Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Aging ; 2(8): 714-725, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36051457

RESUMO

The accumulation of somatic DNA mutations over time is a hallmark of aging in many dividing and nondividing cells but has not been studied in postmitotic human cardiomyocytes. Using single-cell whole-genome sequencing, we identified and characterized the landscape of somatic single-nucleotide variants (sSNVs) in 56 single cardiomyocytes from 12 individuals (aged from 0.4 to 82 years). Cardiomyocyte sSNVs accumulate with age at rates that are faster than in many dividing cell types and nondividing neurons. Cardiomyocyte sSNVs show distinctive mutational signatures that implicate failed nucleotide excision repair and base excision repair of oxidative DNA damage, and defective mismatch repair. Since age-accumulated sSNVs create many damaging mutations that disrupt gene functions, polyploidization in cardiomyocytes may provide a mechanism of genetic compensation to minimize the complete knockout of essential genes during aging. Age-related accumulation of cardiac mutations provides a paradigm to understand the influence of aging on cardiac dysfunction.


Assuntos
Dano ao DNA , Miócitos Cardíacos , Humanos , Dano ao DNA/genética , Mutação/genética , Envelhecimento/genética , Estresse Oxidativo
2.
Nature ; 604(7907): 714-722, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35444284

RESUMO

Dementia in Alzheimer's disease progresses alongside neurodegeneration1-4, but the specific events that cause neuronal dysfunction and death remain poorly understood. During normal ageing, neurons progressively accumulate somatic mutations5 at rates similar to those of dividing cells6,7 which suggests that genetic factors, environmental exposures or disease states might influence this accumulation5. Here we analysed single-cell whole-genome sequencing data from 319 neurons from the prefrontal cortex and hippocampus of individuals with Alzheimer's disease and neurotypical control individuals. We found that somatic DNA alterations increase in individuals with Alzheimer's disease, with distinct molecular patterns. Normal neurons accumulate mutations primarily in an age-related pattern (signature A), which closely resembles 'clock-like' mutational signatures that have been previously described in healthy and cancerous cells6-10. In neurons affected by Alzheimer's disease, additional DNA alterations are driven by distinct processes (signature C) that highlight C>A and other specific nucleotide changes. These changes potentially implicate nucleotide oxidation4,11, which we show is increased in Alzheimer's-disease-affected neurons in situ. Expressed genes exhibit signature-specific damage, and mutations show a transcriptional strand bias, which suggests that transcription-coupled nucleotide excision repair has a role in the generation of mutations. The alterations in Alzheimer's disease affect coding exons and are predicted to create dysfunctional genetic knockout cells and proteostatic stress. Our results suggest that known pathogenic mechanisms in Alzheimer's disease may lead to genomic damage to neurons that can progressively impair function. The aberrant accumulation of DNA alterations in neurodegeneration provides insight into the cascade of molecular and cellular events that occurs in the development of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Neurônios , Envelhecimento , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , DNA , Éxons , Genômica , Hipocampo/citologia , Humanos , Taxa de Mutação , Neurônios/patologia , Nucleotídeos , Córtex Pré-Frontal/citologia , Sequenciamento Completo do Genoma
3.
Science ; 359(6375): 555-559, 2018 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-29217584

RESUMO

It has long been hypothesized that aging and neurodegeneration are associated with somatic mutation in neurons; however, methodological hurdles have prevented testing this hypothesis directly. We used single-cell whole-genome sequencing to perform genome-wide somatic single-nucleotide variant (sSNV) identification on DNA from 161 single neurons from the prefrontal cortex and hippocampus of 15 normal individuals (aged 4 months to 82 years), as well as 9 individuals affected by early-onset neurodegeneration due to genetic disorders of DNA repair (Cockayne syndrome and xeroderma pigmentosum). sSNVs increased approximately linearly with age in both areas (with a higher rate in hippocampus) and were more abundant in neurodegenerative disease. The accumulation of somatic mutations with age-which we term genosenium-shows age-related, region-related, and disease-related molecular signatures and may be important in other human age-associated conditions.


Assuntos
Envelhecimento/genética , Reparo do DNA/genética , Taxa de Mutação , Doenças Neurodegenerativas/genética , Neurogênese/genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Síndrome de Cockayne/genética , Análise Mutacional de DNA , Feminino , Hipocampo/citologia , Hipocampo/embriologia , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Neurônios , Córtex Pré-Frontal/citologia , Córtex Pré-Frontal/embriologia , Análise de Célula Única , Sequenciamento Completo do Genoma , Xeroderma Pigmentoso/genética , Adulto Jovem
4.
Science ; 350(6256): 94-98, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26430121

RESUMO

Neurons live for decades in a postmitotic state, their genomes susceptible to DNA damage. Here we survey the landscape of somatic single-nucleotide variants (SNVs) in the human brain. We identified thousands of somatic SNVs by single-cell sequencing of 36 neurons from the cerebral cortex of three normal individuals. Unlike germline and cancer SNVs, which are often caused by errors in DNA replication, neuronal mutations appear to reflect damage during active transcription. Somatic mutations create nested lineage trees, allowing them to be dated relative to developmental landmarks and revealing a polyclonal architecture of the human cerebral cortex. Thus, somatic mutations in the brain represent a durable and ongoing record of neuronal life history, from development through postmitotic function.


Assuntos
Córtex Cerebral/citologia , Córtex Cerebral/crescimento & desenvolvimento , Mutação , Neurônios/citologia , Neurônios/fisiologia , Polimorfismo de Nucleotídeo Único , Transcrição Gênica , Adolescente , Linhagem da Célula , Análise Mutacional de DNA , Replicação do DNA/genética , Feminino , Loci Gênicos , Humanos , Masculino , Mitose/genética , Análise de Célula Única
5.
Cell Stem Cell ; 9(5): 413-9, 2011 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-22019014

RESUMO

Recent advances in somatic cell reprogramming have highlighted the plasticity of the somatic epigenome, particularly through demonstrations of direct lineage reprogramming of one somatic cell type to another by defined factors. However, it is not clear to what extent this type of reprogramming is able to generate fully functional differentiated cells. In addition, the activity of the reprogrammed cells in cell transplantation assays, such as those envisaged for cell-based therapy of Parkinson's disease (PD), remains to be determined. Here we show that ectopic expression of defined transcription factors in mouse tail tip fibroblasts is sufficient to induce Pitx3+ neurons that closely resemble midbrain dopaminergic (DA) neurons. In addition, transplantation of these induced DA (iDA) neurons alleviates symptoms in a mouse model of PD. Thus, iDA neurons generated from abundant somatic fibroblasts by direct lineage reprogramming hold promise for modeling neurodegenerative disease and for cell-based therapies of PD.


Assuntos
Diferenciação Celular , Neurônios Dopaminérgicos/citologia , Neurônios Dopaminérgicos/metabolismo , Fibroblastos/citologia , Animais , Neurônios Dopaminérgicos/transplante , Perfilação da Expressão Gênica , Camundongos , Doença de Parkinson/terapia , Fatores de Transcrição/metabolismo
6.
Stem Cells ; 29(6): 992-1000, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21563275

RESUMO

Pluripotent cells can be derived from different types of somatic cells by nuclear reprogramming through the ectopic expression of four transcription factors, Oct3/4, Sox2, Klf4, and c-Myc. However, it is unclear whether postmitotic neurons are susceptible to direct reprogramming. Here, we show that postnatal cortical neurons, the vast majority of which are postmitotic, are amenable to epigenetic reprogramming. However, ectopic expression of the four canonical reprogramming factors is not sufficient to reprogram postnatal neurons. Efficient reprogramming was only achieved after forced cell proliferation by p53 suppression. Additionally, overexpression of repressor element-1 silencing transcription, a suppressor of neuronal gene activity, increased reprogramming efficiencies in combination with the reprogramming factors. Our findings indicate that terminally differentiated postnatal neurons are able to acquire the pluripotent state by direct epigenetic reprogramming, and this process is made more efficient through the suppression of lineage specific gene expression.


Assuntos
Células-Tronco Pluripotentes Induzidas/citologia , Neurônios/citologia , Proteínas Repressoras/metabolismo , Animais , Animais Recém-Nascidos , Biomarcadores/metabolismo , Blastocisto/citologia , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/genética , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Técnicas de Cocultura , Transferência Embrionária , Fibroblastos/citologia , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/transplante , Fator 4 Semelhante a Kruppel , Antígenos CD15/metabolismo , Camundongos , Proteína Homeobox Nanog , Neurônios/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Regiões Promotoras Genéticas , Teratoma/patologia , Quimeras de Transplante
7.
Mol Microbiol ; 58(5): 1368-80, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16313622

RESUMO

The developmentally complex soil microbe Streptomyces tendae secretes a hydrophobic peptide that restored to developmental mutants of S. coelicolor the ability to raise aerial hyphae. The S. tendae peptide, SapT, has a lantibiotic structure and molecular modelling predicts that it is amphiphilic, making it structurally and functionally similar to the SapB peptide produced by S. coelicolor. However, SapT, which bears three beta-methyl lanthionine bridges and one lanthionine bridge and demonstrated limited antibiotic activity, is distinct from SapB. The amphiphilic nature of both SapT and SapB is required for their ability to serve as biosurfactants facilitating the emergence of newly formed aerial hyphae. Remarkably, SapB and SapT, and the fungal hydrophobin SC3 were shown to restore to a SapB-deficient S. coelicolor mutant the capacity to undergo complete morphogenesis, such that the extracellular addition of protein resulted in sporulation. This suggests that the initiation of aerial growth may also indirectly trigger the signal transduction events needed for differentiation. These data imply that the production of morphogenetic peptides may be common among the streptomycetes, but that while their ability to function as biosurfactants is conserved, their specific lantibiotic structure is not. Finally, the identification of a second lanthionine-containing morphogenetic peptide suggests that lantibiotic structure and function may be more diverse than previously thought.


Assuntos
Alanina/análogos & derivados , Proteínas de Bactérias/metabolismo , Hifas/crescimento & desenvolvimento , Morfogênese , Peptídeos/metabolismo , Streptomyces/crescimento & desenvolvimento , Sulfetos/química , Alanina/química , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Mutação , Peptídeos/química , Peptídeos/genética , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crescimento & desenvolvimento , Streptomyces coelicolor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA