Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(20): 14278-14302, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37819647

RESUMO

Class II phosphoinositide-3-kinases (PI3Ks) play central roles in cell signaling, division, migration, and survival. Despite evidence that all PI3K class II isoforms serve unique cellular functions, the lack of isoform-selective inhibitors severely hampers the systematic investigation of their potential relevance as pharmacological targets. Here, we report the structural evaluation and molecular determinants for selective PI3K-C2α inhibition by a structure-activity relationship study based on a pteridinone scaffold, leading to the discovery of selective PI3K-C2α inhibitors called PITCOINs. Cocrystal structures and docking experiments supported the rationalization of the structural determinants essential for inhibitor activity and high selectivity. Profiling of PITCOINs in a panel of more than 118 diverse kinases showed no off-target kinase inhibition. Notably, by addressing a selectivity pocket, PITCOIN4 showed nanomolar inhibition of PI3K-C2α and >100-fold selectivity in a general kinase panel. Our study paves the way for the development of novel therapies for diseases related to PI3K-C2α function.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Isoformas de Proteínas , Fosfatidilinositóis
2.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747849

RESUMO

3'-Phosphoinositides are ubiquitous cellular lipids that play pivotal regulatory roles in health and disease. Generation of 3'-phosphoinositides are driven by three families of phosphoinositide 3-kinases (PI3K) but the mechanisms underlying their regulation and cross-talk are not fully understood. Among 3'-phosphoinositides, phosphatidylinositol-3,5-bisphosphate (PI(3,5)P 2 ) remains the least understood species in terms of its spatiotemporal dynamics and physiological function due to the lack of specific probes. By means of spatiotemporally resolved in situ quantitative imaging of PI(3,5)P 2 using a newly developed ratiometric PI(3,5)P 2 sensor we demonstrate that a special pool of PI(3,5)P 2 is generated on lysosomes and late endosomes in response to growth factor stimulation. This PI(3,5)P 2 pool, the formation of which is mediated by Class II PI3KC2ß and PIKFyve, plays a crucial role in terminating the activity of growth factor-stimulated Class I PI3K, one of the most frequently mutated proteins in cancer, via specific interaction with its regulatory p85 subunit. Cancer-causing mutations of Class I PI3K inhibit the p85-PI(3,5)P 2 interaction and thereby induce sustained activation of Class I PI3K. Our results unravel a hitherto unknown tight regulatory interplay between Class I and II PI3Ks mediated by PI(3,5)P 2 , which may be important for controlling the strength of PI3K-mediated growth factor signaling. These results also suggest a new therapeutic possibility of treating cancer patients with p85 mutations.

3.
Nat Chem Biol ; 19(1): 18-27, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109648

RESUMO

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) and related class II PI3K isoforms are of increasing biomedical interest because of their crucial roles in endocytic membrane dynamics, cell division and signaling, angiogenesis, and platelet morphology and function. Herein we report the development and characterization of PhosphatidylInositol Three-kinase Class twO INhibitors (PITCOINs), potent and highly selective small-molecule inhibitors of PI3KC2α catalytic activity. PITCOIN compounds exhibit strong selectivity toward PI3KC2α due to their unique mode of interaction with the ATP-binding site of the enzyme. We demonstrate that acute inhibition of PI3KC2α-mediated synthesis of phosphatidylinositol 3-phosphates by PITCOINs impairs endocytic membrane dynamics and membrane remodeling during platelet-dependent thrombus formation. PITCOINs are potent and selective cell-permeable inhibitors of PI3KC2α function with potential biomedical applications ranging from thrombosis to diabetes and cancer.


Assuntos
Fosfatidilinositol 3-Quinase , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositóis , Fosfatos de Fosfatidilinositol/metabolismo
4.
Adv Sci (Weinh) ; 9(9): e2103249, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35098698

RESUMO

Breast cancer is the most prevalent cancer and a major cause of death in women worldwide. Although early diagnosis and therapeutic intervention significantly improve patient survival rate, metastasis still accounts for most deaths. Here it is reported that, in a cohort of more than 2000 patients with breast cancer, overexpression of PI3KC2α occurs in 52% of cases and correlates with high tumor grade as well as increased probability of distant metastatic events, irrespective of the subtype. Mechanistically, it is demonstrated that PI3KC2α synthetizes a pool of PI(3,4)P2 at focal adhesions that lowers their stability and directs breast cancer cell migration, invasion, and metastasis. PI(3,4)P2 locally produced by PI3KC2α at focal adhesions recruits the Ras GTPase activating protein 3 (RASA3), which inactivates R-RAS, leading to increased focal adhesion turnover, migration, and invasion both in vitro and in vivo. Proof-of-concept is eventually provided that inhibiting PI3KC2α or lowering RASA3 activity at focal adhesions significantly reduces the metastatic burden in PI3KC2α-overexpressing breast cancer, thereby suggesting a novel strategy for anti-breast cancer therapy.


Assuntos
Neoplasias da Mama , Adesão Celular/fisiologia , Feminino , Adesões Focais/metabolismo , Adesões Focais/patologia , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Fosfatidilinositóis/metabolismo
5.
Mol Cell ; 71(2): 343-351.e4, 2018 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-30029007

RESUMO

Class II phosphoinositide 3-kinases (PI3K-C2) are large multidomain enzymes that control cellular functions ranging from membrane dynamics to cell signaling via synthesis of 3'-phosphorylated phosphoinositides. Activity of the alpha isoform (PI3K-C2α) is associated with endocytosis, angiogenesis, and glucose metabolism. How PI3K-C2α activity is controlled at sites of endocytosis remains largely enigmatic. Here we show that the lipid-binding PX-C2 module unique to class II PI3Ks autoinhibits kinase activity in solution but is essential for full enzymatic activity at PtdIns(4,5)P2-rich membranes. Using HDX-MS, we show that the PX-C2 module folds back onto the kinase domain, inhibiting its basal activity. Destabilization of this intramolecular contact increases PI3K-C2α activity in vitro and in cells, leading to accumulation of its lipid product, increased recruitment of the endocytic effector SNX9, and facilitated endocytosis. Our studies uncover a regulatory mechanism in which coincident binding of phosphoinositide substrate and cofactor selectively activate PI3K-C2α at sites of endocytosis.


Assuntos
Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Classe II de Fosfatidilinositol 3-Quinases/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Animais , Domínios C2/fisiologia , Células COS , Chlorocebus aethiops , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/fisiologia , Clatrina/fisiologia , Endocitose/fisiologia , Células HEK293 , Homeostase , Humanos , Lipídeos/fisiologia , Espectrometria de Massas , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Ligação Proteica , Domínios Proteicos , Transdução de Sinais
6.
Dev Cell ; 43(4): 522-529.e4, 2017 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-29161595

RESUMO

Clathrin-mediated endocytosis occurs by bending and remodeling of the membrane underneath the coat. Bin-amphiphysin-rvs (BAR) domain proteins are crucial for endocytic membrane remodeling, but how their activity is spatiotemporally controlled is largely unknown. We demonstrate that the membrane remodeling activity of sorting nexin 9 (SNX9), a late-acting endocytic PX-BAR domain protein required for constriction of U-shaped endocytic intermediates, is controlled by an allosteric structural switch involving coincident detection of the clathrin adaptor AP2 and phosphatidylinositol-3,4-bisphosphate (PI(3,4)P2) at endocytic sites. Structural, biochemical, and cell biological data show that SNX9 is autoinhibited in solution. Binding to PI(3,4)P2 via its PX-BAR domain, and concomitant association with AP2 via sequences in the linker region, releases SNX9 autoinhibitory contacts to enable membrane constriction. Our results reveal a mechanism for restricting the latent membrane remodeling activity of BAR domain proteins to allow spatiotemporal coupling of membrane constriction to the progression of the endocytic pathway.


Assuntos
Membrana Celular/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sítio Alostérico , Animais , Humanos , Fosfatos de Fosfatidilinositol/metabolismo , Fosfatidilinositóis/metabolismo , Ligação Proteica/fisiologia , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/química
7.
Science ; 356(6341): 968-972, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28572395

RESUMO

Nutrient sensing by mechanistic target of rapamycin complex 1 (mTORC1) on lysosomes and late endosomes (LyLEs) regulates cell growth. Many factors stimulate mTORC1 activity, including the production of phosphatidylinositol 3,4,5-trisphosphate [PI(3,4,5)P3] by class I phosphatidylinositol 3-kinases (PI3Ks) at the plasma membrane. We investigated mechanisms that repress mTORC1 under conditions of growth factor deprivation. We identified phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2], synthesized by class II PI3K ß (PI3KC2ß) at LyLEs, as a negative regulator of mTORC1, whereas loss of PI3KC2ß hyperactivated mTORC1. Growth factor deprivation induced the association of PI3KC2ß with the Raptor subunit of mTORC1. Local PI(3,4)P2 synthesis triggered repression of mTORC1 activity through association of Raptor with inhibitory 14-3-3 proteins. These results unravel an unexpected function for local PI(3,4)P2 production in shutting off mTORC1.


Assuntos
Endossomos/enzimologia , Lisossomos/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas 14-3-3/metabolismo , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Classe II de Fosfatidilinositol 3-Quinases/genética , Classe II de Fosfatidilinositol 3-Quinases/metabolismo , Ativação Enzimática/fisiologia , Fibroblastos , Técnicas de Inativação de Genes , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Transporte Proteico/genética , Proteína Regulatória Associada a mTOR/metabolismo , Transdução de Sinais/genética
8.
Nat Commun ; 8: 15873, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28627515

RESUMO

Clathrin-mediated endocytosis (CME) involves membrane-associated scaffolds of the bin-amphiphysin-rvs (BAR) domain protein family as well as the GTPase dynamin, and is accompanied and perhaps triggered by changes in local lipid composition. How protein recruitment, scaffold assembly and membrane deformation is spatiotemporally controlled and coupled to fission is poorly understood. We show by computational modelling and super-resolution imaging that phosphatidylinositol 3,4-bisphosphate [PI(3,4)P2] synthesis within the clathrin-coated area of endocytic intermediates triggers selective recruitment of the PX-BAR domain protein SNX9, as a result of complex interactions of endocytic proteins competing for phospholipids. The specific architecture induces positioning of SNX9 at the invagination neck where its self-assembly regulates membrane constriction, thereby providing a template for dynamin fission. These data explain how lipid conversion at endocytic pits couples local membrane constriction to fission. Our work demonstrates how computational modelling and super-resolution imaging can be combined to unravel function and mechanisms of complex cellular processes.


Assuntos
Membrana Celular/metabolismo , Fosfatos de Fosfatidilinositol/biossíntese , Nexinas de Classificação/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Sítios de Ligação , Células COS , Membrana Celular/química , Chlorocebus aethiops , Vesículas Revestidas por Clatrina/metabolismo , Dinaminas/metabolismo , Células HeLa , Humanos , Modelos Teóricos , Proteínas Nucleares/metabolismo , Fosfolipídeos/metabolismo , Domínios Proteicos , Nexinas de Classificação/química , Nexinas de Classificação/genética , Ressonância de Plasmônio de Superfície , Fatores de Transcrição/metabolismo
9.
Mol Cell ; 48(5): 747-59, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23123197

RESUMO

NPGPx is a member of the glutathione peroxidase (GPx) family; however, it lacks GPx enzymatic activity due to the absence of a critical selenocysteine residue, rendering its function an enigma. Here, we show that NPGPx is a newly identified stress sensor that transmits oxidative stress signals by forming the disulfide bond between its Cys57 and Cys86 residues. This oxidized form of NPGPx binds to glucose-regulated protein (GRP)78 and forms covalent bonding intermediates between Cys86 of NPGPx and Cys41/Cys420 of GRP78. Subsequently, the formation of the disulfide bond between Cys41 and Cys420 of GRP78 enhances its chaperone activity. NPGPx-deficient cells display increased reactive oxygen species, accumulated misfolded proteins, and impaired GRP78 chaperone activity. Complete loss of NPGPx in animals causes systemic oxidative stress, increases carcinogenesis, and shortens life span. These results suggest that NPGPx is essential for releasing excessive ER stress by enhancing GRP78 chaperone activity to maintain physiological homeostasis.


Assuntos
Proteínas de Transporte/metabolismo , Estresse do Retículo Endoplasmático , Proteínas de Choque Térmico/metabolismo , Estresse Oxidativo , Peroxidases/metabolismo , Deficiências na Proteostase/enzimologia , Transdução de Sinais , Animais , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Cisteína , Dano ao DNA , Dissulfetos/metabolismo , Relação Dose-Resposta a Droga , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Estresse do Retículo Endoplasmático/genética , Fibroblastos/enzimologia , Fibroblastos/patologia , Glutationa Peroxidase , Proteínas de Choque Térmico/genética , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mutagênese Sítio-Dirigida , Mutação , Oxidantes/farmacologia , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Peroxidases/genética , Ligação Proteica , Dobramento de Proteína , Deficiências na Proteostase/genética , Deficiências na Proteostase/patologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA