Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Curr Treat Options Oncol ; 24(10): 1451-1471, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561382

RESUMO

OPINION STATEMENT: Prostate cancer (PCa) is the second most diagnosed malignant neoplasm and is one of the leading causes of cancer-related death in men worldwide. Despite significant advances in screening and treatment of PCa, given the heterogeneity of this disease, optimal personalized therapeutic strategies remain limited. However, emerging predictive and prognostic biomarkers based on individual patient profiles in combination with computer-assisted diagnostics have the potential to guide precision medicine, where patients may benefit from therapeutic approaches optimally suited to their disease. Also, the integration of genotypic and phenotypic diagnostic methods is supporting better informed treatment decisions. Focusing on advanced PCa, this review discusses polygenic risk scores for screening of PCa and common genomic aberrations in androgen receptor (AR), PTEN-PI3K-AKT, and DNA damage response (DDR) pathways, considering clinical implications for diagnosis, prognosis, and treatment prediction. Furthermore, we evaluate liquid biopsy, protein biomarkers such as serum testosterone levels, SLFN11 expression, total alkaline phosphatase (tALP), neutrophil-to-lymphocyte ratio (NLR), tissue biopsy, and advanced imaging tools, summarizing current phenotypic biomarkers and envisaging more effective utilization of diagnostic and prognostic biomarkers in advanced PCa. We conclude that prognostic and treatment predictive biomarker discovery can improve the management of patients, especially in metastatic stages of advanced PCa. This will result in decreased mortality and enhanced quality of life and help design a personalized treatment regimen.

2.
Cell Biosci ; 13(1): 132, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480151

RESUMO

BACKGROUND: Metastatic cancer cells exploit Epithelial-mesenchymal-transition (EMT) to enhance their migration, invasion, and resistance to treatments. Recent studies highlight that elevated levels of copper are implicated in cancer progression and metastasis. Clinical trials using copper chelators are associated with improved patient survival; however, the molecular mechanisms by which copper depletion inhibits tumor progression and metastasis are poorly understood. This remains a major hurdle to the clinical translation of copper chelators. Here, we propose that copper chelation inhibits metastasis by reducing TGF-ß levels and EMT signaling. Given that many drugs targeting TGF-ß have failed in clinical trials, partly because of severe side effects arising in patients, we hypothesized that copper chelation therapy might be a less toxic alternative to target the TGF-ß/EMT axis. RESULTS: Our cytokine array and RNA-seq data suggested a link between copper homeostasis, TGF-ß and EMT process. To validate this hypothesis, we performed single-cell imaging, protein assays, and in vivo studies. Here, we used the copper chelating agent TEPA to block copper trafficking. Our in vivo study showed a reduction of TGF-ß levels and metastasis to the lung in the TNBC mouse model. Mechanistically, TEPA significantly downregulated canonical (TGF-ß/SMAD2&3) and non-canonical (TGF-ß/PI3K/AKT, TGF-ß/RAS/RAF/MEK/ERK, and TGF-ß/WNT/ß-catenin) TGF-ß signaling pathways. Additionally, EMT markers of MMP-9, MMP-14, Vimentin, ß-catenin, ZEB1, and p-SMAD2 were downregulated, and EMT transcription factors of SNAI1, ZEB1, and p-SMAD2 accumulated in the cytoplasm after treatment. CONCLUSIONS: Our study suggests that copper chelation therapy represents a potentially effective therapeutic approach for targeting TGF-ß and inhibiting EMT in a diverse range of cancers.

3.
Sci Rep ; 12(1): 16159, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36171234

RESUMO

Androgen receptor variant 7 (AR-V7) is an important biomarker to guide treatment options for castration-resistant prostate cancer (CRPC) patients. Its detectability in circulating tumour cells (CTCs) opens non-invasive diagnostic avenues. While detectable at the transcript level, AR-V7 protein detection in CTCs may add additional information and clinical relevance. The aim of this study was to compare commercially available anti-AR-V7 antibodies and establish reliable AR-V7 immunocytostaining applicable to CTCs from prostate cancer (PCa) patients. We compared seven AR-V7 antibodies by western blotting and immmunocytostaining using a set of PCa cell lines with known AR/AR-V7 status. The emerging best antibody was validated for detection of CRPC patient CTCs enriched by negative depletion of leucocytes. The anti-AR-V7 antibody, clone E308L emerged as the best antibody in regard to signal to noise ratio with a specific nuclear signal. Moreover, this antibody detects CRPC CTCs more efficiently compared to an antibody previously shown to detect AR-V7 CTCs. We have determined the best antibody for AR-V7 detection of CTCs, which will open future studies to correlate AR-V7 subcellular localization and potential co-localization with other proteins and cellular structures to patient outcomes.


Assuntos
Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Contagem de Células , Humanos , Masculino , Células Neoplásicas Circulantes/patologia , Neoplasias de Próstata Resistentes à Castração/diagnóstico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
4.
Cancer Discov ; 12(8): 1847-1859, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35736000

RESUMO

ABSTRACT: Phenotypic plasticity describes the ability of cancer cells to undergo dynamic, nongenetic cell state changes that amplify cancer heterogeneity to promote metastasis and therapy evasion. Thus, cancer cells occupy a continuous spectrum of phenotypic states connected by trajectories defining dynamic transitions upon a cancer cell state landscape. With technologies proliferating to systematically record molecular mechanisms at single-cell resolution, we illuminate manifold learning techniques as emerging computational tools to effectively model cell state dynamics in a way that mimics our understanding of the cell state landscape. We anticipate that "state-gating" therapies targeting phenotypic plasticity will limit cancer heterogeneity, metastasis, and therapy resistance. SIGNIFICANCE: Nongenetic mechanisms underlying phenotypic plasticity have emerged as significant drivers of tumor heterogeneity, metastasis, and therapy resistance. Herein, we discuss new experimental and computational techniques to define phenotypic plasticity as a scaffold to guide accelerated progress in uncovering new vulnerabilities for therapeutic exploitation.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias , Adaptação Fisiológica , Humanos , Neoplasias/tratamento farmacológico
5.
Cell Syst ; 9(5): 496-507.e5, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31606369

RESUMO

Although F-actin has a large number of binding partners and regulators, the number of phenotypic states available to the actin cytoskeleton is unknown. Here, we quantified 74 features defining filamentous actin (F-actin) and cellular morphology in >25 million cells after treatment with a library of 114,400 structurally diverse compounds. After reducing the dimensionality of these data, only ∼25 recurrent F-actin phenotypes emerged, each defined by distinct quantitative features that could be machine learned. We identified 2,003 unknown compounds as inducers of actin-related phenotypes, including two that directly bind the focal adhesion protein, talin. Moreover, we observed that compounds with distinct molecular mechanisms could induce equivalent phenotypes and that initially divergent cellular responses could converge over time. These findings suggest a conceptual parallel between the actin cytoskeleton and gene regulatory networks, where the theoretical plasticity of interactions is nearly infinite, yet phenotypes in vivo are constrained into a limited subset of practicable configurations.


Assuntos
Citoesqueleto de Actina/química , Actinas/química , Adaptação Fisiológica/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/metabolismo , Sequência de Aminoácidos , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Feminino , Ensaios de Triagem em Larga Escala/métodos , Humanos , Ligação Proteica , Talina/metabolismo
6.
Curr Opin Chem Biol ; 51: 40-47, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30901618

RESUMO

The actin cytoskeleton is dysregulated in cancer, yet this critical cellular machinery has not translated as a druggable clinical target due to cardio-toxic side-effects. Many actin regulators are also considered undruggable, being structural proteins lacking clear functional sites suitable for targeted drug design. In this review, we discuss opportunities and challenges associated with drugging the actin cytoskeleton through its structural regulators, taking tropomyosins as a target example. In particular, we highlight emerging data acquisition and analysis trends driving phenotypic, imaging-based compound screening. Finally, we consider how the confluence of these trends is now bringing functionally integral machineries such as the actin cytoskeleton, and associated structural regulatory proteins, into an expanded repertoire of druggable targets with previously unexploited clinical potential.


Assuntos
Citoesqueleto de Actina/metabolismo , Animais , Humanos , Fenótipo , Tropomiosina/metabolismo
7.
Nat Cell Biol ; 20(11): 1290-1302, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30361699

RESUMO

Adhesion to the extracellular matrix persists during mitosis in most cell types. However, while classical adhesion complexes, such as focal adhesions, do and must disassemble to enable mitotic rounding, the mechanisms of residual mitotic cell-extracellular matrix adhesion remain undefined. Here, we identify 'reticular adhesions', a class of adhesion complex that is mediated by integrin αvß5, formed during interphase, and preserved at cell-extracellular matrix attachment sites throughout cell division. Consistent with this role, integrin ß5 depletion perturbs mitosis and disrupts spatial memory transmission between cell generations. Reticular adhesions are morphologically and dynamically distinct from classical focal adhesions. Mass spectrometry defines their unique composition, enriched in phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P2)-binding proteins but lacking virtually all consensus adhesome components. Indeed, reticular adhesions are promoted by PtdIns(4,5)P2, and form independently of talin and F-actin. The distinct characteristics of reticular adhesions provide a solution to the problem of maintaining cell-extracellular matrix attachment during mitotic rounding and division.


Assuntos
Junções Célula-Matriz/metabolismo , Matriz Extracelular/metabolismo , Adesões Focais/metabolismo , Mitose , Células A549 , Actinas/metabolismo , Animais , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Humanos , Cadeias beta de Integrinas/metabolismo , Células MCF-7 , Microscopia Confocal , Fosfatidilinositol 4,5-Difosfato/metabolismo , Talina/metabolismo
8.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30049714

RESUMO

Membrane blebbing-dependent (blebby) amoeboid migration can be employed by lymphoid and cancer cells to invade 3D-environments. Here, we reveal a mechanism by which the small GTPase RhoB controls membrane blebbing and blebby amoeboid migration. Interestingly, while all three Rho isoforms (RhoA, RhoB and RhoC) regulated amoeboid migration, each controlled motility in a distinct manner. In particular, RhoB depletion blocked membrane blebbing in ALL (acute lymphoblastic leukaemia), melanoma and lung cancer cells as well as ALL cell amoeboid migration in 3D-collagen, while RhoB overexpression enhanced blebbing and 3D-collagen migration in a manner dependent on its plasma membrane localization and down-stream effectors ROCK and Myosin II RhoB localization was controlled by endosomal trafficking, being internalized via Rab5 vesicles and then trafficked either to late endosomes/lysosomes or to Rab11-positive recycling endosomes, as regulated by KIF13A. Importantly, KIF13A depletion not only inhibited RhoB plasma membrane localization, but also cell membrane blebbing and 3D-migration of ALL cells. In conclusion, KIF13A-mediated endosomal trafficking modulates RhoB plasma membrane localization to control membrane blebbing and blebby amoeboid migration.


Assuntos
Estruturas da Membrana Celular/metabolismo , Movimento Celular , Cinesinas/metabolismo , Proteína rhoB de Ligação ao GTP/metabolismo , Linhagem Celular Tumoral , Estruturas da Membrana Celular/genética , Colágeno/genética , Colágeno/metabolismo , Endossomos/genética , Endossomos/metabolismo , Humanos , Cinesinas/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas rab5 de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo , Proteína rhoB de Ligação ao GTP/genética
9.
J Cell Biol ; 217(6): 1929-1940, 2018 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-29632027

RESUMO

Integrins are the core constituents of cell-matrix adhesion complexes such as focal adhesions (FAs) and play key roles in physiology and disease. Integrins fluctuate between active and inactive conformations, yet whether the activity state influences the spatial organization of integrins within FAs has remained unclear. In this study, we address this question and also ask whether integrin activity may be regulated either independently for each integrin molecule or through locally coordinated mechanisms. We used two distinct superresolution microscopy techniques, stochastic optical reconstruction microscopy (STORM) and stimulated emission depletion microscopy (STED), to visualize active versus inactive ß1 integrins. We first reveal a spatial hierarchy of integrin organization with integrin molecules arranged in nanoclusters, which align to form linear substructures that in turn build FAs. Remarkably, within FAs, active and inactive ß1 integrins segregate into distinct nanoclusters, with active integrin nanoclusters being more organized. This unexpected segregation indicates synchronization of integrin activities within nanoclusters, implying the existence of a coordinate mechanism of integrin activity regulation.


Assuntos
Adesões Focais/metabolismo , Integrina beta1/metabolismo , Linhagem Celular Tumoral , Proteínas do Citoesqueleto/metabolismo , Humanos , Transporte Proteico , Talina/metabolismo , Vinculina/metabolismo
10.
Methods Mol Biol ; 1749: 119-134, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29525994

RESUMO

Cell migration is a dynamic process that emerges from fine-tuned networks coordinated in three-dimensional space, spanning molecular, subcellular, and cellular scales, and over multiple temporal scales, from milliseconds to days. Understanding how cell migration arises from this complexity requires data collection and analyses that quantitatively integrate these spatial and temporal scales. To meet this need, we have combined quantitative live and fixed cell fluorescence microscopy, customized image analysis tools, multivariate statistical methods, and mathematical modeling. Collectively, this constitutes the systems microscopy strategy that we have applied to dissect how cells organize themselves to migrate. In this overview, we highlight key principles, concepts, and components of our systems microscopy methodology, and exemplify what we have learnt so far and where this approach may lead.


Assuntos
Movimento Celular/fisiologia , Microscopia de Fluorescência/métodos , Biologia de Sistemas/métodos , Animais , Linhagem Celular , Movimento Celular/genética , Humanos , Modelos Teóricos , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
11.
PLoS One ; 10(8): e0135204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26248038

RESUMO

Cell migration is heavily interconnected with plasma membrane protrusion and retraction (collectively termed "membrane dynamics"). This makes it difficult to distinguish regulatory mechanisms that differentially influence migration and membrane dynamics. Yet such distinctions may be valuable given evidence that cancer cell invasion in 3D may be better predicted by 2D membrane dynamics than by 2D cell migration, implying a degree of functional independence between these processes. Here, we applied multi-scale single cell imaging and a systematic statistical approach to disentangle regulatory associations underlying either migration or membrane dynamics. This revealed preferential correlations between membrane dynamics and F-actin features, contrasting with an enrichment of links between cell migration and adhesion complex properties. These correlative linkages were often non-linear and therefore context-dependent, strengthening or weakening with spontaneous heterogeneity in cell behavior. More broadly, we observed that slow moving cells tend to increase in area, while fast moving cells tend to shrink, and that the size of dynamic membrane domains is independent of cell area. Overall, we define macromolecular features preferentially associated with either cell migration or membrane dynamics, enabling more specific interrogation and targeting of these processes in future.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Junções Célula-Matriz/metabolismo , Células Epiteliais/metabolismo , Matriz Extracelular/metabolismo , Citoesqueleto de Actina/ultraestrutura , Actinas/metabolismo , Actinas/ultraestrutura , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/ultraestrutura , Movimento Celular , Junções Célula-Matriz/ultraestrutura , Células Epiteliais/ultraestrutura , Matriz Extracelular/ultraestrutura , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Fluidez de Membrana , Microscopia Confocal , Paxilina/genética , Paxilina/metabolismo , Plasmídeos/química , Plasmídeos/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Mucosa Respiratória/metabolismo , Mucosa Respiratória/ultraestrutura , Transfecção
12.
Nat Commun ; 6: 7524, 2015 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-26109125

RESUMO

Cell-matrix adhesions are central mediators of mechanotransduction, yet the interplay between force and adhesion regulation remains unclear. Here we use live cell imaging to map time-dependent cross-correlations between vinculin-mediated tension and adhesion complex area, revealing a plastic, context-dependent relationship. Interestingly, while an expected positive cross-correlation dominated in mid-sized adhesions, small and large adhesions display negative cross-correlation. Furthermore, although large changes in adhesion complex area follow vinculin-mediated tension alterations, small increases in area precede vinculin-mediated tension dynamics. Modelling based on this mapping of the vinculin-mediated tension-adhesion complex area relationship confirms its biological validity, and indicates that this relationship explains adhesion size and lifetime limits, keeping adhesions focal and transient. We also identify a subpopulation of steady-state adhesions whose size and vinculin-mediated tension become stabilized, and whose disassembly may be selectively microtubule-mediated. In conclusion, we define a plastic relationship between vinculin-mediated tension and adhesion complex area that controls fundamental cell-matrix adhesion properties.


Assuntos
Adesão Celular/fisiologia , Vinculina/metabolismo , Fenômenos Biomecânicos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Transferência Ressonante de Energia de Fluorescência , Corantes Fluorescentes , Regulação da Expressão Gênica/fisiologia , Humanos , Proteínas Associadas aos Microtúbulos , Proteínas de Plantas , Fatores de Tempo , Vinculina/genética
13.
J Leukoc Biol ; 96(3): 481-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24899587

RESUMO

This manuscript describes technical advances allowing manipulation and quantitative analyses of human DC migratory behavior in lung epithelial tissue. DCs are hematopoietic cells essential for the maintenance of tissue homeostasis and the induction of tissue-specific immune responses. Important functions include cytokine production and migration in response to infection for the induction of proper immune responses. To design appropriate strategies to exploit human DC functional properties in lung tissue for the purpose of clinical evaluation, e.g., candidate vaccination and immunotherapy strategies, we have developed a live-imaging assay based on our previously described organotypic model of the human lung. This assay allows provocations and subsequent quantitative investigations of DC functional properties under conditions mimicking morphological and functional features of the in vivo parental tissue. We present protocols to set up and prepare tissue models for 4D (x, y, z, time) fluorescence-imaging analysis that allow spatial and temporal studies of human DCs in live epithelial tissue, followed by flow cytometry analysis of DCs retrieved from digested tissue models. This model system can be useful for elucidating incompletely defined pathways controlling DC functional responses to infection and inflammation in lung epithelial tissue, as well as the efficacy of locally administered candidate interventions.


Assuntos
Adjuvantes Imunológicos/farmacologia , Técnicas de Cultura de Células , Células Dendríticas/efeitos dos fármacos , Pulmão/imunologia , Imagem com Lapso de Tempo/métodos , Comunicação Celular , Linhagem Celular , Movimento Celular , Quimiocina CCL2/farmacologia , Técnicas de Cocultura , Meios de Cultivo Condicionados , Citocinas/biossíntese , Citocinas/genética , Células Dendríticas/citologia , Células Dendríticas/imunologia , Células Epiteliais/citologia , Fibroblastos/citologia , Citometria de Fluxo , Perfilação da Expressão Gênica , Genes Reporter , Humanos , Inflamação/induzido quimicamente , Inflamação/imunologia , Lipopeptídeos/farmacologia , Lipopolissacarídeos/farmacologia , Pulmão/citologia , Modelos Imunológicos , Monócitos/citologia , Proteínas Recombinantes/farmacologia
14.
PLoS One ; 9(2): e90593, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587399

RESUMO

Heterogeneous and dynamic single cell migration behaviours arise from a complex multi-scale signalling network comprising both molecular components and macromolecular modules, among which cell-matrix adhesions and F-actin directly mediate migration. To date, the global wiring architecture characterizing this network remains poorly defined. It is also unclear whether such a wiring pattern may be stable and generalizable to different conditions, or plastic and context dependent. Here, synchronous imaging-based quantification of migration system organization, represented by 87 morphological and dynamic macromolecular module features, and migration system behaviour, i.e., migration speed, facilitated Granger causality analysis. We thereby leveraged natural cellular heterogeneity to begin mapping the directionally specific causal wiring between organizational and behavioural features of the cell migration system. This represents an important advance on commonly used correlative analyses that do not resolve causal directionality. We identified organizational features such as adhesion stability and adhesion F-actin content that, as anticipated, causally influenced cell migration speed. Strikingly, we also found that cell speed can exert causal influence over organizational features, including cell shape and adhesion complex location, thus revealing causality in directions contradictory to previous expectations. Importantly, by comparing unperturbed and signalling-modulated cells, we provide proof-of-principle that causal interaction patterns are in fact plastic and context dependent, rather than stable and generalizable.


Assuntos
Movimento Celular/fisiologia , Substâncias Macromoleculares/metabolismo , Transdução de Sinais/fisiologia , Análise de Célula Única/métodos , Actinas/genética , Actinas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Forma Celular/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia Confocal , Modelos Biológicos , Análise Multivariada , Paxilina/genética , Paxilina/metabolismo , Análise de Componente Principal
15.
EMBO J ; 32(1): 86-99, 2013 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-23222484

RESUMO

Infection of macrophages by bacterial pathogens can trigger Toll-like receptor (TLR) activation as well as Nod-like receptors (NLRs) leading to inflammasome formation and cell death dependent on caspase-1 (pyroptosis). Complicating the study of inflammasome activation is priming. Here, we develop a priming-free NLRC4 inflammasome activation system to address the necessity and role of priming in pyroptotic cell death and damage-associated molecular pattern (DAMP) release. We find pyroptosis is not dependent on priming and when priming is re-introduced pyroptosis is unaffected. Cells undergoing unprimed pyroptosis appear to be independent of mitochondrial involvement and do not produce inflammatory cytokines, nitrous oxide (NO), or reactive oxygen species (ROS). Nevertheless, they undergo an explosive cell death releasing a chemotactic isoform of the DAMP high mobility group protein box 1 (HMGB1). Importantly, priming through surface TLRs but not endosomal TLRs during pyroptosis leads to the release of a new TLR4-agonist cysteine redox isoform of HMGB1. These results show that pyroptosis is dominant to priming signals and indicates that metabolic changes triggered by priming can affect how cell death is perceived by the immune system.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Caspase 1/metabolismo , Proteína HMGB1/metabolismo , Macrófagos/imunologia , Proteína Inibidora de Apoptose Neuronal/metabolismo , Receptores Toll-Like/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Apoptose , Proteínas Reguladoras de Apoptose/agonistas , Proteínas Reguladoras de Apoptose/imunologia , Proteínas de Bactérias/metabolismo , Proteínas de Ligação ao Cálcio/agonistas , Proteínas de Ligação ao Cálcio/imunologia , Morte Celular , Linhagem Celular , Expressão Gênica , Proteína HMGB1/análise , Interações Hospedeiro-Patógeno , Inflamassomos/imunologia , Inflamassomos/metabolismo , Ativação de Macrófagos/fisiologia , Macrófagos/microbiologia , Macrófagos/fisiologia , Camundongos , Dados de Sequência Molecular , Proteína Inibidora de Apoptose Neuronal/agonistas , Proteína Inibidora de Apoptose Neuronal/imunologia , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Receptores Toll-Like/imunologia
16.
J Cell Sci ; 123(Pt 20): 3525-34, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20930142

RESUMO

Phosphatidylinositol (3,4,5)-trisphosphate [PtdIns(3,4,5)P3] is a key regulator of cell signaling that acts by recruiting proteins to the cell membrane, such as at the leading edge during cell migration. Here, we show that PtdIns (3,4,5)P3 plays a central role in filopodia formation via the binding of myosin-X (Myo10), a potent promoter of filopodia. We found that the second pleckstrin homology domain (Myo10-PH2) of Myo10 specifically binds to PtdIns(3,4,5)P3, and that disruption of this binding led to impairment of filopodia and partial re-localization of Myo10 to microtubule-associated Rab7-positive endosomal vesicles. Given that the localization of Myo10 was dynamically restored to filopodia upon reinstatement of PtdIns(3,4,5)P3-binding, our results indicate that PtdIns(3,4,5)P3 binding to the Myo10-PH2 domain is involved in Myo10 trafficking and regulation of filopodia dynamics.


Assuntos
Miosinas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Pseudópodes/metabolismo , Animais , Células COS , Chlorocebus aethiops , Endossomos/metabolismo , Células HeLa , Humanos , Imunoprecipitação , Ligação Proteica , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia
17.
Mol Biol Cell ; 21(19): 3317-29, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20719960

RESUMO

Cell-to-extracellular matrix adhesion is regulated by a multitude of pathways initiated distally to the core cell-matrix adhesion machinery, such as via growth factor signaling. In contrast to these extrinsically sourced pathways, we now identify a regulatory pathway that is intrinsic to the core adhesion machinery, providing an internal regulatory feedback loop to fine tune adhesion levels. This autoinhibitory negative feedback loop is initiated by cell adhesion to vitronectin, leading to PAK4 activation, which in turn limits total cell-vitronectin adhesion strength. Specifically, we show that PAK4 is activated by cell attachment to vitronectin as mediated by PAK4 binding partner integrin αvß5, and that active PAK4 induces accelerated integrin αvß5 turnover within adhesion complexes. Accelerated integrin turnover is associated with additional PAK4-mediated effects, including inhibited integrin αvß5 clustering, reduced integrin to F-actin connectivity and perturbed adhesion complex maturation. These specific outcomes are ultimately associated with reduced cell adhesion strength and increased cell motility. We thus demonstrate a novel mechanism deployed by cells to tune cell adhesion levels through the autoinhibitory regulation of integrin adhesion.


Assuntos
Retroalimentação Fisiológica , Receptores de Vitronectina/metabolismo , Quinases Ativadas por p21/metabolismo , Actinas/metabolismo , Animais , Células COS , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Chlorocebus aethiops , Ativação Enzimática , Matriz Extracelular/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Vitronectina/metabolismo
18.
Int J Cancer ; 127(9): 1999-2008, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20127858

RESUMO

Kindlin-2 is a novel integrin-interacting focal adhesion protein that belongs to the Kindlin family. Focal adhesion proteins control cytoskeleton dynamics and promote cancer cell growth, survival, migration and metastasis. Little is known, however, about expression of Kindlin-2 in association with human cancer. We now reveal high Kindlin-2 expression in malignant mesothelioma (MM) cell lines using an affinity-purified anti-Kindlin-2 antibody. Furthermore, we show by immunohistochemistry that Kindlin-2 is highly expressed in 92 of 102 (90%) MMs with epitheliod; sarcomatoid, biphasic and poorly differentiated morphologies. In addition, Kindlin-2 expression correlates to cell proliferation, suggesting a role for Kindlin-2 in tumor growth. We also detect increased expression of Kindlin-2 at the invasion front of tumors concurrent with increased expression of integrin-linked kinase, a Kindlin-binding protein. Besides the high expression of Kindlin-2 in pleural MMs, pleural metastases of lung adenocarcinoma also express large amounts of Kindlin-2, but not Kindlin-1. Notably, in vitro, when endogenous Kindlin-2 was knocked down with RNAi in MM cells, this impaired cell spreading, adhesion and migration. Overall, our study suggests that heightened expression of Kindlin-2 might contribute to tumor progression in MM.


Assuntos
Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/metabolismo , Mesotelioma/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias Pleurais/metabolismo , Adesão Celular , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Progressão da Doença , Humanos , Invasividade Neoplásica , Metástase Neoplásica , Proteínas Serina-Treonina Quinases/metabolismo
19.
J Cell Physiol ; 222(1): 156-67, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19780039

RESUMO

Estrogen effects on mammary gland development and differentiation are mediated by two receptors (ERalpha and ERbeta). Estrogen-bound ERalpha induces proliferation of mammary epithelial and cancer cells, while ERbeta is important for maintenance of the differentiated epithelium and inhibits proliferation in different cell systems. In addition, the normal breast contains higher ERbeta levels compared to the early stage breast cancers, suggesting that loss of ERbeta could be important in cancer development. Analysis of ERbeta-/- mice has consistently revealed reduced expression of cell adhesion proteins. As such, ERbeta is a candidate modulator of epithelial homeostasis and metastasis. Consequently, the aim of this study was to analyze estrogenic effects on adhesion of breast cancer cells expressing ERalpha and ERbeta. As ERbeta is widely found in breast cancer but not in cell lines, we used ERalpha positive T47-D and MCF-7 human breast cancer cells to generate cells with inducible ERbeta expression. Furthermore, the colon cancer cell lines SW480 and HT-29 were also used. Integrin alpha1 mRNA and protein levels increased following ERbeta expression. Integrin beta1-the unique partner for integrin alpha1-increased only at the protein level. ERbeta expression enhanced the formation of vinculin containing focal complexes and actin filaments, indicating a more adhesive potential. This was confirmed by adhesion assays where ERbeta increased adhesion to different extracellular matrix proteins, mostly laminin. In addition, ERbeta expression was associated to less cell migration. These results indicate that ERbeta affects integrin expression and clustering and consequently modulates adhesion and migration of breast cancer cells.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Receptor beta de Estrogênio/metabolismo , Integrina alfa1/metabolismo , Integrina beta1/metabolismo , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Neoplasias da Mama/genética , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/efeitos dos fármacos , Proteínas da Matriz Extracelular/metabolismo , Feminino , Adesões Focais/efeitos dos fármacos , Adesões Focais/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Integrina alfa1/genética , Integrina beta1/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tetraciclina/farmacologia , Fatores de Tempo , Vinculina/metabolismo
20.
Proc Natl Acad Sci U S A ; 105(9): 3351-6, 2008 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-18308930

RESUMO

The transmembrane precursor of tumor necrosis factor-alpha (TNF) exits the trans-Golgi network (TGN) in tubular carriers for subsequent trafficking and delivery to the cell surface; however, the molecular machinery responsible for Golgi export is unknown. We previously reported that members of the TGN golgin family are associated with subdomains and tubules of the TGN. Here, we show that the TGN golgin, p230/golgin-245 (p230), is essential for intracellular trafficking and cell surface delivery of TNF in transfected HeLa cells and activated macrophages. Live-cell imaging revealed that TNF transport from the TGN is mediated selectively by tubules and carriers marked by p230. Significantly, LPS activation of macrophages resulted in a dramatic increase of p230-labeled tubules and carriers emerging from the TGN, indicating that macrophages up-regulate the transport pathway for TNF export. Depletion of p230 in LPS-stimulated macrophages reduced cell surface delivery of TNF by >10-fold compared with control cells. To determine whether p230 depletion blocked TNF secretion in vivo, we generated retrogenic mice expressing a microRNA-vector to silence p230. Bone-marrow stem cells were transduced with recombinant retrovirus containing microRNA constructs and transplanted into irradiated recipients. LPS-activated peritoneal macrophages from p230 miRNA retrogenic mice were depleted of p230 and had dramatically reduced levels of cell surface TNF. Overall, these studies have identified p230 as a key regulator of TNF secretion and have shown that LPS activation of macrophages results in increased Golgi carriers for export. Also, we have demonstrated a previously undescribed approach to control cytokine secretion by the specific silencing of trafficking machinery.


Assuntos
Autoantígenos/fisiologia , Macrófagos/metabolismo , Proteínas de Membrana/fisiologia , Fator de Necrose Tumoral alfa/metabolismo , Rede trans-Golgi/metabolismo , Animais , Autoantígenos/genética , Linhagem Celular , Proteínas da Matriz do Complexo de Golgi , Células HeLa , Humanos , Proteínas de Membrana/genética , Camundongos , MicroRNAs/farmacologia , Transporte Proteico , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA