The phenotype was genetically linked to a 5.7-Mb interval on chromosome 12, and sequencing of the entire interval identified a single coding mutation, predicted to cause a methionine-to-isoleucine substitution at position 279 of the Adcy3 protein (Adcy3M279I, henceforth referred to as Adcy3Jll). The mutant protein is hyperactive, possibly constitutively so, producing elevated levels of cyclic AMP in a cell-based assay. These mice demonstrate that increased Adcy3 activity robustly protect animals from diet-induced metabolic derangements.


Assuntos
Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Dieta Hiperlipídica/efeitos adversos , Mutação , Obesidade/etiologia , Obesidade/genética , Tecido Adiposo Marrom/efeitos dos fármacos , Tecido Adiposo Branco/efeitos dos fármacos , Alelos , Animais , Colforsina/farmacologia , AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/genética , Feminino , Masculino , Camundongos , Obesidade/metabolismo , Obesidade/patologia
8.
PLoS One ; 9(1): e83477, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24416166

RESUMO

Knowledge of how a population of cancerous cells progress through the cell cycle is vital if the population is to be treated effectively, as treatment outcome is dependent on the phase distributions of the population. Estimates on the phase distribution may be obtained experimentally however the errors present in these estimates may effect treatment efficacy and planning. If mathematical models are to be used to make accurate, quantitative predictions concerning treatments, whose efficacy is phase dependent, knowledge of the phase distribution is crucial. In this paper it is shown that two different transition rates at the G1-S checkpoint provide a good fit to a growth curve obtained experimentally. However, the different transition functions predict a different phase distribution for the population, but both lying within the bounds of experimental error. Since treatment outcome is effected by the phase distribution of the population this difference may be critical in treatment planning. Using an age-structured population balance approach the cell cycle is modelled with particular emphasis on the G1-S checkpoint. By considering the probability of cells transitioning at the G1-S checkpoint, different transition functions are obtained. A suitable finite difference scheme for the numerical simulation of the model is derived and shown to be stable. The model is then fitted using the different probability transition functions to experimental data and the effects of the different probability transition functions on the model's results are discussed.


Assuntos
Senescência Celular , Pontos de Checagem da Fase G1 do Ciclo Celular , Modelos Biológicos , Pontos de Checagem da Fase S do Ciclo Celular , Animais , Linhagem Celular , Proliferação de Células , Camundongos , Probabilidade , Reprodutibilidade dos Testes
9.
PLoS One ; 7(6): e38597, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22761687

RESUMO

Tumours that are low in oxygen (hypoxic) tend to be more aggressive and respond less well to treatment. Knowing the spatial distribution of oxygen within a tumour could therefore play an important role in treatment planning, enabling treatment to be targeted in such a way that higher doses of radiation are given to the more radioresistant tissue. Mapping the spatial distribution of oxygen in vivo is difficult. Radioactive tracers that are sensitive to different levels of oxygen are under development and in the early stages of clinical use. The concentration of these tracer chemicals can be detected via positron emission tomography resulting in a time dependent concentration profile known as a tissue activity curve (TAC). Pharmaco-kinetic models have then been used to deduce oxygen concentration from TACs. Some such models have included the fact that the spatial distribution of oxygen is often highly inhomogeneous and some have not. We show that the oxygen distribution has little impact on the form of a TAC; it is only the mean oxygen concentration that matters. This has significant consequences both in terms of the computational power needed, and in the amount of information that can be deduced from TACs.


Assuntos
Hipóxia Celular , Modelos Biológicos , Neoplasias/diagnóstico , Oxigênio/metabolismo , Traçadores Radioativos , Simulação por Computador , Humanos , Cinética
10.
Arch Dis Child ; 95(10): 826-31, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20573740

RESUMO

OBJECTIVE: To assess the risk of skin cancer in persons treated with neonatal phototherapy (NNPT) for jaundice. DESIGN: Retrospective cohort study. SETTING: Grampian Region, Scotland, UK. DATA SOURCE: Aberdeen Maternity and Neonatal Databank. NNPT exposure was abstracted from paper records spanning 1976-1990. Follow-up to 31 December 2006 by linkage to cancer registration and mortality records. MAIN OUTCOME MEASURES: Incidence ratios, standardised for age, sex, calendar period and socio-economic position. RESULTS: After excluding neonatal deaths (n=435), the cohort comprised 77,518 persons. 5868 Received NNPT, providing 138,000 person-years at risk (median follow-up, 24 years). Two cases of melanoma occurred in persons exposed to NNPT versus 16 cases in unexposed persons, yielding a standardised incidence ratio of 1.40 (95% CI, 0.17 to 5.04; p=0.834). No cases of squamous cell or basal cell carcinoma of skin were observed in exposed persons. CONCLUSIONS: Although there is no statistically significant evidence of an excess risk of skin cancer following NNPT, limited statistical power and follow-up duration mean it is not possible categorically to rule out an effect. However, taken in conjunction with the results of the only other study to investigate risk of melanoma following NNPT, evidence available so far does not suggest a major cause for concern.


Assuntos
Icterícia Neonatal/terapia , Fototerapia/efeitos adversos , Lesões por Radiação/etiologia , Neoplasias Cutâneas/etiologia , Adulto , Peso ao Nascer , Métodos Epidemiológicos , Feminino , Idade Gestacional , Humanos , Recém-Nascido , Masculino , Melanoma/epidemiologia , Melanoma/etiologia , Lesões por Radiação/epidemiologia , Escócia/epidemiologia , Neoplasias Cutâneas/epidemiologia , Classe Social , Adulto Jovem
11.
J Bone Miner Res ; 24(9): 1552-64, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19419305

RESUMO

A large genome-wide, recessive, N-ethyl-N-nitrosourea (ENU)-induced mutagenesis screen was performed on a mixed C57BL/6J and C3H.SW-H2/SnJ mouse background to identify genes regulating bone mass. Approximately 6500 male and female G(3) hybrid mice were phenotyped at 8 and 10 wk of age by DXA analysis for evidence of changes in unadjusted or body weight-adjusted BMD or BMC. Phenodeviant lines were identified based on statistical criteria that included a false discovery rate (FDR) <20% and Z-score >2.8. Genome-wide mapping scans were initiated on 22 lines, with evidence of high or low BMD or BMC that deviated by approximately -30% to +50% from the means. Several lines were discontinued as showing lack of heritability, but two heritable lines were identified with narrow chromosomal regions that allowed sequencing of potential mutant candidate genes. Novel mutations were identified in the Enpp1 (C397S) gene on chromosome 10 (line 4482) and the Ptpn6 (I482F) gene on chromosome 6 (line 4489) that were both associated with low bone mass. In addition, the phenotype of the Enpp1 mice showed a striking joint disease and calcification of blood vessels including the aorta, myocardium, and renal arteries and capillaries. These results support a role for the Enpp1 gene in the pathogenesis associated with mineralization of articular cartilage and vascular calcification. This work confirms the utility of the chemical mutagenesis approach for identification of potential disease genes and confirms the role of Enpp1 and Ptpn6 in regulating mineralization and skeletal bone mass.


Assuntos
Densidade Óssea/genética , Calcinose/genética , Artropatias/genética , Diester Fosfórico Hidrolases/genética , Proteína Tirosina Fosfatase não Receptora Tipo 6/genética , Pirofosfatases/genética , Doenças Vasculares/genética , Absorciometria de Fóton , Animais , Sequência de Bases , Mapeamento Cromossômico , Primers do DNA , Etilnitrosoureia/toxicidade , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Mutagênese , Mutagênicos/toxicidade , Reação em Cadeia da Polimerase
12.
Diabetes ; 58(5): 1133-43, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19208906

RESUMO

OBJECTIVE: Insulin resistance develops in tandem with obesity. Ablating myostatin (Mstn) prevents obesity, so we investigated if Mstn deficiency could improve insulin sensitivity. A loss-of-function mutation (Mstn(Ln)) in either one or both alleles of the Mstn gene shows how Mstn deficiency protects whole-body insulin sensitivity. RESEARCH DESIGN AND METHODS: Mstn(Ln/Ln) mice were weaned onto a high-fat diet (HFD) or standard diet. HFD-fed Mstn(Ln/Ln) mice exhibited high lean, low-fat body compositions compared with wild types. Wild-type and heterozygous and homozygous mutant mice were bled to determine basal levels of insulin, glucose, and homeostasis model assessment of insulin resistance. To evaluate postprandial insulin sensitivity between animals of a similar size, glucose and insulin tolerance tests and hyperinsulinemic-euglycemic clamp studies were performed with heterozygous and homozygous mutant mice. Quantitative RT-PCR quantified TNF proportional, variant, IL-6, IL-1beta, F4/80, GPR43, and CD36 expression in muscle, fat, and liver. Histological analysis measured hepatosteatosis. RESULTS: Homozygous mutants were glucose tolerant and protected against overall insulin resistance compared with heterozygous mice. Hyperinsulinemic-euglycemic clamp studies revealed a dramatically improved glucose infusion rate, glucose disposal rate, and hepatic glucose production in 11-month-old Mstn(Ln/Ln) mice on an HFD. Improvements to muscle and liver insulin sensitivity (approximately 200-400%) correlated with 50-75% decreased tumor necrosis factor (TNF)alpha production and coincided with severe Mstn deficiency. Hepatosteatosis appeared to be ameliorated. Short-term treatment of Mstn(Ln/Ln) mice with recombinant Mstn led to increased plasma TNFalpha and insulin resistance. CONCLUSIONS: We find that severe Mstn deficiency caused by Ln (lean) mutations in HFD-fed mice protects muscle and liver against obesity-induced insulin resistance.


Assuntos
Gorduras na Dieta/farmacologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Fígado/fisiologia , Síndrome Metabólica/prevenção & controle , Mutação , Miostatina/genética , Obesidade/fisiopatologia , Fator de Necrose Tumoral alfa/biossíntese , Animais , Glicemia/metabolismo , Antígenos CD36/genética , Primers do DNA , Técnica Clamp de Glucose , Heterozigoto , Homozigoto , Resistência à Insulina/genética , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Músculo Esquelético/fisiologia , Obesidade/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/genética
13.
Pathogenetics ; 2(1): 1, 2009 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19161594

RESUMO

BACKGROUND: C57BLKS/J (BLKS) mice are susceptible to islet exhaustion in insulin-resistant states as compared with C57BL6/J (B6) mice, as observed by the presence of the leptin receptor (Lepr) allele, Leprdb/db. Furthermore, DBA2/J (DBA) mice are also susceptible to beta-cell failure and share 25% of their genome with BLKS; thus the DBA genome may contribute to beta-cell dysfunction in BLKS mice. RESULTS: Here we show that BLKS mice exhibit elevated insulin secretion, as evidenced by improved glucose tolerance and increased islet insulin secretion compared with B6 mice, and describe interstrain transcriptional differences in glucose response. Transcriptional differences between BLKS and B6 mice were identified by expression profiling of isolated islets from both strains. Genomic mapping of gene expression differences demonstrated a significant association of expression differences with DBA loci in BLKS mice (P = 4x10-27). CONCLUSION: Two genes, Nicotinamide nucleotide transhydrogenase (Nnt) and Pleiomorphic adenoma gene like 1 (Plagl1), were 4 and 7.2-fold higher respectively in BLKS islets, and may be major contributors to increased insulin secretion by BLKS islets. Contrary to reports for B6 mice, BLKS mice do not harbor a mutant Nnt gene. We detected 16 synonymous polymorphisms and a two-amino acid deletion in the Plagl1 gene in BLKS mice. Several inflammatory glucose-responsive genes are expressed at a higher level in BLKS, suggesting an inflammatory component to BLKS islet dysfunction. This study describes physiological differences between BLKS and B6 mice, and provides evidence for a causative role of the DBA genome in beta-cell dysfunction in BLKS mice.

14.
J Lipid Res ; 50(3): 534-545, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18974039

RESUMO

We conducted a genome-wide screen using the mutagen N-ethyl-N-nitrosourea to identify recessive mutations in genes that lead to altered lipid traits in mice. We screened 7,546 G3 mice that were of mixed C57BL/6J (B6) x C3.SW-H2(b)/SnJ (C3) genomes and identified three pedigrees with differences in plasma HDL-cholesterol. Genome scan analyses mapped three distinct loci to chromosomes 3, 4, and 7. An S1748L missense mutation was identified in ABCA1 in one pedigree with undetectable levels of HDL-cholesterol and resulted in reduced protein levels. This phenotype was completely penetrant, semi-dominant, and cosegregated with high plasma triglycerides. Mice in a second pedigree had very high levels of plasma total cholesterol and HDL-cholesterol (up to 800 mg/dl total cholesterol). Despite a high degree of phenotype lability and reduced penetrance, an I68N missense mutation was identified in the transcription factor CCAAT/enhancer binding protein alpha (C/EBPalpha). Finally, a second high HDL-cholesterol pedigree of mice, again with a highly labile phenotype and reduced penetrance, was mapped to a 7 Mb locus on chromosome 3. These results illustrate the use of a hybrid background for simultaneous screening and mapping of mutagenized pedigrees of mice and identification of three novel alleles of HDL-cholesterol phenotypes.


Assuntos
HDL-Colesterol/sangue , HDL-Colesterol/genética , Genes Recessivos , Mutação , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sequência de Bases , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Colesterol/deficiência , Mapeamento Cromossômico , DNA/genética , Etilnitrosoureia/toxicidade , Feminino , Testes Genéticos , Hiperlipoproteinemia Tipo II/sangue , Hiperlipoproteinemia Tipo II/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutagênese , Mutagênicos/toxicidade , Mutação de Sentido Incorreto , Fenótipo , Polimorfismo de Nucleotídeo Único
15.
Mol Cell Biol ; 26(10): 3738-51, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16648470

RESUMO

Nuclear migration and positioning within cells are critical for many developmental processes and are governed by the cytoskeletal network. Although mechanisms of nuclear-cytoskeletal attachment are unclear, growing evidence links a novel family of nuclear envelope (NE) proteins that share a conserved C-terminal SUN (Sad1/UNC-84 homology) domain. Analysis of Caenorhabditis elegans mutants has implicated UNC-84 in actin-mediated nuclear positioning by regulating NE anchoring of a giant actin-binding protein, ANC-1. Here, we report the identification of SUN1 as a lamin A-binding protein in a yeast two-hybrid screen. We demonstrate that SUN1 is an integral membrane protein located at the inner nuclear membrane. While the N-terminal domain of SUN1 is responsible for detergent-resistant association with the nuclear lamina and lamin A binding, lamin A/C expression is not required for SUN1 NE localization. Furthermore, SUN1 does not interact with type B lamins, suggesting that NE localization is ensured by binding to an additional nuclear component(s), most likely chromatin. Importantly, we find that the luminal C-terminal domain of SUN1 interacts with the mammalian ANC-1 homologs nesprins 1 and 2 via their conserved KASH domain. Our data provide evidence of a physical nuclear-cytoskeletal connection that is likely to be a key mechanism in nuclear-cytoplasmic communication and regulation of nuclear position.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Lamina Tipo A/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Sequência de Aminoácidos , Animais , Western Blotting , Linhagem Celular Tumoral , Proteínas do Citoesqueleto , Fibroblastos/metabolismo , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Camundongos , Microscopia de Fluorescência , Proteínas Associadas aos Microtúbulos/química , Modelos Biológicos , Dados de Sequência Molecular , Células NIH 3T3 , Testes de Precipitina , Ligação Proteica , Estrutura Terciária de Proteína , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Homologia de Sequência de Aminoácidos , Técnicas do Sistema de Duplo-Híbrido
16.
Hum Mol Genet ; 15(11): 1884-93, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16644867

RESUMO

Prohormone convertase 1 (PC1) mutations lead to obesity in humans. However, Pc1 knockout mice do not become obese; in fact, they are runted due to a defect in growth-hormone releasing hormone processing, leading to the speculation that PC1 subserves different functions between mouse and human. Here, we report a novel allele of mouse Pc1 (N222D) that leads to obesity, abnormal proinsulin processing and multiple endocrinological defects. Increased energy intake and a more efficient metabolism contribute to the obesity in Pc1(N222D/N222D) mice. Defective proinsulin processing leads to glucose intolerance, but neither insulin resistance nor diabetes develop despite obesity. The obesity is associated with impaired autocatalytic activation of mature PC1 and reduced hypothalamic alpha-MSH. This is the first characterization of Pc1 mutation in a model organism that mimics human PC1 deficiency.


Assuntos
Hiperfagia/genética , Mutação , Pró-Proteína Convertase 1/genética , Sequência de Aminoácidos , Animais , Glucose/metabolismo , Humanos , Hipotálamo/patologia , Insulina/genética , Insulina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Dados de Sequência Molecular , Obesidade/genética , Obesidade/metabolismo , Homologia de Sequência de Aminoácidos
17.
Cell Growth Differ ; 13(7): 307-13, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12133899

RESUMO

Recent studies indicate that kinase suppressor of Ras (KSR)is a scaffold protein for the Ras/Raf/MEK/ERK signaling cascade in mammals. To help determine the in vivo function of KSR, we have examined the tissue-specific distribution of this protein in the embryonic and adult mouse using a rat monoclonal antibody raised against the mouse protein. Western blot analysis indicates that the protein is expressed at highest levels in the adult brain. It is also expressed at low levels in bladder, ovary, testis, and lung, but the protein is not detectable in any other adult tissue. However, reverse transcription-PCR analysis shows that Ksr transcripts are detected in all adult tissues except the liver. A variant containing a differentially spliced exon in the CA4 domain is observed in brain, cerebellum, ovary, and intestine. The protein is also expressed throughout the E6.5 embryo and at high levels in the neuroepithelium of the E10.5 embryo. At this embryonic stage, expression is also detected at lower levels in the limb and tail buds as well as in the myocardium.


Assuntos
Encéfalo/embriologia , Embrião de Mamíferos/embriologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas Quinases/metabolismo , Vísceras/embriologia , Proteínas ras/metabolismo , Animais , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Feto , Gônadas/citologia , Gônadas/embriologia , Gônadas/metabolismo , Imuno-Histoquímica , Pulmão/citologia , Pulmão/embriologia , Pulmão/metabolismo , Camundongos , Proteínas Quinases/genética , RNA Mensageiro/metabolismo , Ratos , Transdução de Sinais/fisiologia , Bexiga Urinária/citologia , Bexiga Urinária/embriologia , Bexiga Urinária/metabolismo , Vísceras/citologia , Vísceras/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA