Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37745561

RESUMO

Malignant testicular germ cells tumors (TGCTs) are the most common solid cancers in young men. Current TGCT diagnostics include conventional serum protein markers, but these lack the sensitivity and specificity to serve as accurate markers across all TGCT subtypes. MicroRNAs (miRNAs) are small non-coding regulatory RNAs and informative biomarkers for several diseases. In humans, miRNAs of the miR-371-373 cluster are detectable in the serum of patients with malignant TGCTs and outperform existing serum protein markers for both initial diagnosis and subsequent disease monitoring. We previously developed a genetically engineered mouse model featuring malignant mixed TGCTs consisting of pluripotent embryonal carcinoma (EC) and differentiated teratoma that, like the corresponding human malignancies, originate in utero and are highly chemosensitive. Here, we report that miRNAs in the mouse miR-290-295 cluster, homologs of the human miR-371-373 cluster, were detectable in serum from mice with malignant TGCTs but not from tumor-free control mice or mice with benign teratomas. miR-291-293 were expressed and secreted specifically by pluripotent EC cells, and expression was lost following differentiation induced by the drug thioridazine. Notably, miR-291-293 levels were significantly higher in the serum of pregnant dams carrying tumor-bearing fetuses compared to that of control dams. These findings reveal that expression of the miR-290-295 and miR-371-373 clusters in mice and humans, respectively, is a conserved feature of malignant TGCTs, further validating the mouse model as representative of the human disease. These data also highlight the potential of serum miR-371-373 assays to improve patient outcomes through early TGCT detection, possibly even prenatally.

2.
Cancers (Basel) ; 13(9)2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33922599

RESUMO

Testicular germ cell tumors (TGCTs) are exceptionally sensitive to genotoxic chemotherapy, resulting in a high cure rate for the young men presenting with these malignancies. However, this treatment is associated with significant toxicity, and a subset of malignant TGCTs demonstrate chemoresistance. Mixed nonseminomas often contain pluripotent embryonal carcinoma (EC) cells, the cancer stem cells (CSCs) of these tumors. We hypothesized that differentiation therapy, a treatment strategy which aims to induce differentiation of tumor-propagating CSCs to slow tumor growth, could effectively treat mixed nonseminomas without significant toxicity. The FDA-approved antipsychotic thioridazine and the agricultural antibiotic salinomycin are two drugs previously found to selectively target CSCs, and here we report that these agents differentiate EC cells in vitro and greatly reduce their tumorigenic potential in vivo. Using a novel transformed induced pluripotent stem cell allograft model and a human xenograft model, we show that thioridazine extends the survival of tumor-bearing mice and can reduce the number of pluripotent EC cells within tumors. These results suggest that thioridazine could be repurposed as an alternative TGCT treatment that avoids the toxicity of conventional chemotherapeutics.

3.
Methods Mol Biol ; 2195: 147-165, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32852763

RESUMO

Testicular germ cell tumors (TGCTs) are among the most curable solid cancers and are typically highly responsive to conventional DNA-damaging chemotherapies, even in patients with metastatic disease. It has therefore been of great interest to understand the basis for the unique chemosensitivity of these cancers, which is linked to the DNA damage sensitivity of their cancer stem cells. TGCTs have been difficult to study in the mouse, however, since most of the existing mouse models develop benign teratomas that are unlike the malignant TGCTs that afflict most testicular cancer patients. We describe here methods for generating a TGCT mouse model that closely resembles the malignant, metastatic disease observed in men with testicular cancer, and additionally include methods for analyzing the cancer stems cells and responses to chemotherapeutics in these murine TGCTs.


Assuntos
Modelos Animais de Doenças , Camundongos Transgênicos , Neoplasias Embrionárias de Células Germinativas/etiologia , Neoplasias Embrionárias de Células Germinativas/patologia , Neoplasias Testiculares/etiologia , Neoplasias Testiculares/patologia , Alelos , Animais , Antineoplásicos/farmacologia , Biomarcadores Tumorais , Cruzamento , Linhagem Celular Tumoral , Engenharia Genética , Genótipo , Humanos , Masculino , Camundongos , Neoplasias Embrionárias de Células Germinativas/tratamento farmacológico , Neoplasias Testiculares/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA