Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34679737

RESUMO

GATA-1 is a key regulator of hematopoiesis. A balanced ratio of its two isoforms, GATA-1FL and GATA-1S, contributes to normal hematopoiesis, whereas aberrant expression of GATA-1S alters the differentiation/proliferation potential of hematopoietic precursors and represents a poor prognostic factor in myeloid leukemia. We previously reported that GATA-1S over-expression correlates with high levels of the succinate dehydrogenase subunit C (SDHC). Alternative splicing variants of the SDHC transcript are over-expressed in several tumors and act as potent dominant negative inhibitors of SDH activity. With this in mind, we investigated the levels of SDHC variants and the oxidative mitochondrial metabolism in myeloid leukemia K562 cells over-expressing GATA-1 isoforms. Over-expression of SDHC variants accompanied by decreased SDH complex II activity and oxidative phosphorylation (OXPHOS) efficiency was found associated only with GATA-1S. Given the tumor suppressor role of SDH and the effects of OXPHOS limitations in leukemogenesis, identification of a link between GATA-1S and impaired complex II activity unveils novel pro-leukemic mechanisms triggered by GATA-1S. Abnormal levels of GATA-1S and SDHC variants were also found in an acute myeloid leukemia patient, thus supporting in vitro results. A better understanding of these mechanisms can contribute to identify novel promising therapeutic targets in myeloid leukemia.

2.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-33671113

RESUMO

Myeloid leukemic cells are intrinsically under oxidative stress due to impaired reactive oxygen species (ROS) homeostasis, a common signature of several hematological malignancies. The present review focuses on the molecular mechanisms of aberrant ROS production in myeloid leukemia cells as well as on the redox-dependent signaling pathways involved in the leukemogenic process. Finally, the relevance of new chemotherapy options that specifically exert their pharmacological activity by altering the cellular redox imbalance will be discussed as an effective strategy to eradicate chemoresistant cells.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/patologia , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose , Homeostase , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/metabolismo , Transdução de Sinais
3.
ChemMedChem ; 16(8): 1325-1334, 2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33405358

RESUMO

Human purine nucleoside phosphorylase (HsPNP) belongs to the purine salvage pathway of nucleic acids. Genetic deficiency of this enzyme triggers apoptosis of activated T-cells due to the accumulation of deoxyguanosine triphosphate (dGTP). Therefore, potential chemotherapeutic applications of human PNP inhibitors include the treatment of T-cell leukemia, autoimmune diseases and transplant tissue rejection. In this report, we present the discovery of novel HsPNP inhibitors by coupling experimental and computational tools. A simple, inexpensive, direct and non-radioactive enzymatic assay coupled to hydrophilic interaction liquid chromatography and UV detection (LC-UV using HILIC as elution mode) was developed for screening HsPNP inhibitors. Enzymatic activity was assessed by monitoring the phosphorolysis of inosine (Ino) to hypoxanthine (Hpx) by LC-UV. A small library of 6- and 8-substituted nucleosides was synthesized and screened. The inhibition potency of the most promising compound, 8-aminoinosine (4), was quantified through Ki and IC50 determinations. The effect of HsPNP inhibition was also evaluated in vitro through the study of cytotoxicity on human T-cell leukemia cells (CCRF-CEM). Docking studies were also carried out for the most potent compound, allowing further insights into the inhibitor interaction at the HsPNP active site. This study provides both new tools and a new lead for developing novel HsPNP inhibitors.


Assuntos
Inibidores Enzimáticos/análise , Inosina/análogos & derivados , Inosina/análise , Purina-Núcleosídeo Fosforilase/antagonistas & inibidores , Antineoplásicos/análise , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Domínio Catalítico , Linhagem Celular Tumoral , Cromatografia Líquida/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Ensaios Enzimáticos/métodos , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Inosina/metabolismo , Inosina/farmacologia , Simulação de Acoplamento Molecular , Ligação Proteica , Purina-Núcleosídeo Fosforilase/química , Purina-Núcleosídeo Fosforilase/metabolismo , Bibliotecas de Moléculas Pequenas/análise , Bibliotecas de Moléculas Pequenas/síntese química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA