Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-37502916

RESUMO

Mutations in the tyrosine phosphatase SHP2 are associated with a variety of human diseases. Most mutations in SHP2 increase its basal catalytic activity by disrupting auto-inhibitory interactions between its phosphatase domain and N-terminal SH2 (phosphotyrosine recognition) domain. By contrast, some disease-associated mutations located in the ligand-binding pockets of the N- or C-terminal SH2 domains do not increase basal activity and likely exert their pathogenicity through alternative mechanisms. We lack a molecular understanding of how these SH2 mutations impact SHP2 structure, activity, and signaling. Here, we characterize five SHP2 SH2 domain ligand-binding pocket mutants through a combination of high-throughput biochemical screens, biophysical and biochemical measurements, and molecular dynamics simulations. We show that, while some of these mutations alter binding affinity to phosphorylation sites, the T42A mutation in the N-SH2 domain is unique in that it also substantially alters ligand-binding specificity, despite being 8-10 Å from the specificity-determining region of the SH2 domain. This mutation exerts its effect on sequence specificity by remodeling the phosphotyrosine binding pocket, altering the mode of engagement of both the phosphotyrosine and surrounding residues on the ligand. The functional consequence of this altered specificity is that the T42A mutant has biased sensitivity toward a subset of activating ligands and enhances downstream signaling. Our study highlights an example of a nuanced mechanism of action for a disease-associated mutation, characterized by a change in protein-protein interaction specificity that alters enzyme activation.

3.
Oncogene ; 40(34): 5253-5261, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290401

RESUMO

The exploitation of T cell-based immunotherapies and immune checkpoint blockade for cancer treatment has dramatically shifted oncological treatment paradigms and broadened the horizons of cancer immunology. Dendritic cells have emerged as the critical tailors of T cell immune responses, which initiate and coordinate anti-tumor immunity. Importantly, genetic alterations in cancer cells, cytokines and chemokines produced by cancer and stromal cells, and the process of tumor microenvironmental regulation can compromise dendritic cell-T cell cross-talk, thereby disrupting anti-tumor T cell responses. This review summarizes how T cell activation is controlled by dendritic cells and how the tumor microenvironment alters dendritic cell properties in the context of the anti-tumor immune cycle. Furthermore, we will highlight therapeutic options for tailoring dendritic cell-mediated decision-making in T cells for cancer treatment.


Assuntos
Anticorpos , Microambiente Tumoral , Humanos , Imunoterapia , Ativação Linfocitária
4.
Front Immunol ; 12: 673196, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33936119

RESUMO

Self- and non-self ligand discrimination is a core principle underlying T cell-mediated immunity. Mature αß T cells can respond to a foreign peptide ligand presented by major histocompatibility complex molecules (pMHCs) on antigen presenting cells, on a background of continuously sensed self-pMHCs. How αß T cells can properly balance high sensitivity and high specificity to foreign pMHCs, while surrounded by a sea of self-peptide ligands is not well understood. Such discrimination cannot be explained solely by the affinity parameters of T cell antigen receptor (TCR) and pMHC interaction. In this review, we will discuss how T cell ligand discrimination may be molecularly defined by events downstream of the TCR-pMHC interaction. We will discuss new evidence in support of the kinetic proofreading model of TCR ligand discrimination, and in particular how the kinetics of specific phosphorylation sites within the adaptor protein linker for activation of T cells (LAT) determine the outcome of TCR signaling. In addition, we will discuss emerging data regarding how some kinases, including ZAP-70 and LCK, may possess scaffolding functions to more efficiently direct their kinase activities.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/imunologia , Ativação Linfocitária/imunologia , Proteínas de Membrana/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Tolerância a Antígenos Próprios/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/metabolismo , Proteína-Tirosina Quinase ZAP-70/imunologia , Proteína-Tirosina Quinase ZAP-70/metabolismo
5.
Sci Signal ; 12(604)2019 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-31641081

RESUMO

T cells require the protein tyrosine phosphatase CD45 to detect and respond to antigen because it activates the Src family kinase Lck, which phosphorylates the T cell antigen receptor (TCR) complex. CD45 activates Lck by opposing the negative regulatory kinase Csk. Paradoxically, CD45 has also been implicated in suppressing TCR signaling by dephosphorylating the same signaling motifs within the TCR complex upon which Lck acts. We sought to reconcile these observations using chemical and genetic perturbations of the Csk/CD45 regulatory axis incorporated with computational analyses. Specifically, we titrated the activities of Csk and CD45 and assessed their influence on Lck activation, TCR-associated ζ-chain phosphorylation, and more downstream signaling events. Acute inhibition of Csk revealed that CD45 suppressed ζ-chain phosphorylation and was necessary for a regulatable pool of active Lck, thereby interconnecting the activating and suppressive roles of CD45 that tune antigen discrimination. CD45 suppressed signaling events that were antigen independent or induced by low-affinity antigen but not those initiated by high-affinity antigen. Together, our findings reveal that CD45 acts as a signaling "gatekeeper," enabling graded signaling outputs while filtering weak or spurious signaling events.


Assuntos
Antígenos Comuns de Leucócito/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Animais , Proteína Tirosina Quinase CSK/genética , Humanos , Células Jurkat , Antígenos Comuns de Leucócito/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/imunologia , Camundongos , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Transdução de Sinais/genética , Linfócitos T/citologia
6.
Nat Immunol ; 19(7): 733-741, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29915297

RESUMO

T cell-antigen receptor (TCR) signaling requires the sequential activities of the kinases Lck and Zap70. Upon TCR stimulation, Lck phosphorylates the TCR, thus leading to the recruitment, phosphorylation, and activation of Zap70. Lck binds and stabilizes phosho-Zap70 by using its SH2 domain, and Zap70 phosphorylates the critical adaptors LAT and SLP76, which coordinate downstream signaling. It is unclear whether phosphorylation of these adaptors occurs through passive diffusion or active recruitment. We report the discovery of a conserved proline-rich motif in LAT that mediates efficient LAT phosphorylation. Lck associates with this motif via its SH3 domain, and with phospho-Zap70 via its SH2 domain, thereby acting as a molecular bridge that facilitates the colocalization of Zap70 and LAT. Elimination of this proline-rich motif compromises TCR signaling and T cell development. These results demonstrate the remarkable multifunctionality of Lck, wherein each of its domains has evolved to orchestrate a distinct step in TCR signaling.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Proteínas de Membrana/metabolismo , Proteína-Tirosina Quinase ZAP-70/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Motivos de Aminoácidos , Animais , Células HEK293 , Humanos , Células Jurkat , Proteínas de Membrana/química , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Prolina/análise , Receptores de Antígenos de Linfócitos T/metabolismo , Timo/imunologia
7.
Curr Top Microbiol Immunol ; 373: 49-67, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23612987

RESUMO

The vertebrate antigen receptors are anticipatory in their antigen recognition and display a vast diversity. Antigen receptors are assembled through V(D)J recombination, in which one of each Variable, (Diverse), and Joining gene segment are randomly utilized and recombined. Both gene rearrangement and mutational insertion are generated through randomness; therefore, the process of antigen receptors generation requires a rigorous testing system to select every receptor which is useful to recognize foreign antigens, but which would cause no harm to self cells. In the case of T cell receptors (TCR), such a quality control responsibility rests in thymic positive and negative selection. In this review, we focus on the critical involvement of self-peptides in the generation of a T cell repertoire, discuss the role of T cell thymic development in shaping the specificity of TCR repertoire, and directing function fitness of mature T cells in periphery. Here, we consider thymic positive selection to be not merely a one-time maturing experience for an individual T cell, but a life-long imprinting which influences the function of each individual T cell in periphery.


Assuntos
Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/fisiologia , Linfócitos T/imunologia , Timo/imunologia , Animais , Epitopos , Humanos
8.
Biochimie ; 93(7): 1115-23, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21440595

RESUMO

The development of various gastrointestinal diseases was suggested to be associated with chronic inflammation as a consequence of Helicobacter pylori (H. pylori) infection. Our previous studies showed that an antioxidant protein alkylhydroperoxide reductase (AhpC) is an abundant and important antioxidant protein present in H. pylori. In this study we have explored the potential of utilizing antibodies to AhpC for detection of patients who are at high risks of evolving into severe outcomes of gastric malignancies after H. pylori infection. The correlation between AhpC and extents of inflammatory damage in tissues was demonstrated by immunoblotting assays and endoscopic examinations. Oxidative stress-induced high-molecular-weight (HMW) AhpC with chaperone activity in vivo was further investigated by co-immunoprecipitation, 2-dimensional gel electrophoresis (2-DE) followed by nano-liquid chromatography coupled tandem mass spectrometry (nanoLC-MS/MS). We found AhpC was consistently expressed in higher amounts in H. pylori strains isolated from patients with gastric cancer (GC) than gastritis (GA). Immunological analysis of seropositivity for AhpC indicated that positive diagnostic rates for H. pylori-infected patients with GA, gastric ulcer (GU) and GC were 68% (15/22), 100% (50/50) and 100% (50/50), respectively. In great contrast to low-molecular-weight (LMW) AhpC, HMW AhpC with chaperone function was found to distribute inside of H. pylori cells. We also found that LMW forms of AhpC were recognized by serum antibodies from GA patients whereas HMW forms of AhpC reacted mainly with those from GU and GC patients. Based on the significant difference between AhpC isolated from strains of GC and GA, it is conceivable that AhpC of H. pylori may prove to be useful as a prognostic or diagnostic protein marker to monitor varied clinical manifestations of gastrointestinal patients infected with H. pylori.


Assuntos
Proteínas de Bactérias/metabolismo , Infecções por Helicobacter/microbiologia , Helicobacter pylori/enzimologia , Peroxirredoxinas/metabolismo , Proteínas de Bactérias/genética , Biomarcadores/metabolismo , Eletroforese em Gel Bidimensional , Gastrite/diagnóstico , Gastrite/microbiologia , Genótipo , Infecções por Helicobacter/diagnóstico , Helicobacter pylori/genética , Helicobacter pylori/ultraestrutura , Humanos , Immunoblotting , Microscopia Eletrônica de Transmissão , Chaperonas Moleculares/metabolismo , Peso Molecular , Estresse Oxidativo , Peroxirredoxinas/química , Peroxirredoxinas/genética , Úlcera Gástrica/diagnóstico , Úlcera Gástrica/microbiologia
9.
Nat Immunol ; 10(11): 1155-61, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19801984

RESUMO

Although CD4(+) and CD8(+) T cells differ in the strength of their positively selecting signal, endogenous positively selecting ligands have been identified only for major histocompatibility complex (MHC) class I-restricted T cell antigen receptors (TCRs). Here we screened for ligands able to positively select MHC class II-restricted TCRs using thymocytes from four I-E(k)-restricted TCR-transgenic mice and a large panel of self peptides. One peptide, gp250, induced positive selection of AND CD4(+) T cells, had no homology with the AND TCR agonist ligand and was recognized with a high degree of specificity. The gp250 peptide acted as a coagonist to initiate the activation and enhance the survival of peripheral AND CD4(+) T cells. Thus, positively selecting ligands are critical in thymocyte development and in the activation and maintenance of peripheral T cells.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Ativação Linfocitária , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Substituição de Aminoácidos , Animais , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/imunologia , Linfócitos T CD4-Positivos/citologia , Linhagem Celular , Proliferação de Células , Lectinas Tipo C , Ligantes , Camundongos , Camundongos Transgênicos , Ligação Proteica , Timo/citologia , Timo/imunologia
10.
Mol Biol Evol ; 25(10): 2189-98, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18667440

RESUMO

Human c-Myb proto-oncogene is highly expressed in hematopoietic progenitors as well as leukemia and certain solid tumor. However, the regulatory mechanisms of its expression and biological functions remain largely unclear. Recently, c-Myb has been shown to be targeted by microRNA-150 (miR-150) which thereby controls B cell differentiation in mice. In this study, we demonstrated that c-Myb is an evolutionary conserved target of miR-150 in human and zebrafish, using reporter assays. Ectopic expression of miR-150 in breast cancer and leukemic cells repressed endogenous c-Myb at both messenger RNA (mRNA) and protein levels. Among several leukemia cell lines, primary leukemia cells, and normal lymphocytes, expression levels of miR-150 inversely correlated with c-Myb. The miR-150 overexpression or c-Myb silencing in zebrafish zygotes led to similar and serious phenotypic defects in zebrafish, and the phenotypic aberrations induced by miR-150 could be reversed by coinjection of c-Myb mRNA. Our findings suggest that c-Myb is an evolutionally conserved target of miR-150 and miR-150/c-Myb interaction is important for embryonic development and possibly oncogenesis.


Assuntos
Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Proto-Oncogênicas c-myb/metabolismo , Regiões 3' não Traduzidas , Animais , Sequência de Bases , Linhagem Celular Tumoral , Aberrações Cromossômicas , Humanos , Linfócitos/metabolismo , Camundongos , Dados de Sequência Molecular , Fenótipo , Proto-Oncogene Mas , Peixe-Zebra
11.
Mol Biol Evol ; 24(11): 2525-34, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17890240

RESUMO

Animal microRNAs (miRNAs) are short RNAs that function as posttranscriptional regulators of gene expression by binding to the target mRNAs. Noting that some miRNAs are highly conserved in evolution, we explored the possibility of evolutionary conservation of their targets. We identified human orthologues of experimentally verified let-7 miRNA target genes in Caenorhabditis elegans and used the luciferase reporter system to examine whether these human genes are still the targets of let-7 miRNA. We found that in some cases, the miRNA-target relationship has indeed been conserved in human. Interestingly, human TRIM71, an orthologue of C. elegans let-7-target lin-41 gene, can be repressed by hsa-let-7a and hsa-let-7c. This repression was abolished when both predicted let-7 target sites of TRIM71 were mutated. Moreover, the zebrafish lin-41 orthologue was also repressed by let-7 to a similar degree as was TRIM71. When the expression of zebrafish lin-41 orthologue was silenced by microinjection of RNA interference or morpholino into zebrafish zygotes, retarded embryonic development was observed, providing direct evidence for an essential role of lin-41 in zebrafish development. Taken together, our results suggest that the regulation of TRIM71 expression by let-7 has been evolutionarily conserved and that TRIM71 likely plays an important role in development.


Assuntos
Caenorhabditis elegans/genética , Embrião não Mamífero/metabolismo , MicroRNAs/genética , Peixe-Zebra/genética , Animais , Sequência de Bases , Proteínas de Caenorhabditis elegans/genética , Linhagem Celular Tumoral , Embrião não Mamífero/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Luciferases/genética , Luciferases/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/genética , Proteínas com Motivo Tripartido , Ubiquitina-Proteína Ligases/genética , Peixe-Zebra/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA