Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
PLoS One ; 16(11): e0259353, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34731223

RESUMO

Low plasma levels of Proprotein Convertase Subtilisin/Kexin 9 (PCSK9) are associated with decreased low-density lipoprotein (LDL) cholesterol and a reduced risk of cardiovascular disease. PCSK9 binds to the epidermal growth factor-like repeat A (EGFA) domain of LDL receptors (LDLR), very low-density lipoprotein receptors (VLDLR), apolipoprotein E receptor 2 (ApoER2), and lipoprotein receptor-related protein 1 (LRP1) and accelerates their degradation, thus acting as a key regulator of lipid metabolism. Antibody and RNAi-based PCSK9 inhibitor treatments lower cholesterol and prevent cardiovascular incidents in patients, but their high-cost hampers market penetration. We sought to develop a safe, long-term and one-time solution to treat hyperlipidemia. We created a cDNA encoding a chimeric protein in which the extracellular N- terminus of red blood cells (RBCs) specific glycophorin A was fused to the LDLR EGFA domain and introduced this gene into mouse bone marrow hematopoietic stem and progenitor cells (HSPCs). Following transplantation into irradiated mice, the animals produced RBCs with the EGFA domain (EGFA-GPA RBCs) displayed on their surface. These animals showed significantly reduced plasma PCSK9 (66.5% decrease) and reduced LDL levels (40% decrease) for as long as 12 months post-transplantation. Furthermore, the EGFA- GPA mice remained lean for life and maintained normal body weight under a high-fat diet. Hematopoietic stem cell gene therapy can generate red blood cells expressing an EGFA-glycophorin A chimeric protein as a practical and long-term strategy for treating chronic hyperlipidemia and obesity.


Assuntos
LDL-Colesterol/sangue , Regulação para Baixo , Glicoforinas/genética , Hiperlipidemias/prevenção & controle , Pró-Proteína Convertase 9/sangue , Receptores de LDL/genética , Animais , Peso Corporal , Células Cultivadas , Dieta Hiperlipídica/efeitos adversos , Eritrócitos/metabolismo , Feminino , Engenharia Genética , Glicoforinas/química , Células HEK293 , Humanos , Hiperlipidemias/induzido quimicamente , Hiperlipidemias/metabolismo , Camundongos , Gravidez , Receptores de LDL/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transplante de Células-Tronco , Transdução Genética
2.
J Biol Chem ; 293(51): 19797-19811, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30366982

RESUMO

Erythropoietin (EPO) signaling is critical to many processes essential to terminal erythropoiesis. Despite the centrality of iron metabolism to erythropoiesis, the mechanisms by which EPO regulates iron status are not well-understood. To this end, here we profiled gene expression in EPO-treated 32D pro-B cells and developing fetal liver erythroid cells to identify additional iron regulatory genes. We determined that FAM210B, a mitochondrial inner-membrane protein, is essential for hemoglobinization, proliferation, and enucleation during terminal erythroid maturation. Fam210b deficiency led to defects in mitochondrial iron uptake, heme synthesis, and iron-sulfur cluster formation. These defects were corrected with a lipid-soluble, small-molecule iron transporter, hinokitiol, in Fam210b-deficient murine erythroid cells and zebrafish morphants. Genetic complementation experiments revealed that FAM210B is not a mitochondrial iron transporter but is required for adequate mitochondrial iron import to sustain heme synthesis and iron-sulfur cluster formation during erythroid differentiation. FAM210B was also required for maximal ferrochelatase activity in differentiating erythroid cells. We propose that FAM210B functions as an adaptor protein that facilitates the formation of an oligomeric mitochondrial iron transport complex, required for the increase in iron acquisition for heme synthesis during terminal erythropoiesis. Collectively, our results reveal a critical mechanism by which EPO signaling regulates terminal erythropoiesis and iron metabolism.


Assuntos
Células Eritroides/metabolismo , Eritropoetina/metabolismo , Ferroquelatase/metabolismo , Heme/biossíntese , Ferro/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Células Eritroides/citologia , Eritropoese , Células HEK293 , Humanos , Proteínas de Membrana/química , Camundongos , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/química , Transporte Proteico
3.
Hematol Oncol Clin North Am ; 32(4): 701-712, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30047421

RESUMO

Diamond-Blackfan anemia (DBA) is a severe congenital hypoplastic anemia caused by mutation in a ribosomal protein gene. Major clinical issues concern the optimal management of patients resistant to steroids, the first-line therapy. Hematopoietic stem cell transplantation is indicated in young patients with an HLA-matched unaffected sibling donor, and recent results with matched unrelated donor transplants indicate that these patients also do well. When neither steroids nor a transplant is possible red cell transfusions are required, and iron loading is rapid in some DBA patients, so effective chelation is vital. Also discussed are novel treatments under investigation for DBA.


Assuntos
Anemia de Diamond-Blackfan , Transfusão de Eritrócitos , Transplante de Células-Tronco Hematopoéticas , Mutação , Doadores de Tecidos , Aloenxertos , Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/metabolismo , Anemia de Diamond-Blackfan/patologia , Anemia de Diamond-Blackfan/terapia , Humanos , Irmãos
4.
Nat Commun ; 8(1): 423, 2017 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-28871080

RESUMO

A short half-life in the circulation limits the application of therapeutics such as single-domain antibodies (VHHs). We utilize red blood cells to prolong the circulatory half-life of VHHs. Here we present VHHs against botulinum neurotoxin A (BoNT/A) on the surface of red blood cells by expressing chimeric proteins of VHHs with Glycophorin A or Kell. Mice whose red blood cells carry the chimeric proteins exhibit resistance to 10,000 times the lethal dose (LD50) of BoNT/A, and transfusion of these red blood cells into naive mice affords protection for up to 28 days. We further utilize an improved CD34+ culture system to engineer human red blood cells that express these chimeric proteins. Mice transfused with these red blood cells are resistant to highly lethal doses of BoNT/A. We demonstrate that engineered red blood cells expressing VHHs can provide prolonged prophylactic protection against bacterial toxins without inducing inhibitory immune responses and illustrates the potentially broad translatability of our strategy for therapeutic applications.The therapeutic use of single-chain antibodies (VHHs) is limited by their short half-life in the circulation. Here the authors engineer mouse and human red blood cells to express VHHs against botulinum neurotoxin A (BoNT/A) on their surface and show that an infusion of these cells into mice confers long lasting protection against a high dose of BoNT/A.


Assuntos
Toxinas Botulínicas Tipo A/toxicidade , Eritrócitos/metabolismo , Engenharia Genética , Anticorpos de Domínio Único/genética , Animais , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Neutralizantes/genética , Anticorpos Neutralizantes/metabolismo , Toxinas Botulínicas Tipo A/metabolismo , Botulismo/etiologia , Botulismo/terapia , Transfusão de Eritrócitos , Eritrócitos/virologia , Células Precursoras Eritroides/metabolismo , Células Precursoras Eritroides/transplante , Células Precursoras Eritroides/virologia , Vetores Genéticos/genética , Vetores Genéticos/metabolismo , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Metaloendopeptidases/genética , Metaloendopeptidases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Retroviridae/genética , Retroviridae/metabolismo , Anticorpos de Domínio Único/administração & dosagem , Anticorpos de Domínio Único/metabolismo
5.
Blood ; 130(18): 1965-1975, 2017 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-28928124

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly recognized as vital components of gene programs controlling cell differentiation and function. Central to their functions is an ability to act as scaffolds or as decoys that recruit or sequester effector proteins from their DNA, RNA, or protein targets. lncRNA-modulated effectors include regulators of transcription, chromatin organization, RNA processing, and translation, such that lncRNAs can influence gene expression at multiple levels. Here we review the current understanding of how lncRNAs help coordinate gene expression to modulate cell fate in the hematopoietic system. We focus on a growing number of mechanistic studies to synthesize emerging principles of lncRNA function, emphasizing how they facilitate diversification of gene programming during development. We also survey how disrupted lncRNA function can contribute to malignant transformation, highlighting opportunities for therapeutic intervention in specific myeloid and lymphoid cancers. Finally, we discuss challenges and prospects for further elucidation of lncRNA mechanisms.


Assuntos
Neoplasias Hematológicas/genética , Hematopoese/genética , RNA Longo não Codificante/genética , Animais , Desenvolvimento Embrionário/genética , Humanos , Modelos Biológicos , Proteínas/metabolismo , RNA Longo não Codificante/metabolismo
6.
Elife ; 62017 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-28553927

RESUMO

Heme is required for survival of all cells, and in most eukaryotes, is produced through a series of eight enzymatic reactions. Although heme production is critical for many cellular processes, how it is coupled to cellular differentiation is unknown. Here, using zebrafish, murine, and human models, we show that erythropoietin (EPO) signaling, together with the GATA1 transcriptional target, AKAP10, regulates heme biosynthesis during erythropoiesis at the outer mitochondrial membrane. This integrated pathway culminates with the direct phosphorylation of the crucial heme biosynthetic enzyme, ferrochelatase (FECH) by protein kinase A (PKA). Biochemical, pharmacological, and genetic inhibition of this signaling pathway result in a block in hemoglobin production and concomitant intracellular accumulation of protoporphyrin intermediates. Broadly, our results implicate aberrant PKA signaling in the pathogenesis of hematologic diseases. We propose a unifying model in which the erythroid transcriptional program works in concert with post-translational mechanisms to regulate heme metabolism during normal development.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Eritropoetina/metabolismo , Fator de Transcrição GATA1/metabolismo , Heme/biossíntese , Transdução de Sinais , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Camundongos , Membranas Mitocondriais/metabolismo , Peixe-Zebra
7.
Sci Transl Med ; 9(376)2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28179501

RESUMO

Diamond-Blackfan anemia (DBA) is a congenital disorder characterized by the failure of erythroid progenitor differentiation, severely curtailing red blood cell production. Because many DBA patients fail to respond to corticosteroid therapy, there is considerable need for therapeutics for this disorder. Identifying therapeutics for DBA requires circumventing the paucity of primary patient blood stem and progenitor cells. To this end, we adopted a reprogramming strategy to generate expandable hematopoietic progenitor cells from induced pluripotent stem cells (iPSCs) from DBA patients. Reprogrammed DBA progenitors recapitulate defects in erythroid differentiation, which were rescued by gene complementation. Unbiased chemical screens identified SMER28, a small-molecule inducer of autophagy, which enhanced erythropoiesis in a range of in vitro and in vivo models of DBA. SMER28 acted through autophagy factor ATG5 to stimulate erythropoiesis and up-regulate expression of globin genes. These findings present an unbiased drug screen for hematological disease using iPSCs and identify autophagy as a therapeutic pathway in DBA.


Assuntos
Anemia de Diamond-Blackfan/tratamento farmacológico , Descoberta de Drogas , Células-Tronco Hematopoéticas/metabolismo , Compostos Alílicos/farmacologia , Anemia de Diamond-Blackfan/patologia , Antígenos CD34/metabolismo , Autofagia/efeitos dos fármacos , Proteína 5 Relacionada à Autofagia/metabolismo , Diferenciação Celular/efeitos dos fármacos , Reprogramação Celular , Células Eritroides/efeitos dos fármacos , Células Eritroides/patologia , Eritropoese/efeitos dos fármacos , Teste de Complementação Genética , Globinas/metabolismo , Transplante de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Humanos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/metabolismo , Quinazolinas/farmacologia
8.
Blood ; 128(23): 2637-2641, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27777239

RESUMO

Burst-forming unit erythroid progenitors (BFU-Es) are so named based on their ability to generate in methylcellulose culture large colonies of erythroid cells that consist of "bursts" of smaller erythroid colonies derived from the later colony-forming unit erythroid progenitor erythropoietin (Epo)-dependent progenitors. "Early" BFU-E cells forming large BFU-E colonies presumably have higher capacities for self-renewal than do "late" BFU-Es forming small colonies, but the mechanism underlying this heterogeneity remains unknown. We show that the type III transforming growth factor ß (TGF-ß) receptor (TßRIII) is a marker that distinguishes early and late BFU-Es. Transient elevation of TßRIII expression promotes TGF-ß signaling during the early BFU-E to late BFU-E transition. Blocking TGF-ß signaling using a receptor kinase inhibitor increases early BFU-E cell self-renewal and total erythroblast production, suggesting the usefulness of this type of drug in treating Epo-unresponsive anemias.


Assuntos
Antígenos de Diferenciação/metabolismo , Eritrócitos/metabolismo , Células Precursoras Eritroides/metabolismo , Proteoglicanas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Anemia/metabolismo , Anemia/terapia , Animais , Eritrócitos/citologia , Células Precursoras Eritroides/citologia , Eritropoetina/metabolismo , Humanos , Camundongos
9.
Cell ; 165(7): 1672-1685, 2016 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-27315481

RESUMO

Long intergenic noncoding RNAs (lincRNAs) are important regulators of gene expression. Although lincRNAs are expressed in immune cells, their functions in immunity are largely unexplored. Here, we identify an immunoregulatory lincRNA, lincRNA-EPS, that is precisely regulated in macrophages to control the expression of immune response genes (IRGs). Transcriptome analysis of macrophages from lincRNA-EPS-deficient mice, combined with gain-of-function and rescue experiments, revealed a specific role for this lincRNA in restraining IRG expression. Consistently, lincRNA-EPS-deficient mice manifest enhanced inflammation and lethality following endotoxin challenge in vivo. lincRNA-EPS localizes at regulatory regions of IRGs to control nucleosome positioning and repress transcription. Further, lincRNA-EPS mediates these effects by interacting with heterogeneous nuclear ribonucleoprotein L via a CANACA motif located in its 3' end. Together, these findings identify lincRNA-EPS as a repressor of inflammatory responses, highlighting the importance of lincRNAs in the immune system.


Assuntos
Regulação da Expressão Gênica , Inflamação/genética , Macrófagos/imunologia , RNA Longo não Codificante/metabolismo , Animais , Cromátides/metabolismo , Deleção de Genes , Humanos , Listeria monocytogenes/fisiologia , Listeriose/imunologia , Macrófagos/metabolismo , Macrófagos/microbiologia , Macrófagos/virologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , Infecções por Respirovirus/imunologia , Vírus Sendai/fisiologia , Receptores Toll-Like/metabolismo , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 112(42): E5679-88, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26438848

RESUMO

Reactive oxygen species (ROS) such as hydrogen peroxide (H2O2) govern cellular homeostasis by inducing signaling. H2O2 modulates the activity of phosphatases and many other signaling molecules through oxidation of critical cysteine residues, which led to the notion that initiation of ROS signaling is broad and nonspecific, and thus fundamentally distinct from other signaling pathways. Here, we report that H2O2 signaling bears hallmarks of a regular signal transduction cascade. It is controlled by hierarchical signaling events resulting in a focused response as the results place the mitochondrial respiratory chain upstream of tyrosine-protein kinase Lyn, Lyn upstream of tyrosine-protein kinase SYK (Syk), and Syk upstream of numerous targets involved in signaling, transcription, translation, metabolism, and cell cycle regulation. The active mediators of H2O2 signaling colocalize as H2O2 induces mitochondria-associated Lyn and Syk phosphorylation, and a pool of Lyn and Syk reside in the mitochondrial intermembrane space. Finally, the same intermediaries control the signaling response in tissues and species responsive to H2O2 as the respiratory chain, Lyn, and Syk were similarly required for H2O2 signaling in mouse B cells, fibroblasts, and chicken DT40 B cells. Consistent with a broad role, the Syk pathway is coexpressed across tissues, is of early metazoan origin, and displays evidence of evolutionary constraint in the human. These results suggest that H2O2 signaling is under control of a signal transduction pathway that links the respiratory chain to the mitochondrial intermembrane space-localized, ubiquitous, and ancient Syk pathway in hematopoietic and nonhematopoietic cells.


Assuntos
Transporte de Elétrons , Peróxido de Hidrogênio/metabolismo , Membranas Mitocondriais/metabolismo , Transdução de Sinais , Animais , Células Cultivadas , Galinhas , Ativação Enzimática , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Fosforilação , Proteínas Tirosina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Quinase Syk , Tirosina/metabolismo
11.
Sci Signal ; 8(372): ra34, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25872869

RESUMO

In multicellular organisms, the mechanisms by which diverse cell types acquire distinct amino acids and how cellular function adapts to their availability are fundamental questions in biology. We found that increased neutral essential amino acid (NEAA) uptake was a critical component of erythropoiesis. As red blood cells matured, expression of the amino acid transporter gene Lat3 increased, which increased NEAA import. Inadequate NEAA uptake by pharmacologic inhibition or RNAi-mediated knockdown of LAT3 triggered a specific reduction in hemoglobin production in zebrafish embryos and murine erythroid cells through the mTORC1 (mammalian target of rapamycin complex 1)/4E-BP (eukaryotic translation initiation factor 4E-binding protein) pathway. CRISPR-mediated deletion of members of the 4E-BP family in murine erythroid cells rendered them resistant to mTORC1 and LAT3 inhibition and restored hemoglobin production. These results identify a developmental role for LAT3 in red blood cells and demonstrate that mTORC1 serves as a homeostatic sensor that couples hemoglobin production at the translational level to sufficient uptake of NEAAs, particularly L-leucine.


Assuntos
Proteínas de Transporte/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Hemoglobinas/metabolismo , Leucina/metabolismo , Complexos Multiproteicos/metabolismo , Fosfoproteínas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Sistemas de Transporte de Aminoácidos Básicos/genética , Sistemas de Transporte de Aminoácidos Básicos/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Células Cultivadas , Embrião de Mamíferos/irrigação sanguínea , Embrião de Mamíferos/embriologia , Embrião de Mamíferos/metabolismo , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Células Eritroides/metabolismo , Eritropoese/genética , Fatores de Iniciação em Eucariotos/genética , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Hemoglobinas/genética , Humanos , Immunoblotting , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Microscopia Confocal , Complexos Multiproteicos/genética , Fosfoproteínas/genética , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética , Peixe-Zebra
12.
Nat Rev Endocrinol ; 11(3): 151-60, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25560704

RESUMO

Long non-coding RNAs (lncRNAs) are a large and diverse group of RNAs that are often lineage-specific and that regulate multiple biological functions. Many are nuclear and are essential parts of ribonucleoprotein complexes that modify chromatin segments and establish active or repressive chromatin states; others are cytosolic and regulate the stability of mRNA or act as microRNA sponges. This Review summarizes the current knowledge of lncRNAs as regulators of the endocrine system, with a focus on the identification and mode of action of several endocrine-important lncRNAs. We highlight lncRNAs that have a role in the development and function of pancreatic ß cells, white and brown adipose tissue, and other endocrine organs, and discuss the involvement of these molecules in endocrine dysfunction (for example, diabetes mellitus). We also address the associations of lncRNAs with nuclear receptors involved in major hormonal signalling pathways, such as estrogen and androgen receptors, and the relevance of these associations in certain endocrine cancers.


Assuntos
Doenças do Sistema Endócrino/metabolismo , Sistema Endócrino/metabolismo , RNA Longo não Codificante/metabolismo , Tecido Adiposo/metabolismo , Animais , Ritmo Circadiano , Diabetes Mellitus/metabolismo , Neoplasias das Glândulas Endócrinas/metabolismo , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/metabolismo , Transdução de Sinais
13.
Dev Cell ; 30(6): 660-72, 2014 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-25220394

RESUMO

While we have considerable understanding of the transcriptional networks controlling mammalian cell differentiation, our knowledge of posttranscriptional regulatory events is very limited. Using differentiation of primary erythroid cells as a model, we show that the sequence-specific mRNA-binding protein Cpeb4 is strongly induced by the erythroid-important transcription factors Gata1 and Tal1 and is essential for terminal erythropoiesis. By interacting with the translation initiation factor eIF3, Cpeb4 represses the translation of a large set of mRNAs, including its own mRNA. Thus, transcriptional induction and translational repression combine to form a negative feedback loop to control Cpeb4 protein levels within a specific range that is required for terminal erythropoiesis. Our study provides an example of how translational control is integrated with transcriptional regulation to precisely control gene expression during mammalian cell differentiation.


Assuntos
Eritroblastos/metabolismo , Eritropoese , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Ligação a RNA/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Eritroblastos/citologia , Retroalimentação Fisiológica , Fator de Transcrição GATA1/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Ligação Proteica , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Transcrição/metabolismo , Ativação Transcricional
14.
J Clin Invest ; 124(10): 4294-304, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25157825

RESUMO

The transport and intracellular trafficking of heme biosynthesis intermediates are crucial for hemoglobin production, which is a critical process in developing red cells. Here, we profiled gene expression in terminally differentiating murine fetal liver-derived erythroid cells to identify regulators of heme metabolism. We determined that TMEM14C, an inner mitochondrial membrane protein that is enriched in vertebrate hematopoietic tissues, is essential for erythropoiesis and heme synthesis in vivo and in cultured erythroid cells. In mice, TMEM14C deficiency resulted in porphyrin accumulation in the fetal liver, erythroid maturation arrest, and embryonic lethality due to profound anemia. Protoporphyrin IX synthesis in TMEM14C-deficient erythroid cells was blocked, leading to an accumulation of porphyrin precursors. The heme synthesis defect in TMEM14C-deficient cells was ameliorated with a protoporphyrin IX analog, indicating that TMEM14C primarily functions in the terminal steps of the heme synthesis pathway. Together, our data demonstrate that TMEM14C facilitates the import of protoporphyrinogen IX into the mitochondrial matrix for heme synthesis and subsequent hemoglobin production. Furthermore, the identification of TMEM14C as a protoporphyrinogen IX importer provides a genetic tool for further exploring erythropoiesis and congenital anemias.


Assuntos
Eritropoese/genética , Heme/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Anemia/metabolismo , Animais , Linhagem Celular , Células Eritroides/metabolismo , Regulação da Expressão Gênica , Hemoglobinas/metabolismo , Fígado/embriologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Membranas Mitocondriais/metabolismo , Porfirinas/metabolismo , Protoporfirinas/metabolismo , RNA Interferente Pequeno/metabolismo
15.
Nat Med ; 20(7): 748-53, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24952648

RESUMO

Ribosomal protein haploinsufficiency occurs in diverse human diseases including Diamond-Blackfan anemia (DBA), congenital asplenia and T cell leukemia. Yet, how mutations in genes encoding ubiquitously expressed proteins such as these result in cell-type- and tissue-specific defects remains unknown. Here, we identify mutations in GATA1, encoding the critical hematopoietic transcription factor GATA-binding protein-1, that reduce levels of full-length GATA1 protein and cause DBA in rare instances. We show that ribosomal protein haploinsufficiency, the more common cause of DBA, can lead to decreased GATA1 mRNA translation, possibly resulting from a higher threshold for initiation of translation of this mRNA in comparison with other mRNAs. In primary hematopoietic cells from patients with mutations in RPS19, encoding ribosomal protein S19, the amplitude of a transcriptional signature of GATA1 target genes was globally and specifically reduced, indicating that the activity, but not the mRNA level, of GATA1 is decreased in patients with DBA associated with mutations affecting ribosomal proteins. Moreover, the defective hematopoiesis observed in patients with DBA associated with ribosomal protein haploinsufficiency could be partially overcome by increasing GATA1 protein levels. Our results provide a paradigm by which selective defects in translation due to mutations affecting ubiquitous ribosomal proteins can result in human disease.


Assuntos
Anemia de Diamond-Blackfan/genética , Fator de Transcrição GATA1/genética , Biossíntese de Proteínas , Humanos , Mutação , RNA Mensageiro/genética , Proteínas Ribossômicas/genética
16.
Exp Hematol ; 42(6): 464-76.e5, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24607859

RESUMO

Key transcriptional regulators of terminal erythropoiesis, such as GATA-binding factor 1 (GATA1) and T-cell acute lymphocytic leukemia protein 1 (TAL1), have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here, we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor transcription factor Dp-2 (Tfdp2) were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression and knockdown of Tfdp2 results in significantly reduced rates of proliferation as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Células Eritroides/citologia , Eritropoese , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Ciclo Celular , Proliferação de Células , Tamanho Celular , Células Cultivadas , Biologia Computacional , Proteínas de Ligação a DNA/genética , Eritropoese/efeitos dos fármacos , Citometria de Fluxo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Camundongos , Modelos Biológicos
17.
Int J Hematol ; 99(5): 531-41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24609766

RESUMO

Long noncoding RNAs (lncRNAs) are increasingly recognized to contribute to cellular development via diverse mechanisms during both health and disease. Here, we highlight recent progress on the study of lncRNAs that function in the development of blood cells. We emphasize lncRNAs that regulate blood cell fates through epigenetic control of gene expression, an emerging theme among functional lncRNAs. Many of these noncoding genes and their targets become dysregulated during malignant hematopoiesis, directly implicating lncRNAs in blood cancers such as leukemia. In a few cases, dysregulation of an lncRNA alone leads to malignant hematopoiesis in a mouse model. Thus, lncRNAs may be not only useful as markers for the diagnosis and prognosis of cancers of the blood, but also as potential targets for novel therapies.


Assuntos
Neoplasias Hematológicas/genética , Hematopoese/genética , RNA Longo não Codificante , Animais , Linhagem da Célula/genética , Regulação da Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos
18.
Blood ; 123(4): 570-81, 2014 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-24200680

RESUMO

Erythropoiesis is regulated at multiple levels to ensure the proper generation of mature red cells under multiple physiological conditions. To probe the contribution of long noncoding RNAs (lncRNAs) to this process, we examined >1 billion RNA-seq reads of polyadenylated and nonpolyadenylated RNA from differentiating mouse fetal liver red blood cells and identified 655 lncRNA genes including not only intergenic, antisense, and intronic but also pseudogene and enhancer loci. More than 100 of these genes are previously unrecognized and highly erythroid specific. By integrating genome-wide surveys of chromatin states, transcription factor occupancy, and tissue expression patterns, we identify multiple lncRNAs that are dynamically expressed during erythropoiesis, show epigenetic regulation, and are targeted by key erythroid transcription factors GATA1, TAL1, or KLF1. We focus on 12 such candidates and find that they are nuclear-localized and exhibit complex developmental expression patterns. Depleting them severely impaired erythrocyte maturation, inhibiting cell size reduction and subsequent enucleation. One of them, alncRNA-EC7, is transcribed from an enhancer and is specifically needed for activation of the neighboring gene encoding BAND 3. Our study provides an annotated catalog of erythroid lncRNAs, readily available through an online resource, and shows that diverse types of lncRNAs participate in the regulatory circuitry underlying erythropoiesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Eritrócitos/citologia , Fator de Transcrição GATA1/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , RNA Longo não Codificante , Animais , Núcleo Celular/metabolismo , Elementos Facilitadores Genéticos , Epigênese Genética , Células Eritroides/citologia , Eritropoese/genética , Perfilação da Expressão Gênica , Genoma , Humanos , Hibridização in Situ Fluorescente , Células K562 , Fígado/metabolismo , Camundongos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Retroviridae/metabolismo , Proteína 1 de Leucemia Linfocítica Aguda de Células T , Fatores de Transcrição
19.
Cell Rep ; 5(1): 259-70, 2013 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-24095730

RESUMO

Diet-induced obesity (DIO) predisposes individuals to insulin resistance, and adipose tissue has a major role in the disease. Insulin resistance can be induced in cultured adipocytes by a variety of treatments, but what aspects of the in vivo responses are captured by these models remains unknown. We use global RNA sequencing to investigate changes induced by TNF-α, hypoxia, dexamethasone, high insulin, and a combination of TNF-α and hypoxia, comparing the results to the changes in white adipose tissue from DIO mice. We found that different in vitro models capture distinct features of DIO adipose insulin resistance, and a combined treatment of TNF-α and hypoxia is most able to mimic the in vivo changes. Using genome-wide DNase I hypersensitivity followed by sequencing, we further examined the transcriptional regulation of TNF-α-induced insulin resistance, and we found that C/EPBß is a potential key regulator of adipose insulin resistance.


Assuntos
Tecido Adiposo/metabolismo , Resistência à Insulina/fisiologia , Fator de Necrose Tumoral alfa/fisiologia , Animais , Modelos Animais de Doenças , Humanos , Camundongos
20.
Proc Natl Acad Sci U S A ; 110(33): 13410-5, 2013 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-23893300

RESUMO

Lineage specification is thought to be largely regulated at the level of transcription, where lineage-specific transcription factors drive specific cell fates. MicroRNAs (miR), vital to many cell functions, act posttranscriptionally to decrease the expression of target mRNAs. MLL-AF4 acute lymphocytic leukemia exhibits both myeloid and B-cell surface markers, suggesting that the transformed cells are B-cell myeloid progenitor cells. Through gain- and loss-of-function experiments, we demonstrated that microRNA 126 (miR-126) drives B-cell myeloid biphenotypic leukemia differentiation toward B cells without changing expression of E2A immunoglobulin enhancer-binding factor E12/E47 (E2A), early B-cell factor 1 (EBF1), or paired box protein 5, which are critical transcription factors in B-lymphopoiesis. Similar induction of B-cell differentiation by miR-126 was observed in normal hematopoietic cells in vitro and in vivo in uncommitted murine c-Kit(+)Sca1(+)Lineage(-) cells, with insulin regulatory subunit-1 acting as a target of miR-126. Importantly, in EBF1-deficient hematopoietic progenitor cells, which fail to differentiate into B cells, miR-126 significantly up-regulated B220, and induced the expression of B-cell genes, including recombination activating genes-1/2 and CD79a/b. These data suggest that miR-126 can at least partly rescue B-cell development independently of EBF1. These experiments show that miR-126 regulates myeloid vs. B-cell fate through an alternative machinery, establishing the critical role of miRNAs in the lineage specification of multipotent mammalian cells.


Assuntos
Linhagem da Célula/genética , Perfilação da Expressão Gênica , Leucemia de Células B/metabolismo , MicroRNAs/metabolismo , Análise de Variância , Linfócitos B/metabolismo , Western Blotting , Transplante de Medula Óssea , Linhagem Celular Tumoral , Linhagem da Célula/imunologia , Primers do DNA , Vetores Genéticos/genética , Humanos , Luciferases , Células Progenitoras Mieloides , Oligonucleotídeos/genética , Estatísticas não Paramétricas , Transativadores/metabolismo , Fator 3 de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA