Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 98: 117582, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171253

RESUMO

In this study, we explored a concise and mild synthetic route to produce novel C-14 arylcarbamate derivatives of andrographolide, a known anti-inflammatory and anticancer natural product. Upon assessing their anti-cancer efficacy against pancreatic ductal adenocarcinoma (PDAC) cells, some derivatives showed stronger cytotoxicity against PANC-1 cells than andrographolide. In addition, we demonstrated one derivative, compound 3m, effectively reduced the expression of oncogenic p53 mutant proteins (p53R273H and p53R248W), proliferation, and migration in PDAC lines, PANC-1 and MIA PaCa-2. Accordingly, the novel derivative holds promise as an anti-cancer agent against pancreatic cancer. In summary, our study broadens the derivative library of andrographolide and develops an arylcarbamate derivative of andrographolide with promising anticancer activity against PDAC.


Assuntos
Carcinoma Ductal Pancreático , Diterpenos , Neoplasias Pancreáticas , Humanos , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Diterpenos/farmacologia , Linhagem Celular Tumoral
2.
J Virol ; 96(7): e0010722, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35293767

RESUMO

The propagation of the hepatitis C virus (HCV) is regulated in part by the phosphorylation of its nonstructural protein NS5A that undergoes sequential phosphorylation on several highly conserved serine residues and switches from a hypo- to a hyperphosphorylated state. Previous studies have shown that NS5A sequential phosphorylation requires NS3 encoded on the same NS3-NS4A-NS4B-NS5A polyprotein. Subtle mutations in NS3 without affecting its protease activity could affect NS5A phosphorylation. Given the ATPase domain in the NS3 COOH terminus, we tested whether NS3 participates in NS5A phosphorylation similarly to the nucleoside diphosphate kinase-like activity of the rotavirus NSP2 nucleoside triphosphatase (NTPase). Mutations in the NS3 ATP-binding motifs blunted NS5A hyperphosphorylation and phosphorylation at serines 225, 232, and 235, whereas a mutation in the RNA-binding domain did not. The phosphorylation events were not rescued with wild-type NS3 provided in trans. When provided with an NS3 ATPase-compatible ATP analog, N6-benzyl-ATP-γ-S, thiophosphorylated NS5A was detected in the cells expressing the wild-type NS3-NS5B polyprotein. The thiophosphorylation level was lower in the cells expressing NS3-NS5B with a mutation in the NS3 ATP-binding domain. In vitro assays with a synthetic peptide and purified wild-type NS3 followed by dot blotting and mass spectrometry found weak NS5A phosphorylation at serines 222 and 225 that was sensitive to an inhibitor of casein kinase Iα but not helicase. When casein kinase Iα was included in the assay, much stronger phosphorylation was observed at serines 225, 232, and 235. We concluded that NS5A sequential phosphorylation requires the ATP-binding domain of the NS3 helicase and that casein kinase Iα is a potent NS5A kinase. IMPORTANCE For more than 20 years, NS3 was known to participate in NS5A sequential phosphorylation. In the present study, we show for the first time that the ATP-binding domain of NS3 is involved in NS5A phosphorylation. In vitro assays showed that casein kinase Iα is a very potent kinase responsible for NS5A phosphorylation at serines 225, 232, and 235. Our data suggest that ATP binding by NS3 probably results in conformational changes that recruit casein kinase Iα to phosphorylate NS5A, initially at S225 and subsequently at S232 and S235. Our discovery reveals intricate requirements of the structural integrity of NS3 for NS5A hyperphosphorylation and HCV replication.


Assuntos
Hepacivirus , Hepatite C , RNA Polimerase Dependente de RNA , Proteínas não Estruturais Virais , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Caseína Quinase Ialfa/metabolismo , Hepacivirus/enzimologia , Hepacivirus/genética , Hepatite C/virologia , Humanos , Fosforilação , Poliproteínas/metabolismo , Domínios Proteicos/genética , RNA Polimerase Dependente de RNA/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
3.
Biochem Biophys Res Commun ; 533(3): 467-473, 2020 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-32977949

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by 2019 novel coronavirus (2019-nCoV) has been a crisis of global health, whereas the effective vaccines against 2019-nCoV are still under development. Alternatively, utilization of old drugs or available medicine that can suppress the viral activity or replication may provide an urgent solution to suppress the rapid spread of 2019-nCoV. Andrographolide is a highly abundant natural product of the medicinal plant, Andrographis paniculata, which has been clinically used for inflammatory diseases and anti-viral therapy. We herein demonstrate that both andrographolide and its fluorescent derivative, the nitrobenzoxadiazole-conjugated andrographolide (Andro- NBD), suppressed the main protease (Mpro) activities of 2019-nCoV and severe acute respiratory syndrome coronavirus (SARS-CoV). Moreover, Andro-NBD was shown to covalently link its fluorescence to these proteases. Further mass spectrometry (MS) analysis suggests that andrographolide formed a covalent bond with the active site Cys145 of either 2019-nCoV Mpro or SARS-CoV Mpro. Consistently, molecular modeling analysis supported the docking of andrographolide within the catalytic pockets of both viral Mpros. Considering that andrographolide is used in clinical practice with acceptable safety and its diverse pharmacological activities that could be beneficial for attenuating COVID-19 symptoms, extensive investigation of andrographolide on the suppression of 2019-nCoV as well as its application in COVID-19 therapy is suggested.


Assuntos
Cisteína Endopeptidases/metabolismo , Diterpenos/farmacologia , Inibidores de Proteases/química , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Betacoronavirus/enzimologia , Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína Endopeptidases/química , Diterpenos/química , Corantes Fluorescentes/química , Corantes Fluorescentes/farmacologia , Simulação de Acoplamento Molecular , Conformação Proteica , Multimerização Proteica , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , SARS-CoV-2 , Proteínas não Estruturais Virais/química
4.
PLoS One ; 11(4): e0152770, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27035713

RESUMO

Andrographolide (ANDRO) is a lactone diterpenoid compound present in the medicinal plant Andrographis paniculata which is clinically applied for multiple human diseases in Asia and Europe. The pharmacological activities of andrographolide have been widely demonstrated, including anti-inflammation, anti-cancer and hepatoprotection. However, the pharmacological mechanism of andrographolide remains unclear. Therefore, further characterization on the kinetics and molecular targets of andrographolide is essential. In this study, we described the synthesis and characterization of a novel fluorescent andrographolide derivative (ANDRO-NBD). ANDRO-NBD exhibited a comparable anti-cancer spectrum to andrographolide: ANDRO-NBD was cytotoxic to various types of cancer cells and suppressed the migration activity of melanoma cells; ANDRO-NBD treatment induced the cleavage of heat shock protein 90 (Hsp90) and the downregulation of its client oncoproteins, v-Src and Bcr-abl. Notably, ANDRO-NBD showed superior inhibitory effects to andrographolide in all anticancer assays we have performed. In addition, ANDRO-NBD was further used as a fluorescent probe to investigate the uptake kinetics, cellular distribution and molecular targets of andrographolide. Our data revealed that ANDRO-NBD entered cells rapidly and its fluorescent signal could be detected in nucleus, cytoplasm, mitochondria, and lysosome. Moreover, we demonstrated that ANDRO-NBD was covalently bound to several putative target proteins of andrographolide, including NF-κB and hnRNPK. In summary, we developed a fluorescent andrographolide probe with comparable bioactivity to andrographolide, which serves as a powerful tool to explore the pharmacological mechanism of andrographolide.


Assuntos
Diterpenos/química , Sondas Moleculares/química , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
5.
Chembiochem ; 16(11): 1555-9, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26096673

RESUMO

α-L-Fucosidase activity is associated with several diseases. To study the enzymatic activity change under pathological conditions, we developed a quinone methide-generating activity-based probe useful for examining the presence, activity, and localization of human α-L-fucosidase in vivo in the context of Helicobacter pylori infection. In particular, an increase in intracellular fucosidase (Fuca1) activity was found in gastric epithelial cells upon bacterial infection. We further studied the effect of several bacterial stimulants on this enhanced Fuca1 activity and identified lipopolysaccharides to be a major contributing factor.


Assuntos
Helicobacter pylori/fisiologia , Indolquinonas/metabolismo , Sondas Moleculares/metabolismo , alfa-L-Fucosidase/metabolismo , Linhagem Celular Tumoral , Epitélio/microbiologia , Humanos , Lipopolissacarídeos/metabolismo , Estômago/microbiologia
6.
Molecules ; 18(1): 682-9, 2013 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-23292330

RESUMO

Two new diterpenoids, konishone (1) and 3b-hydroxy-5,6-dehydrosugiol (2), along with three known diterpenoids--hinokiol (3), sugiol (4), and 12-hydroxy-6,7-secoabieta-8,11,13-triene-6,7-dial (5)--were isolated from the wood of Cunninghamia konishii. Compound 1 is a novel skeleton of the 7,20-dinorabietane-type diterpene. In addition, when RAW264.7 macrophages were treated with different concentrations of compounds 1, 3, and 5 together with LPS, a significant concentration-dependent inhibition of NO production was detected. The IC50 values for inhibition of nitrite production of compounds 1, 3, and 5 were about 9.8 ± 0.7, 7.9 ± 0.9, and 9.3 ± 1.3 µg/mL, respectively. This study presents the potential utilization of compounds 1, 3, and 5, as lead compounds for the development of anti-inflammatory drugs.


Assuntos
Anti-Inflamatórios/farmacologia , Cunninghamia/química , Diterpenos/farmacologia , Madeira/química , Animais , Anti-Inflamatórios/isolamento & purificação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Diterpenos/isolamento & purificação , Avaliação Pré-Clínica de Medicamentos , Concentração Inibidora 50 , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Óxido Nítrico/metabolismo
7.
Biochem Biophys Res Commun ; 391(1): 230-4, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-19909727

RESUMO

Src homology-2 (SH2) domain-containing phosphatase 2 (SHP2) is known to participate in several different signaling pathways to mediate cell growth, survival, migration, and differentiation. However, due to the lack of proper analytical tools, it is unclear whether the phosphatase activity of SHP2 is activated in most studies. We have previously developed an activity-based probe LCL2 that formed covalent linkage with catalytically active protein tyrosine phosphatases (PTPs). Here, by combining LCL2 with a SHP2 specific antibody, we established an assay system that enables the direct monitoring of SHP2 activity upon cisplatin treatment of cancer cells. The protocol is advantageous over conventional colorimetric or in-gel PTP assays as it is specific and does not require the use of radioisotope reagents. Using this assay, we found SHP2 activity was selectively activated by cisplatin. Moreover, the activation of SHP2 appeared to be specific for cisplatin as other DNA damage agents failed to activate the activity. Although the role of SHP2 activation by cisplatin treatments is still unclear to us, our results provide the first direct evidence for the activation of SHP2 during cisplatin treatments. More importantly, the concept of using activity-based probe in conjunction with target-specific antibodies could be extended to other enzyme classes.


Assuntos
Antineoplásicos/farmacologia , Biotina/análogos & derivados , Cisplatino/farmacologia , Sondas Moleculares/química , Neoplasias/enzimologia , Organofosfatos/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/biossíntese , Anticorpos/imunologia , Bioensaio , Biotina/química , Linhagem Celular Tumoral , Ativação Enzimática , Humanos , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 11/química , Proteína Tirosina Fosfatase não Receptora Tipo 11/imunologia , Proteínas Tirosina Fosfatases/metabolismo
8.
Biochem Biophys Res Commun ; 326(1): 30-5, 2005 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-15567148

RESUMO

Use of activity probes has been demonstrated to be a powerful tool in modern chemical proteomic study. Previously we have designed and synthesized a series of mechanism-based activity probes that utilized quinone methide chemistry. Here, we characterized the trend of chemical reactivity for the reactive quinone methide intermediate 3 (QM-3) resulting from the latent trapping device. In a competition assay, the labeling of PTP1B by probe 1a was blocked by externally added cysteine without affecting the catalytic activity of the enzyme. Further sequencing analysis on the trypsin-digested peptides of probe 1a-labeled PTP1B using tandem mass spectrometry revealed that all six cysteine residues of PTP1B are capable of being modified by probe 1a. These results indicated that the sulfhydryl group of cysteine residue is the preferred nucleophile for the reactive QM-3. Our finding provides the first example in understanding the preferred amino acid residues modified by the reactive QM-3, which is also the key structural unit responsible for forming covalent bonds in many biochemical applications.


Assuntos
Perfilação da Expressão Gênica/métodos , Indolquinonas/química , Espectrometria de Massas/métodos , Sondas Moleculares/química , Proteínas Tirosina Fosfatases/química , Proteômica/métodos , Coloração e Rotulagem/métodos , Sítios de Ligação , Ativação Enzimática , Humanos , Hidrolases/química , Indolquinonas/análise , Ligação Proteica , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA