Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Ann Rheum Dis ; 82(11): 1464-1473, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37550003

RESUMO

OBJECTIVES: Prior studies noted that chondrocyte SIRT6 activity is repressed in older chondrocytes rendering cells susceptible to catabolic signalling events implicated in osteoarthritis (OA). This study aimed to define the effect of Sirt6 deficiency on the development of post-traumatic and age-associated OA in mice. METHODS: Male cartilage-specific Sirt6-deficient mice and Sirt6 intact controls underwent destabilisation of the medial meniscus (DMM) or sham surgery at 16 weeks of age and OA severity was analysed at 6 and 10 weeks postsurgery. Age-associated OA was assessed in mice aged 12 and 18 months of age. OA severity was analysed by micro-CT, histomorphometry and scoring of articular cartilage structure, toluidine blue staining and osteophyte formation. SIRT6-regulated pathways were analysed in human chondrocytes by RNA-sequencing, qRT-PCR and immunoblotting. RESULTS: Sirt6-deficient mice displayed enhanced DMM-induced OA severity and accelerated age-associated OA when compared with controls, characterised by increased cartilage damage, osteophyte formation and subchondral bone sclerosis. In chondrocytes, RNA-sequencing revealed that SIRT6 depletion significantly repressed cartilage extracellular matrix (eg, COL2A1) and anabolic growth factor (eg, insulin-like growth factor-1 (IGF-1)) gene expression. Gain-of-function and loss-of-function studies in chondrocytes demonstrated that SIRT6 depletion attenuated, whereas adenoviral overexpression or MDL-800-induced SIRT6 activation promoted IGF-1 signalling by increasing Aktser473 phosphorylation. CONCLUSIONS: SIRT6 deficiency increases post-traumatic and age-associated OA severity in vivo. SIRT6 profoundly regulated the pro-anabolic and pro-survival IGF-1/Akt signalling pathway and suggests that preserving the SIRT6/IGF-1/Akt axis may be necessary to protect cartilage from injury-associated or age-associated OA. Targeted therapies aimed at increasing SIRT6 function could represent a novel strategy to slow or stop OA.


Assuntos
Cartilagem Articular , Osteoartrite , Osteófito , Sirtuínas , Masculino , Animais , Camundongos , Humanos , Idoso , Fator de Crescimento Insulin-Like I/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Osteoartrite/genética , Osteoartrite/metabolismo , Condrócitos/metabolismo , Cartilagem Articular/metabolismo , RNA/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Modelos Animais de Doenças
2.
ACR Open Rheumatol ; 4(5): 441-446, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35191223

RESUMO

OBJECTIVE: The study objective was to determine whether overexpression of the mitochondrial antioxidant peroxidase, peroxiredoxin 3 (Prx3), reduces the severity of osteoarthritis (OA) in mice. METHODS: Age-related OA (age 18 and 24 months) and OA induced by destabilization of the medial meniscus (DMM at age 6 months) were assessed in male mice that overexpress a human Prdx3 transgene encoding the Prx3 protein. Lox-stop-lox-Prdx3 (iPrdx3) mice were crossed with aggrecan-CreERT2 mice to produce iPrdx3AgCreERT2 or with Col2Cre to produce iPrdx3Col2Cre mice. Germline transgenics (Prdx3Tg) were also evaluated. Prx3 protein level was assessed by immunoblotting and functionally after induction of elevated mitochondrial hydrogen peroxide (H2 O2 ) using menadione. Histological sections of stifle joints were scored for cartilage damage (Articular Cartilage Structure score [ACS]), osteophytes, and synovial hyperplasia and were evaluated by histomorphometry. RESULTS: Overexpression of Prx3 maintained mitochondrial membrane integrity and inhibited p38 phosphorylation in the presence of elevated H2 O2 . ACS scores of 18-month-old iPrdx3AgCreERT2 mice (mean ± SD, 4.88 ± 5.05) were significantly lower than age-matched iPrdx3 controls (11.75 ± 6.34, P = 0.002) and trended lower in the 18-month Prdx3Tg group (P = 0.14), whereas no significant differences between experimental and control groups at 24 months of age or in OA induced by DMM surgery were noted. Osteophyte scores trended lower in the 18-month-old Prdx3Tg group (P = 0.09) and at 24 months in the iPrdx3Col2Cre mice (P = 0.05). There were no significant group differences in synovial hyperplasia or histomorphometric measures. CONCLUSION: Overexpression of the mitochondrial peroxidase Prx3 reduced the severity of age-related OA, but not at advanced ages and not in DMM-induced OA in younger mice.

3.
Free Radic Biol Med ; 166: 90-103, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33600943

RESUMO

The nuclear localized protein deacetylase, SIRT6, has been identified as a crucial regulator of biological processes that drive aging. Among these processes, SIRT6 can promote resistance to oxidative stress conditions, but the precise mechanisms remain unclear. The objectives of this study were to examine the regulation of SIRT6 activity by age and oxidative stress and define the role of SIRT6 in maintaining redox homeostasis in articular chondrocytes. Although SIRT6 levels did not change with age, SIRT6 activity was significantly reduced in chondrocytes isolated from older adults. Using dimedone-based chemical probes that detect oxidized cysteines, we identified that SIRT6 is oxidized in response to oxidative stress conditions, an effect that was associated with reduced SIRT6 activity. Enhancement of SIRT6 activity through adenoviral SIRT6 overexpression specifically increased the basal levels of two antioxidant proteins, peroxiredoxin 1 (Prx1) and sulfiredoxin (Srx) and decreased the levels of an inhibitor of antioxidant activity, thioredoxin interacting protein (TXNIP). Conversely, in chondrocytes derived from mice with cartilage specific Sirt6 knockout, Sirt6 loss decreased Prx1 levels and increased TXNIP levels. SIRT6 overexpression decreased nuclear-generated H2O2 levels and oxidative stress-induced accumulation of nuclear phosphorylated p65. Our data demonstrate that SIRT6 activity is altered with age and oxidative stress conditions associated with aging. SIRT6 contributes to chondrocyte redox homeostasis by regulating specific members of the Prx catalytic cycle. Targeted therapies aimed at preventing the age-related decline in SIRT6 activity may represent a novel strategy to maintain redox balance in joint tissues and decrease catabolic signaling events implicated in osteoarthritis (OA).


Assuntos
Fenômenos Biológicos , Cartilagem Articular , Sirtuínas , Idoso , Animais , Cartilagem Articular/metabolismo , Condrócitos , Homeostase , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Oxirredução , Estresse Oxidativo , Sirtuínas/genética , Sirtuínas/metabolismo
4.
Cartilage ; 13(2_suppl): 1442S-1455S, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32940061

RESUMO

OBJECTIVE: Meniscus injury and the hypoxia-inducible factor (HIF) pathway are independently linked to osteoarthritis pathogenesis, but the role of the meniscus HIF pathway remains unclear. We sought to identify and evaluate HIF pathway response in normal and osteoarthritic meniscus and to examine the effects of Epas1 (HIF-2α) insufficiency in mice on early osteoarthritis development. METHODS: Normal and osteoarthritic human meniscus specimens were obtained and used for immunohistochemical evaluation and cell culture studies for the HIF pathway. Meniscus cells were treated with pro-inflammatory stimuli, including interleukins (IL)-1ß, IL-6, transforming growth factor (TGF)-α, and fibronectin fragments (FnF). Target genes were also evaluated with HIF-1α and HIF-2α (Epas1) overexpression and knockdown. Wild-type (n = 36) and Epas1+/- (n = 30) heterozygous mice underwent destabilization of the medial meniscus (DMM) surgery and were evaluated at 2 and 4 weeks postoperatively for osteoarthritis development using histology. RESULTS: HIF-1α and HIF-2α immunostaining and gene expression did not differ between normal and osteoarthritic meniscus. While pro-inflammatory stimulation significantly increased both catabolic and anabolic gene expression in the meniscus, HIF-1α and Epas1 expression levels were not significantly altered. Epas1 overexpression significantly increased Col2a1 expression. Both wild-type and Epas1+/- mice developed osteoarthritis following DMM surgery. There were no significant differences between genotypes at either time point. CONCLUSION: The HIF pathway is likely not responsible for osteoarthritic changes in the human meniscus. Additionally, Epas1 insufficiency does not protect against osteoarthritis development in the mouse at early time points after DMM surgery. The HIF pathway may be more important for protection against catabolic stress.


Assuntos
Menisco , Osteoartrite , Animais , Condrócitos/metabolismo , Hipóxia/metabolismo , Hipóxia/patologia , Meniscos Tibiais/patologia , Menisco/metabolismo , Camundongos , Osteoartrite/metabolismo
5.
Arthritis Rheumatol ; 72(10): 1679-1688, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32418287

RESUMO

OBJECTIVE: To determine the role of JNK signaling in the development of osteoarthritis (OA) induced by joint injury or aging in mice. METHODS: In the joint injury model, 12-week-old wild-type control, JNK1-/- , JNK2-/- , and JNK1fl/fl JNK2-/- aggecan-CreERT 2 double-knockout mice were subjected to destabilization of the medial meniscus (DMM) (n = 15 mice per group) or sham surgery (n = 9-10 mice per group), and OA was evaluated 8 weeks later. In the aging experiment, wild-type control, JNK1-/- , and JNK2-/- mice (n = 15 per group) were evaluated at 18 months of age. Mouse knee joints were evaluated by scoring articular cartilage structure, toluidine blue staining, osteophytes, and synovial hyperplasia, by histomorphometric analysis, and by immunostaining for the senescence marker p16INK 4a . Production of matrix metalloproteinase 13 (MMP-13) in cartilage explants in response to fibronectin fragments was measured by enzyme-linked immunosorbent assay. RESULTS: There were no differences after DMM surgery between the wild-type and the JNK-knockout mouse groups in articular cartilage structure, toluidine blue, or osteophyte scores or in MMP-13 production in explants. All 3 knockout mouse groups had increased subchondral bone thickness and area of cartilage necrosis compared to wild-type mice. Aged JNK-knockout mice had significantly worse articular cartilage structure scores compared to the aged wild-type control mice (mean ± SD 52 ± 24 in JNK1-/- mice and 60 ± 25 in JNK2-/- mice versus 32 ± 18 in controls; P = 0.02 and P = 0.004, respectively). JNK1-/- mice also had higher osteophyte scores. Deletion of JNK resulted in increased expression of p16INK 4a in the synovium and cartilage in older mice. CONCLUSION: JNK1 and JNK2 are not required for the development of OA in the mouse DMM model. Deletion of JNK1 or JNK2 is associated with more severe age-related OA and increased cell senescence, suggesting that JNK may act as a negative regulator of senescence in the joint.


Assuntos
Envelhecimento/metabolismo , Cartilagem Articular/metabolismo , Senescência Celular/genética , Articulação do Joelho/metabolismo , Proteína Quinase 8 Ativada por Mitógeno/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Osteoartrite/metabolismo , Animais , Condrócitos/metabolismo , Modelos Animais de Doenças , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Knockout , Proteína Quinase 8 Ativada por Mitógeno/genética , Proteína Quinase 9 Ativada por Mitógeno/genética , Osteoartrite/diagnóstico , Osteoartrite/genética , Índice de Gravidade de Doença
6.
Connect Tissue Res ; 61(1): 95-103, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530037

RESUMO

Aim: The purpose of this study was to evaluate whether pharmacologic treatments or genotypes shown to prolong murine lifespan ameliorate the severity of age-associated osteoarthritis.Materials and Methods: Male UM-HET3 mice were fed diets containing 17-α-estradiol, acarbose, nordihydroguaiaretic acid, or control diet per the National Institute on Aging Interventions Testing Program (ITP) protocol. Findings were compared to genetically long-lived male Ames dwarf mice. Stifles were analyzed histologically with articular cartilage structure (ACS) and safranin O scoring as well as with quantitative histomorphometry.Results: Depending on the experimental group, ITP mice were between 450 and 1150 days old at the time of necropsy and 12-15 animals were studied per group. Two age groups (450 and 750 days) with 16-20 animals per group were used for Ames dwarf studies. No differences were found in the ACS or safranin O scores between treatment and control groups in the ITP study. There was high variability in most of the histologic outcome measures. For example, the older UM-HET3 controls had ACS scores of 6.1 ± 5.8 (mean±SD) and Saf O scores of 6.8 ± 5.6. Nevertheless, 17-α-estradiol mice had larger areas and widths of subchondral bone compared to controls, and dwarf mice had less subchondral bone area and width and less articular cartilage necrosis than non-dwarf controls.Conclusions: UM-HET3 mice developed age-related OA but with a high degree of variability and without a significant effect of the tested ITP treatments. High variability was also seen in the Ames dwarf mice but differences in several measures suggested some protection from OA.


Assuntos
Longevidade , Osteoartrite/metabolismo , Osteoartrite/patologia , Animais , Estradiol/farmacologia , Masculino , Camundongos , Camundongos Knockout , Osteoartrite/genética
7.
Free Radic Biol Med ; 134: 139-152, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30639614

RESUMO

The peroxiredoxin (Prx) family of Cys-dependent peroxidases control intracellular levels of H2O2 and can regulate signal transduction. Inhibition of the Prxs, through hyperoxidation amongst other mechanisms, leads to oxidative stress conditions that can alter homeostatic signaling. To determine the effects oxidation of Prx1-Prx3 has on MAP kinase and IGF-1 signaling events in human chondrocytes, this study used 2-methyl-1,4-naphthoquinone (menadione) and 2,3-dimethyl-1,4-naphthoquinone (DMNQ) as H2O2-generating tools due to their differential mechanisms of action. Menadione and DMNQ generated similar levels of intracellular H2O2 as determined using the biosensor Orp1-roGFP and by measuring Prx redox status. However, menadione generated higher levels of mitochondrial H2O2 associated with Prx3 hyperoxidation and phosphorylation of Prx1 while DMNQ treatment was associated with hyperoxidation of cytosolic Prx1 and Prx2 but not mitochondrial Prx3. Both menadione and DMNQ induced sustained phosphorylation of p38 but only DMNQ activated JNK. Menadione but not DMNQ inhibited IGF-1-induced Akt phosphorylation. Chondrocytes transduced with an adenoviral vector to overexpress Prx3 displayed decreased PrxSO2/3 formation in response to menadione which was associated with restoration of IGF-1-mediated Akt signaling and inhibition of p38 phosphorylation. Prx1 and Prx2 overexpression had no effects on Prx redox status but Prx1 overexpression enhanced basal Akt phosphorylation. These results suggest that hyperoxidation of specific Prx isoforms is associated with distinct cell signaling events and identify Prx3 redox status as an important regulator of anabolic and catabolic signal transduction. Targeted strategies to prevent mitochondrial Prx3 hyperoxidation could be useful in maintaining cellular redox balance and homeostatic signaling.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Proteínas de Homeodomínio/química , Peróxido de Hidrogênio/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Estresse Oxidativo , Antifibrinolíticos/farmacologia , Cartilagem Articular/citologia , Cartilagem Articular/efeitos dos fármacos , Células Cultivadas , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Oxirredução , Fosforilação , Transdução de Sinais , Vitamina K 3/farmacologia
8.
J Biol Chem ; 293(42): 16376-16389, 2018 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-30190325

RESUMO

Reactive oxygen species (ROS), in particular H2O2, regulate intracellular signaling through reversible oxidation of reactive protein thiols present in a number of kinases and phosphatases. H2O2 has been shown to regulate mitogen-activated protein kinase (MAPK) signaling depending on the cellular context. We report here that in human articular chondrocytes, the MAPK family member c-Jun N-terminal kinase 2 (JNK2) is activated by fibronectin fragments and low physiological levels of H2O2 and inhibited by oxidation due to elevated levels of H2O2 The kinase activity of affinity-purified, phosphorylated JNK2 from cultured chondrocytes was reversibly inhibited by 5-20 µm H2O2 Using dimedone-based chemical probes that react specifically with sulfenylated cysteines (RSOH), we identified Cys-222 in JNK2, a residue not conserved in JNK1 or JNK3, as a redox-reactive site. MS analysis of human recombinant JNK2 also detected further oxidation at Cys-222 and other cysteines to sulfinic (RSO2H) or sulfonic (RSO3H) acid. H2O2 treatment of JNK2 resulted in detectable levels of peptides containing intramolecular disulfides between Cys-222 and either Cys-213 or Cys-177, without evidence of dimer formation. Substitution of Cys-222 to alanine rendered JNK2 insensitive to H2O2 inhibition, unlike C177A and C213A variants. Two other JNK2 variants, C116A and C163A, were also resistant to oxidative inhibition. Cumulatively, these findings indicate differential regulation of JNK2 signaling dependent on H2O2 levels and point to key cysteine residues regulating JNK2 activity. As levels of intracellular H2O2 rise, a switch occurs from activation to inhibition of JNK2 activity, linking JNK2 regulation to the redox status of the cell.


Assuntos
Condrócitos/metabolismo , Cisteína/metabolismo , Peróxido de Hidrogênio/metabolismo , Proteína Quinase 9 Ativada por Mitógeno/metabolismo , Células Cultivadas , Fibronectinas , Humanos , Peróxido de Hidrogênio/farmacologia , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
10.
Aging Cell ; 17(4): e12771, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29744983

RESUMO

Cellular senescence drives a functional decline of numerous tissues with aging by limiting regenerative proliferation and/or by producing pro-inflammatory molecules known as the senescence-associated secretory phenotype (SASP). The senescence biomarker p16INK4a is a potent inhibitor of the cell cycle but is not essential for SASP production. Thus, it is unclear whether p16INK4a identifies senescence in hyporeplicative cells such as articular chondrocytes and whether p16INK4a contributes to pathologic characteristics of cartilage aging. To address these questions, we examined the role of p16INK4a in murine and human models of chondrocyte aging. We observed that p16INK4a mRNA expression was significantly upregulated with chronological aging in murine cartilage (~50-fold from 4 to 18 months of age) and in primary human chondrocytes from 57 cadaveric donors (r2  = .27, p < .0001). Human chondrocytes exhibited substantial replicative potential in vitro that depended on the activity of cyclin-dependent kinases 4 or 6 (CDK4/6), and proliferation was reduced in cells from older donors with increased p16INK4a expression. Moreover, increased chondrocyte p16INK4a expression correlated with several SASP transcripts. Despite the relationship between p16INK4a expression and these features of senescence, somatic inactivation of p16INK4a in chondrocytes of adult mice did not mitigate SASP expression and did not alter the rate of osteoarthritis (OA) with physiological aging or after destabilization of the medial meniscus. These results establish that p16INK4a expression is a biomarker of dysfunctional chondrocytes, but that the effects of chondrocyte senescence on OA are more likely driven by production of SASP molecules than by loss of chondrocyte replicative function.


Assuntos
Senescência Celular/genética , Condrócitos/metabolismo , Inibidor p16 de Quinase Dependente de Ciclina/genética , Idoso , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Proliferação de Células/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Óxidos N-Cíclicos , Inibidor p16 de Quinase Dependente de Ciclina/antagonistas & inibidores , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/metabolismo , Humanos , Indolizinas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Osteoartrite/genética , Osteoartrite/metabolismo , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Piridinas/farmacologia , Compostos de Piridínio/farmacologia , RNA Interferente Pequeno/farmacologia , Adulto Jovem
11.
Knee ; 25(2): 296-305, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29525545

RESUMO

BACKGROUND: To determine the association between time from injury to ACL reconstruction (TimeInjury-ACLR) and biochemical markers of cartilage metabolism and inflammation six months following ACL reconstruction (ACLR). METHODS: Individuals with a unilateral ACL injury were enrolled at initial presentation in the orthopedic clinic; blood was collected six months following ACLR. Enzyme-linked immunosorbent assays were used to analyze the ratio of serum concentrations of type-II collagen breakdown (C2C) to synthesis (CPII), plasma matrix metalloproteinase-3 (MMP-3), interleukin-6 (IL-6), and serum aggrecan neoepitope (ARGS). We used separate linear regressions to assess associations between biochemical markers and TimeInjury-ACLR. RESULTS: Twenty-two participants (50% females, mean [SD], age 21.9 [4.5] years old; BMI 23.8 [2.6] kg/m2) completed the study. TimeInjury-ACLR ranged from nine to 67days (31.0 [14.4days]). Greater TimeInjury-ACLR predicted greater serum C2C:CPII ratios six months following ACLR (C2C:CPII=0.15 [0.02], R2=0.213, P=0.030). Males (R2=0.733, P=0.001) but not females (R2=0.030, P=0.609) demonstrated a significant association between greater C2C:CPII and TimeInjury-ACLR at the six-month follow-up exam. TimeInjury-ACLR did not associate with IL-6, MMP-3, or ARGS at six months. CONCLUSIONS: Greater time between injury and ACL reconstruction was associated with greater serum C2C:CPII six months following ACLR in males but not females, and IL-6, MMP-3, and ARGS levels were not associated with TimeInjury-ACLR in males or females. The time between ACL injury and ACLR may affect collagen metabolism in males and should be further investigated in a larger study along with other patient-relevant outcomes.


Assuntos
Lesões do Ligamento Cruzado Anterior/cirurgia , Cartilagem Articular/metabolismo , Agrecanas/sangue , Condrogênese , Estudos de Coortes , Colágeno Tipo II/sangue , Ensaio de Imunoadsorção Enzimática , Feminino , Seguimentos , Humanos , Interleucina-6/sangue , Modelos Lineares , Masculino , Metaloproteinase 3 da Matriz/sangue , Tempo para o Tratamento , Adulto Jovem
12.
Arthritis Rheumatol ; 69(2): 352-361, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27564840

RESUMO

OBJECTIVE: Macrophage migration inhibitory factor (MIF) is a proinflammatory cytokine that is elevated in the serum and synovial fluid of patients with osteoarthritis (OA). This study was undertaken to investigate the potential role of MIF in OA in human joint tissues and in vivo in mice with age-related and surgically induced OA. METHODS: MIF in conditioned media from human chondrocytes and meniscal cells and from cartilage explants was measured by enzyme-linked immunosorbent assay. The severity of OA was analyzed histologically in male wild-type and MIF-/- mice at 12 and 22 months of age and following destabilization of the medial meniscus (DMM) surgery in 12-week-old MIF-/- mice as well as in wild-type mice treated with a neutralizing MIF antibody. Synovial hyperplasia was graded in S100A8-immunostained histologic sections. Bone morphometric parameters were measured by micro-computed tomography. RESULTS: Human OA chondrocytes secreted 3-fold higher levels of MIF than normal chondrocytes, while normal and OA meniscal cells produced equivalent amounts. Compared to age- and strain-matched controls, the cartilage, bone, and synovium in older adult mice with MIF deletion were protected against changes of naturally occurring age-related OA. No protection against DMM-induced OA was seen in young adult MIF-/- mice or in wild-type mice treated with anti-MIF. Increased bone density in 8-week-old mice with MIF deletion was not maintained at 12 months. CONCLUSION: These results demonstrate a differential mechanism in the pathogenesis of naturally occurring age-related OA compared to injury-induced OA. The inhibition of MIF may represent a novel therapeutic target in the reduction of the severity of age-related OA.


Assuntos
Deleção de Genes , Oxirredutases Intramoleculares/genética , Fatores Inibidores da Migração de Macrófagos/genética , Osteoartrite/genética , Fatores Etários , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Índice de Gravidade de Doença
13.
Pain ; 158(3): 457-462, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27918314

RESUMO

Chronic pain conditions are often comorbid with alcohol abuse. "Self-medication" with alcohol introduces a host of problems associated with the abuse of alcohol which over time has the potential of exacerbating the painful condition. Despite the prevalence of chronic pain being associated with alcohol abuse, rodent models which mimic the comorbid conditions are lacking. In this study, we model osteoarthritis (OA) in C57BL/6J mice by surgically destabilizing the medial meniscus (DMM). Sham-operated mice served as controls. Thirteen weeks after surgery, DMM but not sham-operated mice exhibited pronounced incapacitance of the surgically manipulated hind limb compared with the nonsurgically manipulated hind limb. At this time, the mice were exposed to the 2-bottle ethanol choice, beginning with 2.5% with a gradual increasing to 20%. Compared with sham controls, DMM mice consumed more EtOH and preferred EtOH over water at the 20% EtOH concentration. Histological analysis verified that the DMM mice exhibited significant damage to the articular cartilage and osteophyte growth compared with sham controls and these measures of the severity of OA correlated with the amount of ethanol intake. Thus, the combination of the DMM model of OA with the enhanced two-bottle ethanol choice is a potential preclinical approach in mice by which the basis of the comorbid association of alcohol abuse and chronic pain conditions can be explored.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Etanol/metabolismo , Osteoartrite do Joelho/fisiopatologia , Análise de Variância , Animais , Comportamento de Escolha/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
J Gerontol A Biol Sci Med Sci ; 71(11): 1437-1443, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27382039

RESUMO

BACKGROUND: Habitual (non-exercise) physical activity (PA) declines with age, and aging-related increases in inflammation and fatigue may be important contributors to variability in PA. METHODS: This study examined the association of objectively-measured PA (accelerometry over 7 days) with inflammation (plasma interleukin-6 and C-reactive protein) and with self-reported fatigue (SF-36 Vitality) at baseline and 18 months after a diet-induced weight loss, exercise, or diet-induced weight loss plus exercise intervention in 167 overweight/obese, middle-aged, and older adults. RESULTS: At baseline, individuals with higher plasma interleukin-6, as well as those who reported feeling less energetic (more fatigued), took less steps per day and had lower PA energy expenditure and minutes of light and moderate-vigorous PA (p < .05 for all). At the 18-month follow-up, inflammation was lower in both weight loss groups, fatigue was reduced in all three groups with larger decreases in the combined group, and mean levels of habitual PA were not changed in any group. In longitudinal analyses with all groups combined, we found that participants reporting larger increases in vitality (eg, declines in fatigue) had greater increases in PA (p < .05 for all). Also, changes in steps/d and physical activity energy expenditure were indirectly associated with changes in interleukin-6 (ß [SEM] for steps/d = -565 [253]; ß [SEM] for physical activity energy expenditure = -22.4 [10.17]; p < .05). CONCLUSIONS: Levels of habitual PA are lower in middle-aged and older adults with higher levels of chronic inflammation and greater self-reported fatigue. In addition, participants who experienced greater declines in inflammation during the interventions had greater declines in fatigue and larger increases in PA.


Assuntos
Fadiga/fisiopatologia , Avaliação Geriátrica/métodos , Inflamação/fisiopatologia , Atividade Motora/fisiologia , Acelerometria , Idoso , Proteína C-Reativa/metabolismo , Doença Crônica , Metabolismo Energético , Feminino , Humanos , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Autorrelato , Redução de Peso
15.
J Biol Chem ; 291(13): 6641-54, 2016 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-26797130

RESUMO

Oxidative stress-mediated post-translational modifications of redox-sensitive proteins are postulated as a key mechanism underlying age-related cellular dysfunction and disease progression. Peroxiredoxins (PRX) are critical intracellular antioxidants that also regulate redox signaling events. Age-related osteoarthritis is a common form of arthritis that has been associated with mitochondrial dysfunction and oxidative stress. The objective of this study was to determine the effect of aging and oxidative stress on chondrocyte intracellular signaling, with a specific focus on oxidation of cytosolic PRX2 and mitochondrial PRX3. Menadione was used as a model to induce cellular oxidative stress. Compared with chondrocytes isolated from young adult humans, chondrocytes from older adults exhibited higher levels of PRX1-3 hyperoxidation basally and under conditions of oxidative stress. Peroxiredoxin hyperoxidation was associated with inhibition of pro-survival Akt signaling and stimulation of pro-death p38 signaling. These changes were prevented in cultured human chondrocytes by adenoviral expression of catalase targeted to the mitochondria (MCAT) and in cartilage explants from MCAT transgenic mice. Peroxiredoxin hyperoxidation was observedin situin human cartilage sections from older adults and in osteoarthritic cartilage. MCAT transgenic mice exhibited less age-related osteoarthritis. These findings demonstrate that age-related oxidative stress can disrupt normal physiological signaling and contribute to osteoarthritis and suggest peroxiredoxin hyperoxidation as a potential mechanism.


Assuntos
Envelhecimento/metabolismo , Condrócitos/metabolismo , Proteínas de Homeodomínio/metabolismo , Mitocôndrias/metabolismo , Osteoartrite/metabolismo , Processamento de Proteína Pós-Traducional , Adulto , Envelhecimento/patologia , Animais , Cartilagem/metabolismo , Cartilagem/patologia , Catalase/genética , Catalase/metabolismo , Senescência Celular/genética , Condrócitos/patologia , Proteínas de Homeodomínio/genética , Humanos , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Mitocôndrias/patologia , Osteoartrite/genética , Osteoartrite/patologia , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Técnicas de Cultura de Tecidos , Transgenes , Vitamina K 3/farmacologia
16.
Arthritis Rheumatol ; 68(1): 117-26, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26314228

RESUMO

OBJECTIVE: Oxidative posttranslational modifications of intracellular proteins can potentially regulate signaling pathways relevant to cartilage destruction in arthritis. In this study, oxidation of cysteine residues to form sulfenic acid (S-sulfenylation) was examined in osteoarthritic (OA) chondrocytes and investigated in normal chondrocytes as a mechanism by which fragments of fibronectin (FN-f) stimulate chondrocyte catabolic signaling. METHODS: Chondrocytes isolated from OA and normal human articular cartilage were analyzed using analogs of dimedone that specifically and irreversibly react with protein S-sulfenylated cysteines. Global S-sulfenylation was measured in cell lysates with and without FN-f stimulation by immunoblotting and in fixed cells by confocal microscopy. S-sulfenylation in specific proteins was identified by mass spectroscopy and confirmed by immunoblotting. Src activity was measured in live cells using a fluorescence resonance energy transfer biosensor. RESULTS: Proteins in chondrocytes isolated from OA cartilage were found to have elevated basal levels of S-sulfenylation relative to those of chondrocytes from normal cartilage. Treatment of normal chondrocytes with FN-f induced increased levels of S-sulfenylation in multiple proteins, including the tyrosine kinase Src. FN-f treatment also increased the levels of Src activity. Pretreatment with dimedone to alter S-sulfenylation function or with Src kinase inhibitors inhibited FN-f-induced production of matrix metalloproteinase 13. CONCLUSION: These results demonstrate for the first time the presence of oxidative posttranslational modification of proteins in human articular chondrocytes by S-sulfenylation. Due to the ability to regulate the activity of a number of cell signaling pathways, including catabolic mediators induced by fibronectin fragments, S-sulfenylation may contribute to cartilage destruction in OA and warrants further investigation.


Assuntos
Cartilagem Articular/citologia , Condrócitos/metabolismo , Cisteína/metabolismo , Osteoartrite/metabolismo , Oxirredução , Ácidos Sulfênicos/metabolismo , Quinases da Família src/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Condrócitos/efeitos dos fármacos , Cicloexanonas/farmacologia , Feminino , Fibronectinas/farmacologia , História Antiga , Humanos , Immunoblotting , Espectrometria de Massas , Metaloproteinase 13 da Matriz/efeitos dos fármacos , Metaloproteinase 13 da Matriz/metabolismo , Microscopia Confocal , Pessoa de Meia-Idade , Fragmentos de Peptídeos/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Quinases da Família src/efeitos dos fármacos
17.
Free Radic Biol Med ; 79: 237-50, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25289457

RESUMO

The Rac1 GTPase is an essential and ubiquitous protein that signals through numerous pathways to control critical cellular processes, including cell growth, morphology, and motility. Rac1 deletion is embryonic lethal, and its dysregulation or mutation can promote cancer, arthritis, cardiovascular disease, and neurological disorders. Rac1 activity is highly regulated by modulatory proteins and posttranslational modifications. Whereas much attention has been devoted to guanine nucleotide exchange factors that act on Rac1 to promote GTP loading and Rac1 activation, cellular oxidants may also regulate Rac1 activation by promoting guanine nucleotide exchange. Herein, we show that Rac1 contains a redox-sensitive cysteine (Cys(18)) that can be selectively oxidized at physiological pH because of its lowered pKa. Consistent with these observations, we show that Rac1 is glutathiolated in primary chondrocytes. Oxidation of Cys(18) by glutathione greatly perturbs Rac1 guanine nucleotide binding and promotes nucleotide exchange. As aspartate substitutions have been previously used to mimic cysteine oxidation, we characterized the biochemical properties of Rac1(C18D). We also evaluated Rac1(C18S) as a redox-insensitive variant and found that it retains structural and biochemical properties similar to those of Rac1(WT) but is resistant to thiol oxidation. In addition, Rac1(C18D), but not Rac1(C18S), shows greatly enhanced nucleotide exchange, similar to that observed for Rac1 oxidation by glutathione. We employed Rac1(C18D) in cell-based studies to assess whether this fast-cycling variant, which mimics Rac1 oxidation by glutathione, affects Rac1 activity and function. Expression of Rac1(C18D) in Swiss 3T3 cells showed greatly enhanced GTP-bound Rac1 relative to Rac1(WT) and the redox-insensitive Rac1(C18S) variant. Moreover, expression of Rac1(C18D) in HEK-293T cells greatly promoted lamellipodia formation. Our results suggest that Rac1 oxidation at Cys(18) is a novel posttranslational modification that upregulates Rac1 activity.


Assuntos
Compostos de Sulfidrila/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Sequência de Aminoácidos , Cartilagem Articular/citologia , Cartilagem Articular/metabolismo , Células Cultivadas , Glutationa/metabolismo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Dados de Sequência Molecular , Oxirredução , Conformação Proteica , Estabilidade Proteica , Proteínas rac1 de Ligação ao GTP/química
18.
Arthritis Rheumatol ; 66(5): 1266-71, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497499

RESUMO

OBJECTIVE: Nuclear protein 1 (Nupr1) is a stress-inducible protein that is involved in gene transcription. The present study was undertaken to determine whether chondrocytes express Nupr1 and whether Nupr1 regulates matrix metalloproteinase 13 (MMP-13) expression. METHODS: Paraffin-embedded cartilage sections from normal human and osteoarthritic (OA) cartilage were immunostained using anti-Nupr1 antibody. To measure Nupr1 expression, total RNA was isolated from joint tissue obtained 8 weeks after surgery from young (12-week-old) and older (12-month-old) mice that underwent destabilization of the medial meniscus (DMM) to induce OA. Human chondrocytes were stimulated with 1-10 ng/ml interleukin-1ß (IL-1ß), 25 µM tert-butyl-hydroperoxide (tBHP), or 2 µM thapsigargin, and Nupr1 expression was analyzed by quantitative polymerase chain reaction. In addition, chondrocytes were transfected with small interfering RNA to knock down Nupr1 expression and then stimulated overnight with IL-1ß. After incubation, the conditioned medium was collected and MMP levels measured. RESULTS: Increased Nupr1 immunostaining was noted in human OA cartilage compared to normal cartilage. Expression was also increased in joint tissue from 12-month-old mice that underwent DMM surgery compared to sham-operated controls. Stimulation of chondrocytes with IL-1ß induced a 2-fold increase in Nupr1 messenger RNA (mRNA) within 1 hour, with the increase peaking to 4-fold at 6 hours. Treatment of chondrocytes with tBHP to induce oxidative stress increased Nupr1 mRNA expression by >2-fold; treatment with thapsigargin to induce endoplasmic reticulum stress did not produce a similar effect. Knockdown of Nupr1 inhibited IL-1ß-mediated induction of MMP-13. CONCLUSION: Nupr1 is expressed in cartilage, and its levels are increased in OA. Nupr1 expression is required for IL-1ß-mediated expression of MMP-13. These findings provide evidence of a novel pathway for regulation of IL-1ß-mediated production of MMPs in chondrocytes.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Proteínas de Neoplasias/metabolismo , Osteoartrite/metabolismo , Animais , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Humanos , Interleucina-1beta/farmacologia , Camundongos , Osteoartrite/patologia , Estresse Oxidativo/efeitos dos fármacos , Tapsigargina/farmacologia , terc-Butil Hidroperóxido/farmacologia
19.
JAMA ; 310(12): 1263-73, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-24065013

RESUMO

IMPORTANCE: Knee osteoarthritis (OA), a common cause of chronic pain and disability, has biomechanical and inflammatory origins and is exacerbated by obesity. OBJECTIVE: To determine whether a ≥10% reduction in body weight induced by diet, with or without exercise, would improve mechanistic and clinical outcomes more than exercise alone. DESIGN, SETTING, AND PARTICIPANTS: Single-blind, 18-month, randomized clinical trial at Wake Forest University between July 2006 and April 2011. The diet and exercise interventions were center-based with options for the exercise groups to transition to a home-based program. Participants were 454 overweight and obese older community-dwelling adults (age ≥55 years with body mass index of 27-41) with pain and radiographic knee OA. INTERVENTIONS: Intensive diet-induced weight loss plus exercise, intensive diet-induced weight loss, or exercise. MAIN OUTCOMES AND MEASURES: Mechanistic primary outcomes: knee joint compressive force and plasma IL-6 levels; secondary clinical outcomes: self-reported pain (range, 0-20), function (range, 0-68), mobility, and health-related quality of life (range, 0-100). RESULTS: Three hundred ninety-nine participants (88%) completed the study. Mean weight loss for diet + exercise participants was 10.6 kg (11.4%); for the diet group, 8.9 kg (9.5%); and for the exercise group, 1.8 kg (2.0%). After 18 months, knee compressive forces were lower in diet participants (mean, 2487 N; 95% CI, 2393 to 2581) compared with exercise participants (2687 N; 95% CI, 2590 to 2784, pairwise difference [Δ](exercise vs diet )= 200 N; 95% CI, 55 to 345; P = .007). Concentrations of IL-6 were lower in diet + exercise (2.7 pg/mL; 95% CI, 2.5 to 3.0) and diet participants (2.7 pg/mL; 95% CI, 2.4 to 3.0) compared with exercise participants (3.1 pg/mL; 95% CI, 2.9 to 3.4; Δ(exercise vs diet + exercise) = 0.39 pg/mL; 95% CI, -0.03 to 0.81; P = .007; Δ(exercise vs diet )= 0.43 pg/mL; 95% CI, 0.01 to 0.85, P = .006). The diet + exercise group had less pain (3.6; 95% CI, 3.2 to 4.1) and better function (14.1; 95% CI, 12.6 to 15.6) than both the diet group (4.8; 95% CI, 4.3 to 5.2) and exercise group (4.7; 95% CI, 4.2 to 5.1, Δ(exercise vs diet + exercise) = 1.02; 95% CI, 0.33 to 1.71; P(pain) = .004; 18.4; 95% CI, 16.9 to 19.9; Δ(exercise vs diet + exercise), 4.29; 95% CI, 2.07 to 6.50; P(function )< .001). The diet + exercise group (44.7; 95% CI, 43.4 to 46.0) also had better physical health-related quality of life scores than the exercise group (41.9; 95% CI, 40.5 to 43.2; Δ(exercise vs diet + exercise) = -2.81; 95% CI, -4.76 to -0.86; P = .005). CONCLUSIONS AND RELEVANCE: Among overweight and obese adults with knee OA, after 18 months, participants in the diet + exercise and diet groups had more weight loss and greater reductions in IL-6 levels than those in the exercise group; those in the diet group had greater reductions in knee compressive force than those in the exercise group. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT00381290.


Assuntos
Dieta Redutora , Terapia por Exercício , Obesidade/complicações , Osteoartrite do Joelho/fisiopatologia , Osteoartrite do Joelho/terapia , Sobrepeso/complicações , Idoso , Biomarcadores/sangue , Fenômenos Biomecânicos , Índice de Massa Corporal , Feminino , Humanos , Inflamação , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/complicações , Osteoartrite do Joelho/imunologia , Medição da Dor , Qualidade de Vida , Autorrelato , Método Simples-Cego , Resultado do Tratamento , Redução de Peso , Suporte de Carga
20.
Arthritis Rheum ; 65(6): 1561-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23460186

RESUMO

OBJECTIVE: Matrix fragments, including fibronectin (FN) fragments, accumulate during the development of osteoarthritis (OA), stimulating the production of chondrocyte matrix metalloproteinase (MMP). The objective of this study was to determine the role of the small GTPase Rac1 in chondrocyte signaling stimulated by FN fragments, which results in MMP-13 production. METHODS: Normal human cartilage was obtained from tissue donors and OA cartilage from knee arthroplasty specimens. Rac1 activity was modulated with a chemical inhibitor, by knockdown with small interfering RNA (siRNA), or with constitutively active Rac or dominant-negative Rac adenovirus. Cells were treated with FN fragments, with or without epidermal growth factor (EGF) or transforming growth factor α (TGFα), which are known activators of Rac. Rac1 activity was measured with a colorimetric activity enzyme-linked immunosorbent assay, a pulldown assay, and immunostaining with a monoclonal antibody against active Rac. RESULTS: Chemical inhibition of Rac1, as well as knockdown by siRNA and expression of dominant-negative Rac, blocked FN fragment-stimulated MMP-13 production, while expression of constitutively active Rac increased MMP-13 production. Inhibition of Rho-associated kinase had no effect. EGF and TGFα, but not FN fragments, increased Rac1 activity and promoted the increase in MMP-13 above that achieved by stimulation with FN fragments alone. Active Rac was detected in OA cartilage by immunostaining. CONCLUSION: Rac1 is required for FN fragment-induced signaling that results in increased MMP-13 production. EGF receptor ligands, which activate Rac, can promote this effect. The presence of active Rac in OA cartilage and the ability of Rac to stimulate MMP-13 production suggest that it could play a role in the cartilage matrix destruction seen in OA.


Assuntos
Cartilagem Articular/enzimologia , Condrócitos/enzimologia , Fibronectinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Osteoartrite/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Células Cultivadas , Humanos , Immunoblotting , Imuno-Histoquímica , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA