Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 112(27): 8173-80, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26100898

RESUMO

Bacteriostatic and bactericidal antibiotic treatments result in two fundamentally different phenotypic outcomes--the inhibition of bacterial growth or, alternatively, cell death. Most antibiotics inhibit processes that are major consumers of cellular energy output, suggesting that antibiotic treatment may have important downstream consequences on bacterial metabolism. We hypothesized that the specific metabolic effects of bacteriostatic and bactericidal antibiotics contribute to their overall efficacy. We leveraged the opposing phenotypes of bacteriostatic and bactericidal drugs in combination to investigate their activity. Growth inhibition from bacteriostatic antibiotics was associated with suppressed cellular respiration whereas cell death from most bactericidal antibiotics was associated with accelerated respiration. In combination, suppression of cellular respiration by the bacteriostatic antibiotic was the dominant effect, blocking bactericidal killing. Global metabolic profiling of bacteriostatic antibiotic treatment revealed that accumulation of metabolites involved in specific drug target activity was linked to the buildup of energy metabolites that feed the electron transport chain. Inhibition of cellular respiration by knockout of the cytochrome oxidases was sufficient to attenuate bactericidal lethality whereas acceleration of basal respiration by genetically uncoupling ATP synthesis from electron transport resulted in potentiation of the killing effect of bactericidal antibiotics. This work identifies a link between antibiotic-induced cellular respiration and bactericidal lethality and demonstrates that bactericidal activity can be arrested by attenuated respiration and potentiated by accelerated respiration. Our data collectively show that antibiotics perturb the metabolic state of bacteria and that the metabolic state of bacteria impacts antibiotic efficacy.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Trifosfato de Adenosina/biossíntese , Antibacterianos/classificação , Bactérias/genética , Bactérias/metabolismo , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Interações Medicamentosas , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Metaboloma/efeitos dos fármacos , Metabolômica/métodos , Testes de Sensibilidade Microbiana , Mutação , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/metabolismo
2.
PLoS Pathog ; 7(5): e1002038, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21625572

RESUMO

The RNA response element TAR plays a critical role in HIV replication by providing a binding site for the recruitment of the viral transactivator protein Tat. Using a structure-guided approach, we have developed a series of conformationally-constrained cyclic peptides that act as structural mimics of the Tat RNA binding region and block Tat-TAR interactions at nanomolar concentrations in vitro. Here we show that these compounds block Tat-dependent transcription in cell-free systems and in cell-based reporter assays. The compounds are also cell permeable, have low toxicity, and inhibit replication of diverse HIV-1 strains, including both CXCR4-tropic and CCR5-tropic primary HIV-1 isolates of the divergent subtypes A, B, C, D and CRF01_AE. In human peripheral blood mononuclear cells, the cyclic peptidomimetic L50 exhibited an IC(50) ∼250 nM. Surprisingly, inhibition of LTR-driven HIV-1 transcription could not account for the full antiviral activity. Timed drug-addition experiments revealed that L-50 has a bi-phasic inhibition curve with the first phase occurring after HIV-1 entry into the host cell and during the initiation of HIV-1 reverse transcription. The second phase coincides with inhibition of HIV-1 transcription. Reconstituted reverse transcription assays confirm that HIV-1 (-) strand strong stop DNA synthesis is blocked by L50-TAR RNA interactions in-vitro. These findings are consistent with genetic evidence that TAR plays critical roles both during reverse transcription and during HIV gene expression. Our results suggest that antiviral drugs targeting TAR RNA might be highly effective due to a dual inhibitory mechanism.


Assuntos
Fármacos Anti-HIV/farmacologia , Repetição Terminal Longa de HIV/efeitos dos fármacos , Transcriptase Reversa do HIV/antagonistas & inibidores , HIV-1/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Transcrição Reversa/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/metabolismo , Sequência de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Linhagem Celular Tumoral , Expressão Gênica , Regulação Viral da Expressão Gênica , Transcriptase Reversa do HIV/metabolismo , HIV-1/genética , HIV-1/fisiologia , Humanos , Leucócitos Mononucleares/virologia , Peptídeos Cíclicos/metabolismo , RNA Viral/genética , Ativação Transcricional/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos , Produtos do Gene tat do Vírus da Imunodeficiência Humana/química , Produtos do Gene tat do Vírus da Imunodeficiência Humana/genética
3.
PLoS Pathog ; 5(4): e1000377, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19360131

RESUMO

Elite suppressors (ES) are a rare subset of HIV-1-infected individuals who are able to maintain HIV-1 viral loads below the limit of detection by ultra-sensitive clinical assays in the absence of antiretroviral therapy. Mechanism(s) responsible for this elite control are poorly understood but likely involve both host and viral factors. This study assesses ES plasma-derived envelope glycoprotein (env) fitness as a function of entry efficiency as a possible contributor to viral suppression. Fitness of virus entry was first evaluated using a novel inducible cell line with controlled surface expression levels of CD4 (receptor) and CCR5 (co-receptor). In the context of physiologic CCR5 and CD4 surface densities, ES envs exhibited significantly decreased entry efficiency relative to chronically infected viremic progressors. ES envs also demonstrated slow entry kinetics indicating the presence of virus with reduced entry fitness. Overall, ES env clones were less efficient at mediating entry than chronic progressor envs. Interestingly, acute infection envs exhibited an intermediate phenotypic pattern not distinctly different from ES or chronic progressor envs. These results imply that lower env fitness may be established early and may directly contribute to viral suppression in ES individuals.


Assuntos
Produtos do Gene env/imunologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/patogenicidade , Internalização do Vírus , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Citometria de Fluxo , Humanos , Receptores CCR5/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Carga Viral
4.
J Virol ; 81(15): 8258-69, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17522224

RESUMO

Natural polymorphisms in the heterogeneous human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein may have an impact on both sensitivity to entry inhibitors and viral replicative fitness. Of significant interest is variation in the V3 crown due to its involvement in direct engagement with the coreceptor. Two positions in the crown (318 and 319) appear to be important in determining intrinsic susceptibility to multiple entry inhibitors. Thus, we evaluated a series of natural polymorphisms at positions 318 and 319 in three distinct CCR5-tropic envelope genetic backgrounds to address their role in replicative fitness and sensitivity to entry inhibitors. Change at position 319 to each of the three major consensus amino acids (A, T, and R) resulted in variation in sensitivity to entry inhibitors and altered replicative fitness, but the effects of any one amino acid depended on the envelope context. Change of the nearly invariant tyrosine at position 318 to a rare arginine resulted in increased sensitivity to entry inhibitors and decreased replicative fitness independent of envelope context. Polymorphisms in the V3 crown that showed increased susceptibility to entry inhibitors also exhibited decreased entry efficiency, replicative fitness in primary peripheral blood mononuclear cells, and ability to replicate in primary macrophages. These findings suggest that differences in coreceptor affinity and/or avidity may underlie these phenotypic characteristics.


Assuntos
Farmacorresistência Viral , Variação Genética , Proteína gp120 do Envelope de HIV/genética , Inibidores da Fusão de HIV/farmacologia , HIV-1/fisiologia , Fragmentos de Peptídeos/genética , Replicação Viral , Amidas/metabolismo , Sequência de Aminoácidos , Animais , Fármacos Anti-HIV/metabolismo , Antagonistas dos Receptores CCR5 , Linhagem Celular , Quimiocina CCL5/metabolismo , Proteína gp120 do Envelope de HIV/química , Proteína gp120 do Envelope de HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/ultraestrutura , Humanos , Lamivudina/metabolismo , Macrófagos/citologia , Macrófagos/fisiologia , Modelos Moleculares , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Estrutura Terciária de Proteína , Compostos de Amônio Quaternário/metabolismo , Receptores CCR5/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA