Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(7): 114395, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38941187

RESUMO

Macrophages play crucial roles in organ-specific functions and homeostasis. In the adrenal gland, macrophages closely associate with sinusoidal capillaries in the aldosterone-producing zona glomerulosa. We demonstrate that macrophages preserve capillary specialization and modulate aldosterone secretion. Using macrophage-specific deletion of VEGF-A, single-cell transcriptomics, and functional phenotyping, we found that the loss of VEGF-A depletes PLVAP+ fenestrated endothelial cells in the zona glomerulosa, leading to increased basement membrane collagen IV deposition and subendothelial fibrosis. This results in increased aldosterone secretion, called "haptosecretagogue" signaling. Human aldosterone-producing adenomas also show capillary rarefaction and basement membrane thickening. Mice with myeloid cell-specific VEGF-A deletion exhibit elevated serum aldosterone, hypokalemia, and hypertension, mimicking primary aldosteronism. These findings underscore macrophage-to-endothelial cell signaling as essential for endothelial cell specialization, adrenal gland function, and blood pressure regulation, with broader implications for other endocrine organs.


Assuntos
Glândulas Suprarrenais , Aldosterona , Pressão Sanguínea , Células Endoteliais , Macrófagos , Animais , Macrófagos/metabolismo , Aldosterona/metabolismo , Células Endoteliais/metabolismo , Camundongos , Humanos , Glândulas Suprarrenais/metabolismo , Glândulas Suprarrenais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Zona Glomerulosa/metabolismo , Zona Glomerulosa/patologia , Masculino , Hiperaldosteronismo/metabolismo , Hiperaldosteronismo/patologia , Hiperaldosteronismo/genética , Camundongos Endogâmicos C57BL
2.
Am J Physiol Renal Physiol ; 326(2): F285-F299, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38096266

RESUMO

Vasopressin regulates water homeostasis via the V2 receptor in the kidney at least in part through protein kinase A (PKA) activation. Vasopressin, through an unknown pathway, upregulates the activity and phosphorylation of Na+-Cl- cotransporter (NCC) and Na+-K+-2Cl- cotransporter 2 (NKCC2) by Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), which are regulated by the with-no-lysine kinase (WNK) family. Phosphorylation of WNK4 at PKA consensus motifs may be involved. Inhibitor 1 (I1), a protein phosphatase 1 (PP1) inhibitor, may also play a role. In human embryonic kidney (HEK)-293 cells, we assessed the phosphorylation of WNK4, SPAK, NCC, or NKCC2 in response to forskolin or desmopressin. WNK4 and cotransporter phosphorylation were studied in desmopressin-infused WNK4-/- mice and in tubule suspensions. In HEK-293 cells, only wild-type WNK4 but not WNK1, WNK3, or a WNK4 mutant lacking PKA phosphorylation motifs could upregulate SPAK or cotransporter phosphorylation in response to forskolin or desmopressin. I1 transfection maximized SPAK phosphorylation in response to forskolin in the presence of WNK4 but not of mutant WNK4 lacking PP1 regulation. We observed direct PP1 regulation of NKCC2 dephosphorylation but not of NCC or SPAK in the absence of WNK4. WNK4-/- mice with desmopressin treatment did not increase SPAK/OSR1, NCC, or NKCC2 phosphorylation. In stimulated tubule suspensions from WNK4-/- mice, upregulation of pNKCC2 was reduced, whereas upregulation of SPAK phosphorylation was absent. These findings suggest that WNK4 is a central node in which kinase and phosphatase signaling converge to connect cAMP signaling to the SPAK/OSR1-NCC/NKCC2 pathway.NEW & NOTEWORTHY With-no-lysine kinases regulate the phosphorylation and activity of the Na+-Cl- and Na+-K+-2Cl- cotransporters. This pathway is modulated by arginine vasopressin (AVP). However, the link between AVP and WNK signaling remains unknown. Here, we show that AVP activates WNK4 through increased phosphorylation at putative protein kinase A-regulated sites and decreases its dephosphorylation by protein phosphatase 1. This work increases our understanding of the signaling pathways mediating AVP actions in the kidney.


Assuntos
Arginina Vasopressina , Proteínas Serina-Treonina Quinases , Camundongos , Humanos , Animais , Fosforilação , Proteínas Serina-Treonina Quinases/metabolismo , Células HEK293 , Arginina Vasopressina/metabolismo , Cotransportadores de K e Cl- , Desamino Arginina Vasopressina , Colforsina , Proteína Fosfatase 1/metabolismo , Rim/metabolismo , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo
3.
J Biol Chem ; 300(1): 105480, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37992803

RESUMO

The bone-derived hormone fibroblast growth factor-23 (FGF23) has recently received much attention due to its association with chronic kidney disease and cardiovascular disease progression. Extracellular sodium concentration ([Na+]) plays a significant role in bone metabolism. Hyponatremia (lower serum [Na+]) has recently been shown to be independently associated with FGF23 levels in patients with chronic systolic heart failure. However, nothing is known about the direct impact of [Na+] on FGF23 production. Here, we show that an elevated [Na+] (+20 mM) suppressed FGF23 formation, whereas low [Na+] (-20 mM) increased FGF23 synthesis in the osteoblast-like cell lines UMR-106 and MC3T3-E1. Similar bidirectional changes in FGF23 abundance were observed when osmolality was altered by mannitol but not by urea, suggesting a role of tonicity in FGF23 formation. Moreover, these changes in FGF23 were inversely proportional to the expression of NFAT5 (nuclear factor of activated T cells-5), a transcription factor responsible for tonicity-mediated cellular adaptations. Furthermore, arginine vasopressin, which is often responsible for hyponatremia, did not affect FGF23 production. Next, we performed a comprehensive and unbiased RNA-seq analysis of UMR-106 cells exposed to low versus high [Na+], which revealed several novel genes involved in cellular adaptation to altered tonicity. Additional analysis of cells with Crisp-Cas9-mediated NFAT5 deletion indicated that NFAT5 controls numerous genes associated with FGF23 synthesis, thereby confirming its role in [Na+]-mediated FGF23 regulation. In line with these in vitro observations, we found that hyponatremia patients have higher FGF23 levels. Our results suggest that [Na+] is a critical regulator of FGF23 synthesis.


Assuntos
Fator de Crescimento de Fibroblastos 23 , Sódio , Humanos , Fator de Crescimento de Fibroblastos 23/genética , Fator de Crescimento de Fibroblastos 23/metabolismo , Hiponatremia/fisiopatologia , Insuficiência Renal Crônica/fisiopatologia , Sódio/metabolismo , Sódio/farmacologia , Linhagem Celular Tumoral , Linhagem Celular , Animais , Camundongos , Camundongos Endogâmicos C57BL , Arginina Vasopressina/metabolismo , Osteoblastos/citologia , Osteoblastos/efeitos dos fármacos , Osteoblastos/metabolismo , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Ratos
4.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37310791

RESUMO

The mineralocorticoid aldosterone, secreted by the adrenal zona glomerulosa (ZG), is critical for life, maintaining ion homeostasis and blood pressure. Therapeutic inhibition of protein phosphatase 3 (calcineurin, Cn) results in inappropriately low plasma aldosterone levels despite concomitant hyperkalemia and hyperreninemia. We tested the hypothesis that Cn participates in the signal transduction pathway regulating aldosterone synthesis. Inhibition of Cn with tacrolimus abolished the potassium-stimulated (K+-stimulated) expression of aldosterone synthase, encoded by CYP11B2, in the NCI-H295R human adrenocortical cell line as well as ex vivo in mouse and human adrenal tissue. ZG-specific deletion of the regulatory Cn subunit CnB1 diminished Cyp11b2 expression in vivo and disrupted K+-mediated aldosterone synthesis. Phosphoproteomics analysis identified nuclear factor of activated T cells, cytoplasmic 4 (NFATC4), as a target for Cn-mediated dephosphorylation. Deletion of NFATC4 impaired K+-dependent stimulation of CYP11B2 expression and aldosterone production while expression of a constitutively active form of NFATC4 increased expression of CYP11B2 in NCI-H295R cells. Chromatin immunoprecipitation revealed NFATC4 directly regulated CYP11B2 expression. Thus, Cn controls aldosterone production via the Cn/NFATC4 pathway. Inhibition of Cn/NFATC4 signaling may explain low plasma aldosterone levels and hyperkalemia in patients treated with tacrolimus, and the Cn/NFATC4 pathway may provide novel molecular targets to treat primary aldosteronism.


Assuntos
Aldosterona , Calcineurina , Hiperpotassemia , Fatores de Transcrição NFATC , Animais , Humanos , Camundongos , Aldosterona/metabolismo , Calcineurina/metabolismo , Citocromo P-450 CYP11B2/genética , Fatores de Transcrição NFATC/genética , Tacrolimo/farmacologia
5.
J Am Soc Nephrol ; 34(6): 1019-1038, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36890646

RESUMO

SIGNIFICANCE STATEMENT: Rapid renal responses to ingested potassium are essential to prevent hyperkalemia and also play a central role in blood pressure regulation. Although local extracellular K + concentration in kidney tissue is increasingly recognized as an important regulator of K + secretion, the underlying mechanisms that are relevant in vivo remain controversial. To assess the role of the signaling kinase mTOR complex-2 (mTORC2), the authors compared the effects of K + administered by gavage in wild-type mice and knockout mice with kidney tubule-specific inactivation of mTORC2. They found that mTORC2 is rapidly activated to trigger K + secretion and maintain electrolyte homeostasis. Downstream targets of mTORC2 implicated in epithelial sodium channel regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. These findings offer insight into electrolyte physiologic and regulatory mechanisms. BACKGROUND: Increasing evidence implicates the signaling kinase mTOR complex-2 (mTORC2) in rapid renal responses to changes in plasma potassium concentration [K + ]. However, the underlying cellular and molecular mechanisms that are relevant in vivo for these responses remain controversial. METHODS: We used Cre-Lox-mediated knockout of rapamycin-insensitive companion of TOR (Rictor) to inactivate mTORC2 in kidney tubule cells of mice. In a series of time-course experiments in wild-type and knockout mice, we assessed urinary and blood parameters and renal expression and activity of signaling molecules and transport proteins after a K + load by gavage. RESULTS: A K + load rapidly stimulated epithelial sodium channel (ENaC) processing, plasma membrane localization, and activity in wild-type, but not in knockout, mice. Downstream targets of mTORC2 implicated in ENaC regulation (SGK1 and Nedd4-2) were concomitantly phosphorylated in wild-type, but not knockout, mice. We observed differences in urine electrolytes within 60 minutes, and plasma [K + ] was greater in knockout mice within 3 hours of gavage. Renal outer medullary potassium (ROMK) channels were not acutely stimulated in wild-type or knockout mice, nor were phosphorylation of other mTORC2 substrates (PKC and Akt). CONCLUSIONS: The mTORC2-SGK1-Nedd4-2-ENaC signaling axis is a key mediator of rapid tubule cell responses to increased plasma [K + ] in vivo . The effects of K + on this signaling module are specific, in that other downstream mTORC2 targets, such as PKC and Akt, are not acutely affected, and ROMK and Large-conductance K + (BK) channels are not activated. These findings provide new insight into the signaling network and ion transport systems that underlie renal responses to K +in vivo .


Assuntos
Proteínas Imediatamente Precoces , Potássio , Camundongos , Animais , Fosforilação , Potássio/metabolismo , Canais Epiteliais de Sódio/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Potássio na Dieta , Serina-Treonina Quinases TOR/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Rim/metabolismo , Proteínas de Transporte/metabolismo , Camundongos Knockout , Transporte de Íons
6.
Cell Stem Cell ; 29(10): 1459-1474.e9, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36113462

RESUMO

Fibrosis is the final path of nearly every form of chronic disease, regardless of the pathogenesis. Upon chronic injury, activated, fibrogenic fibroblasts deposit excess extracellular matrix, and severe tissue fibrosis can occur in virtually any organ. However, antifibrotic therapies that target fibrogenic cells, while sparing homeostatic fibroblasts in healthy tissues, are limited. We tested whether specific immunization against endogenous proteins, strongly expressed in fibrogenic cells but highly restricted in quiescent fibroblasts, can elicit an antigen-specific cytotoxic T cell response to ameliorate organ fibrosis. In silico epitope prediction revealed that activation of the genes Adam12 and Gli1 in profibrotic cells and the resulting "self-peptides" can be exploited for T cell vaccines to ablate fibrogenic cells. We demonstrate the efficacy of a vaccination approach to mount CD8+ T cell responses that reduce fibroblasts and fibrosis in the liver and lungs in mice. These results provide proof of principle for vaccination-based immunotherapies to treat fibrosis.


Assuntos
Fibroblastos , Pulmão , Animais , Epitopos/metabolismo , Fibroblastos/metabolismo , Fibrose , Imunoterapia , Fígado/patologia , Pulmão/metabolismo , Camundongos , Vacinação , Proteína GLI1 em Dedos de Zinco/metabolismo
7.
Development ; 148(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34739029

RESUMO

Genome editing simplifies the generation of new animal models for congenital disorders. However, the detailed and unbiased phenotypic assessment of altered embryonic development remains a challenge. Here, we explore how deep learning (U-Net) can automate segmentation tasks in various imaging modalities, and we quantify phenotypes of altered renal, neural and craniofacial development in Xenopus embryos in comparison with normal variability. We demonstrate the utility of this approach in embryos with polycystic kidneys (pkd1 and pkd2) and craniofacial dysmorphia (six1). We highlight how in toto light-sheet microscopy facilitates accurate reconstruction of brain and craniofacial structures within X. tropicalis embryos upon dyrk1a and six1 loss of function or treatment with retinoic acid inhibitors. These tools increase the sensitivity and throughput of evaluating developmental malformations caused by chemical or genetic disruption. Furthermore, we provide a library of pre-trained networks and detailed instructions for applying deep learning to the reader's own datasets. We demonstrate the versatility, precision and scalability of deep neural network phenotyping on embryonic disease models. By combining light-sheet microscopy and deep learning, we provide a framework for higher-throughput characterization of embryonic model organisms. This article has an associated 'The people behind the papers' interview.


Assuntos
Aprendizado Profundo , Desenvolvimento Embrionário/genética , Fenótipo , Animais , Anormalidades Craniofaciais/embriologia , Anormalidades Craniofaciais/genética , Anormalidades Craniofaciais/patologia , Modelos Animais de Doenças , Processamento de Imagem Assistida por Computador , Camundongos , Microscopia , Mutação , Redes Neurais de Computação , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/patologia , Doenças Renais Policísticas/embriologia , Doenças Renais Policísticas/genética , Doenças Renais Policísticas/patologia , Proteínas de Xenopus/genética , Xenopus laevis
8.
J Am Soc Nephrol ; 32(12): 3130-3145, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34615708

RESUMO

BACKGROUND: Active sodium reabsorption is the major factor influencing renal oxygen consumption and production of reactive oxygen species (ROS). Increased sodium reabsorption uses more oxygen, which may worsen medullary hypoxia and produce more ROS via enhanced mitochondrial ATP synthesis. Both mechanisms may activate the hypoxia-inducible factor (HIF) pathway. Because the collecting duct is exposed to low oxygen pressure and variations of active sodium transport, we assessed whether the HIF pathway controls epithelial sodium channel (ENaC)-dependent sodium transport. METHODS: We investigated HIF's effect on ENaC expression in mpkCCD cl4 cells (a model of collecting duct principal cells) using real-time PCR and western blot and ENaC activity by measuring amiloride-sensitive current. We also assessed the effect of hypoxia and sodium intake on abundance of kidney sodium transporters in wild-type and inducible kidney tubule-specific Hif1α knockout mice. RESULTS: In cultured cells, activation of the HIF pathway by dimethyloxalylglycine or hypoxia inhibited sodium transport and decreased expression of ß ENaC and γ ENaC, as well as of Na,K-ATPase. HIF1 α silencing increased ß ENaC and γ ENaC expression and stimulated sodium transport. A constitutively active mutant of HIF1 α produced the opposite effect. Aldosterone and inhibition of the mitochondrial respiratory chain slowly activated the HIF pathway, suggesting that ROS may also activate HIF. Decreased γ ENaC abundance induced by hypoxia in normal mice was abolished in Hif1α knockout mice. Similarly, Hif1α knockout led to increased γ ENaC abundance under high sodium intake. CONCLUSIONS: This study reveals that γ ENaC expression and activity are physiologically controlled by the HIF pathway, which may represent a negative feedback mechanism to preserve oxygenation and/or prevent excessive ROS generation under increased sodium transport.


Assuntos
Túbulos Renais Coletores , Sódio na Dieta , Camundongos , Animais , Canais Epiteliais de Sódio/metabolismo , Túbulos Renais Coletores/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Sódio na Dieta/farmacologia , Camundongos Knockout
9.
Pflugers Arch ; 473(1): 79-93, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33200256

RESUMO

The renal distal convoluted tubule (DCT) is critical for the fine-tuning of urinary ion excretion and the control of blood pressure. Ion transport along the DCT is tightly controlled by posttranscriptional mechanisms including a complex interplay of kinases, phosphatases, and ubiquitin ligases. Previous work identified the transcription factor Prox-1 as a gene significantly enriched in the DCT of adult mice. To test if Prox-1 contributes to the transcriptional regulation of DCT function and structure, we developed a novel mouse model (NCCcre:Prox-1flox/flox) for an inducible deletion of Prox-1 specifically in the DCT. The deletion of Prox-1 had no obvious impact on DCT structure and growth independent whether the deletion was achieved in newborn or adult mice. Furthermore, DCT-specific Prox-1 deficiency did not alter DCT-proliferation in response to loop diuretic treatment. Likewise, the DCT-specific deletion of Prox-1 did not cause other gross phenotypic abnormalities. Body weight, urinary volume, Na+ and K+ excretion as well as plasma Na+, K+, and aldosterone levels were similar in Prox-1DCTKO and Prox-1DCTCtrl mice. However, Prox-1DCTKO mice exhibited a significant hypomagnesemia with a profound downregulation of the DCT-specific apical Mg2+ channel TRPM6 and the NaCl cotransporter (NCC) at both mRNA and protein levels. The expression of other proteins involved in distal tubule Mg2+ and Na+ handling was not affected. Thus, Prox-1 is a DCT-enriched transcription factor that does not control DCT growth but contributes to the molecular control of DCT-dependent Mg2+ homeostasis in the adult kidney.


Assuntos
Regulação da Expressão Gênica/fisiologia , Proteínas de Homeodomínio/metabolismo , Túbulos Renais Distais/efeitos dos fármacos , Membro 1 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Aquaporina 2/genética , Aquaporina 2/metabolismo , Deleção de Genes , Proteínas de Homeodomínio/genética , Túbulos Renais Distais/citologia , Magnésio/metabolismo , Camundongos , Potássio/metabolismo , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canais de Cátion TRPM/genética , Proteínas Supressoras de Tumor/genética
10.
FASEB J ; 34(2): 2625-2640, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31908048

RESUMO

Primary cilia are nonmotile sensory organelles found on the surface of almost all kidney tubule epithelial cells. Being exposed to the tubular lumen, primary cilia are thought to be chemo- and mechanosensors of luminal composition and flux, respectively. We hypothesized that, Na+ transport and primary cilia exist in a sensory functional connection in mature renal tubule epithelial cells. Our results demonstrate that primary cilium length is reduced in mineralocorticoid receptor (MR) knockout (KO) mice in a cell autonomous manner along the aldosterone-sensitive distal nephron (ADSN) compared with wild type (as µm ± SEM; 3.1 ± 0.2 vs 4.0 ± 0.1). In mouse cortical collecting duct (mCCD)cl1 cells, which are a model of collecting duct (CD) principal cells, changes in Na+ transport intensity were found to mediate primary cilium length in response to aldosterone (as µm ± SEM: control: 2.7 ± 0.9 vs aldosterone treated: 3.8 ± 0.8). Cilium length was positively correlated with the availability of IFT88, a major intraflagellar anterograde transport complex B component, which is stabilized in response to exposure to aldosterone treatment. This suggests that the abundance of IFT88 is a regulated, rate limiting factor in the elongation of primary cilia. As previously observed in vivo, aldosterone treatment increased cell volume of cultured CD principal cells. Knockdown of IFT88 prevents ciliogenesis and inhibits the adaptive increase in cell size that was observed in response to aldosterone treatment. In conclusion, our results reveal a functional connection between Na+ transport, primary cilia, and cell size, which may play a key role in the morphological and functional adaptation of the CD to sustained changes in active Na+ reabsorption due to variations in aldosterone secretion.


Assuntos
Aldosterona/farmacologia , Transporte Biológico/efeitos dos fármacos , Cílios/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Túbulos Renais Coletores/efeitos dos fármacos , Aldosterona/metabolismo , Animais , Cílios/metabolismo , Células Epiteliais/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Túbulos Renais Coletores/citologia , Camundongos , Néfrons/efeitos dos fármacos , Receptores de Mineralocorticoides/efeitos dos fármacos , Receptores de Mineralocorticoides/metabolismo , Sódio/metabolismo
11.
Physiol Rep ; 7(15): e14177, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31397090

RESUMO

The mineralocorticoid hormone aldosterone plays a crucial role in the control of Na+ and K+ balance, blood volume, and arterial blood pressure, by acting in the aldosterone-sensitive distal nephron (ASDN) and stimulating a complex transcriptional, translational, and cellular program. Because the complexity of the aldosterone response is still not fully appreciated, we aimed at identifying new elements in this pathway. Here, we demonstrate that the expression of the proto-oncogene PIM3 (Proviral Integration Site of Moloney Murine Leukemia Virus 3), a serine/threonine kinase belonging to the calcium/calmodulin-regulated group of kinases, is stimulated by aldosterone in vitro (mCCDcl1 cells), ex vivo (mouse kidney slices), and in vivo in mice. Characterizing a germline Pim3-/- mouse model, we found that these mice have an upregulated Renin-Angiotensin-Aldosterone System (RAAS), with high circulating aldosterone and plasma renin activity levels on both standard or Na+ -deficient diet. Surprisingly, we did not observe any obvious salt-losing phenotype in Pim3 KO mice as shown by normal blood pressure, plasma and urinary electrolytes, as well as unchanged expression levels of the major Na+ transport proteins. These observations suggest that the potential effects of the loss of the Pim3 gene are physiologically compensated. Indeed, the 2 other family members of the PIM kinase family, PIM1 and PIM2 are upregulated in the kidney of Pim3-/- mice, and may therefore be involved in such compensation. In conclusion, our data demonstrate that the PIM3 kinase is a novel aldosterone-induced protein, but its precise role in aldosterone-dependent renal homeostasis remains to be determined.


Assuntos
Aldosterona/farmacologia , Rim/efeitos dos fármacos , Néfrons/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Rim/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Néfrons/efeitos dos fármacos , Proteínas Nucleares/genética , Fenótipo , Sódio/metabolismo , Fatores de Transcrição/genética
12.
Sci Rep ; 9(1): 4750, 2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30894603

RESUMO

Although structural nuclear pore proteins (nucleoporins) are seemingly required in every cell type to assemble a functional nuclear transport machinery, mutations or deregulation of a subset of them have been associated with specific human hereditary diseases. In particular, previous genetic studies of patients with nephrotic syndrome identified mutations in Nup107 that impaired the expression or the localization of its direct partner at nuclear pores, Nup133. In the present study, we characterized the zebrafish nup133 orthologous gene and its expression pattern during larval development. Using a morpholino-mediated gene knockdown, we show that partial depletion of Nup133 in zebrafish larvae leads to the formation of kidney cysts, a phenotype that can be rescued by co-injection of wild type mRNA. Analysis of different markers for tubular and glomerular development shows that the overall kidney development is not affected by nup133 knockdown. Likewise, no gross defect in nuclear pore complex assembly was observed in these nup133 morphants. On the other hand, nup133 downregulation results in proteinuria and moderate foot process effacement, mimicking some of the abnormalities typically featured by patients with nephrotic syndrome. These data indicate that nup133 is a new gene required for proper glomerular structure and function in zebrafish.


Assuntos
Nefropatias/genética , Glomérulos Renais/patologia , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Proteínas de Peixe-Zebra/genética , Animais , Técnicas de Silenciamento de Genes , Nefropatias/patologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Síndrome Nefrótica/etiologia , Proteinúria/etiologia , Peixe-Zebra
13.
J Physiol ; 595(22): 6905-6922, 2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28940314

RESUMO

KEY POINTS: Body Na+ content is tightly controlled by regulated urinary Na+ excretion. The intrarenal mechanisms mediating adaptation to variations in dietary Na+ intake are incompletely characterized. We confirmed and expanded observations in mice that variations in dietary Na+ intake do not alter the glomerular filtration rate but alter the total and cell-surface expression of major Na+ transporters all along the kidney tubule. Low dietary Na+ intake increased Na+ reabsorption in the proximal tubule and decreased it in more distal kidney tubule segments. High dietary Na+ intake decreased Na+ reabsorption in the proximal tubule and increased it in distal segments with lower energetic efficiency. The abundance of apical transporters and Na+ delivery are the main determinants of Na+ reabsorption along the kidney tubule. Tubular O2 consumption and the efficiency of sodium reabsorption are dependent on sodium diet. ABSTRACT: Na+ excretion by the kidney varies according to dietary Na+ intake. We undertook a systematic study of the effects of dietary salt intake on glomerular filtration rate (GFR) and tubular Na+ reabsorption. We examined the renal adaptive response in mice subjected to 7 days of a low sodium diet (LSD) containing 0.01% Na+ , a normal sodium diet (NSD) containing 0.18% Na+ and a moderately high sodium diet (HSD) containing 1.25% Na+ . As expected, LSD did not alter measured GFR and increased the abundance of total and cell-surface NHE3, NKCC2, NCC, α-ENaC and cleaved γ-ENaC compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption increased in the proximal tubule but decreased in the distal nephron because of diminished Na+ delivery. This prediction was confirmed by the natriuretic response to diuretics targeting the thick ascending limb, the distal convoluted tubule or the collecting system. On the other hand, HSD did not alter measured GFR but decreased the abundance of the aforementioned transporters compared to NSD. Mathematical modelling predicted that tubular Na+ reabsorption decreased in the proximal tubule but increased in distal segments with lower transport efficiency with respect to O2 consumption. This prediction was confirmed by the natriuretic response to diuretics. The activity of the metabolic sensor adenosine monophosphate-activated protein kinase (AMPK) was related to the changes in tubular Na+ reabsorption. Our data show that fractional Na+ reabsorption is distributed differently according to dietary Na+ intake and induces changes in tubular O2 consumption and sodium transport efficiency.


Assuntos
Túbulos Renais Proximais/metabolismo , Eliminação Renal , Reabsorção Renal , Sódio na Dieta/metabolismo , Adaptação Fisiológica , Animais , Taxa de Filtração Glomerular , Túbulos Renais Proximais/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxigênio/metabolismo , Sódio na Dieta/farmacocinética
14.
Pflugers Arch ; 469(7-8): 859-867, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28656378

RESUMO

Understanding the molecular basis of the complex regulatory networks controlling renal ion transports is of major physiological and clinical importance. In this study, we aimed to identify evolutionarily conserved critical players in the function of the renal distal convoluted tubule (DCT) by a comparative transcriptomic approach. We generated a transgenic zebrafish line with expression of the red fluorescent mCherry protein under the control of the zebrafish DCT-specific promoter of the thiazide-sensitive NaCl cotransporter (NCC). The mCherry expression was then used to isolate from the zebrafish mesonephric kidneys the distal late (DL) segments, the equivalent of the mammalian DCT, for subsequent RNA-seq analysis. We next compared this zebrafish DL transcriptome to the previously established mouse DCT transcriptome and identified a subset of gene products significantly enriched in both the teleost DL and the mammalian DCT, including SLCs and nuclear transcription factors. Surprisingly, several of the previously described regulators of NCC (e.g., SPAK, KLHL3, ppp1r1a) in the mouse were not found enriched in the zebrafish DL. Nevertheless, the zebrafish DL expressed enriched levels of related homologues. Functional knockdown of one of these genes, ppp1r1b, reduced the phosphorylation of NCC in the zebrafish pronephros, similar to what was seen previously in knockout mice for its homologue, Ppp1r1a. The present work is the first report on global gene expression profiling in a specific nephron portion of the zebrafish kidney, an increasingly used model system for kidney research. Our study suggests that comparative analysis of gene expression between phylogenetically distant species may be an effective approach to identify novel regulators of renal function.


Assuntos
Sequência Conservada , Túbulos Renais Distais/metabolismo , Transcriptoma , Animais , Fosfoproteína 32 Regulada por cAMP e Dopamina/genética , Fosfoproteína 32 Regulada por cAMP e Dopamina/metabolismo , Evolução Molecular , Camundongos , Receptores de Droga/genética , Receptores de Droga/metabolismo , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
15.
Mol Cell Endocrinol ; 450: 74-82, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28454724

RESUMO

Stimulation of the mineralocorticoid receptor (MR) by aldosterone controls several physiological parameters including blood pressure, inflammation or metabolism. We previously showed that MR turnover constitutes a crucial regulatory step in the responses of renal epithelial cells to aldosterone. Here, we identified Protein Phosphatase 1 alpha (PP1α), as a novel cytoplasmic binding partner of MR that promotes the receptor activity. The RT-PCR expression mapping of PP1α reveals a high expression in the kidney, particularly in the distal part of the nephron. At the molecular level, we demonstrate that PP1α inhibits the ubiquitin ligase Mdm2 by dephosphorylation, preventing its interaction with MR. This results in the accumulation of the receptor due to reduction of its proteasomal degradation and consequently a greater aldosterone-induced Na+ uptake by renal cells. Thus, our findings describe an original mechanism involving a phosphatase in the regulation of aldosterone signaling and provide new and important insights into the molecular mechanism underlying the MR turnover.


Assuntos
Aldosterona/metabolismo , Rim/metabolismo , Proteína Fosfatase 1/metabolismo , Receptores de Mineralocorticoides/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica/efeitos dos fármacos , Domínios Proteicos , Estabilidade Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Receptores de Mineralocorticoides/química , Transdução de Sinais/efeitos dos fármacos , Sódio/metabolismo , Transcrição Gênica/efeitos dos fármacos
16.
J Physiol ; 595(8): 2535-2550, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28120456

RESUMO

KEY POINTS: Hypercalcaemia can occur under various pathological conditions, such as primary hyperparathyroidism, malignancy or granulomatosis, and it induces natriuresis and polyuria in various species via an unknown mechanism. A previous study demonstrated that hypercalcaemia induced by vitamin D in rats increased endothelin (ET)-1 expression in the distal nephron, which suggests the involvement of the ET system in hypercalcaemia-induced effects. In the present study, we demonstrate that, during vitamin D-induced hypercalcaemia, the activation of ET system by increased ET-1 is responsible for natriuresis but not for polyuria. Vitamin D-treated hypercalcaemic mice showed a blunted response to amiloride, suggesting that epithelial sodium channel function is inhibited. We have identified an original pathway that specifically mediates the effects of vitamin D-induced hypercalcaemia on sodium handling in the distal nephron without affecting water handling. ABSTRACT: Acute hypercalcaemia increases urinary sodium and water excretion; however, the underlying molecular mechanism remains unclear. Because vitamin D-induced hypercalcaemia increases the renal expression of endothelin (ET)-1, we hypothesized that ET-1 mediates the effects of hypercalcaemia on renal sodium and water handling. Hypercalcaemia was induced in 8-week-old, parathyroid hormone-supplemented, male mice by oral administration of dihydrotachysterol (DHT) for 3 days. DHT-treated mice became hypercalcaemic and displayed increased urinary water and sodium excretion compared to controls. mRNA levels of ET-1 and the transcription factors CCAAT-enhancer binding protein ß and δ were specifically increased in the distal convoluted tubule and downstream segments in DHT-treated mice. To examine the role of the ET system in hypercalcaemia-induced natriuresis and polyuria, mice were treated with the ET-1 receptor antagonist macitentan, with or without DHT. Mice treated with both macitentan and DHT displayed hypercalcaemia and polyuria similar to that in mice treated with DHT alone; however, no increase in urinary sodium excretion was observed. To identify the affected sodium transport mechanism, we assessed the response to various diuretics in control and DHT-treated hypercalcaemic mice. Amiloride, an inhibitor of the epithelial sodium channel (ENaC), increased sodium excretion to a lesser extent in DHT-treated mice compared to control mice. Mice treated with either macitentan+DHT or macitentan alone had a similar response to amiloride. In summary, vitamin D-induced hypercalcaemia increases the renal production of ET-1 and decreases ENaC activity, which is probably responsible for the rise in urinary sodium excretion but not for polyuria.


Assuntos
Endotelina-1/fisiologia , Hipercalcemia/metabolismo , Natriurese/fisiologia , Poliúria/metabolismo , Vitamina D/toxicidade , Doença Aguda , Animais , Linhagem Celular Transformada , Hipercalcemia/induzido quimicamente , Hipercalcemia/urina , Túbulos Renais/efeitos dos fármacos , Túbulos Renais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Natriurese/efeitos dos fármacos , Poliúria/urina
17.
Pflugers Arch ; 468(5): 849-58, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26898302

RESUMO

Aldosterone binds to the mineralocorticoid receptor (MR) and increases renal Na(+) reabsorption via up-regulation of the epithelial Na(+) channel (ENaC) and the Na(+)-K(+)-ATPase in the collecting system (CS) and possibly also via the NaCl cotransporter (NCC) in the distal convoluted tubule (DCT). However, whether aldosterone directly regulates NCC via MR or indirectly through systemic alterations remains controversial. We used mice with deletion of MR in ∼20 % of renal tubule cells (MR/X mice), in which MR-positive (MR(wt)) and -negative (MR(ko)) cells can be studied side-by-side in the same physiological context. Adult MR/X mice showed similar mRNA and protein levels of renal ion transport proteins to control mice. In MR/X mice, no differences in NCC abundance and phosphorylation was seen between MR(wt) and MR(ko) cells and dietary Na(+) restriction up-regulated NCC to similar extent in both groups of cells. In contrast, MR(ko) cells in the CS did not show any detectable alpha-ENaC abundance or apical targeting of ENaC neither on control diet nor in response to dietary Na(+) restriction. Furthermore, Na(+)-K(+)-ATPase expression was unaffected in MR(ko) cells of the DCT, while it was lost in MR(ko) cells of the CS. In conclusion, MR is crucial for ENaC and Na(+)-K(+)-ATPase regulation in the CS, but is dispensable for NCC and Na(+)-K(+)-ATPase regulation in the DCT.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Deleção de Genes , Receptores de Mineralocorticoides/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Aldosterona/metabolismo , Animais , Feminino , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Mineralocorticoides/genética , Sódio/metabolismo , Cloreto de Sódio na Dieta/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo
18.
Pflugers Arch ; 468(5): 895-908, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26762397

RESUMO

Aldosterone is the main mineralocorticoid hormone controlling sodium balance, fluid homeostasis, and blood pressure by regulating sodium reabsorption in the aldosterone-sensitive distal nephron (ASDN). Germline loss-of-function mutations of the mineralocorticoid receptor (MR) in humans and in mice lead to the "renal" form of type 1 pseudohypoaldosteronism (PHA-1), a case of aldosterone resistance characterized by salt wasting, dehydration, failure to thrive, hyperkalemia, and metabolic acidosis. To investigate the importance of MR in adult epithelial cells, we generated nephron-specific MR knockout mice (MR(Pax8/LC1)) using a doxycycline-inducible system. Under standard diet, MR(Pax8/LC1) mice exhibit inability to gain weight and significant weight loss compared to control mice. Interestingly, despite failure to thrive, MR(Pax8/LC1) mice survive but develop a severe PHA-1 phenotype with higher urinary Na(+) levels, decreased plasma Na(+), hyperkalemia, and higher levels of plasma aldosterone. This phenotype further worsens and becomes lethal under a sodium-deficient diet. Na(+)/Cl(-) co-transporter (NCC) protein expression and its phosphorylated form are downregulated in the MR(Pax8/LC1) knockouts, as well as the αENaC protein expression level, whereas the expression of glucocorticoid receptor (GR) is increased. A diet rich in Na(+) and low in K(+) does not restore plasma aldosterone to control levels but is sufficient to restore body weight, plasma, and urinary electrolytes. In conclusion, MR deletion along the nephron fully recapitulates the features of severe human PHA-1. ENaC protein expression is dependent on MR activity. Suppression of NCC under hyperkalemia predominates in a hypovolemic state.


Assuntos
Néfrons/metabolismo , Fenótipo , Pseudo-Hipoaldosteronismo/metabolismo , Receptores de Mineralocorticoides/deficiência , Aldosterona/sangue , Animais , Células Epiteliais/metabolismo , Canais Epiteliais de Sódio/genética , Canais Epiteliais de Sódio/metabolismo , Deleção de Genes , Camundongos , Potássio/sangue , Potássio/urina , Pseudo-Hipoaldosteronismo/genética , Pseudo-Hipoaldosteronismo/patologia , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo , Sódio/sangue , Sódio/urina , Simportadores de Cloreto de Sódio/genética , Simportadores de Cloreto de Sódio/metabolismo , Redução de Peso
19.
Kidney Int ; 88(5): 1047-56, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26154927

RESUMO

Podocyte dysfunction impairs the size selectivity of the glomerular filter, leading to proteinuria, hypoalbuminuria, and edema, clinically defined as nephrotic syndrome. Hereditary forms of nephrotic syndrome are linked to mutations in podocyte-specific genes. To identify genes contributing to podocyte dysfunction in acquired nephrotic syndrome, we studied human glomerular gene expression data sets for glomerular-enriched gene transcripts differentially regulated between pretransplant biopsy samples and biopsies from patients with nephrotic syndrome. Candidate genes were screened by in situ hybridization for expression in the zebrafish pronephros, an easy-to-use in vivo assay system to assess podocyte function. One glomerulus-enriched product was the Rho-GTPase binding protein, IQGAP2. Immunohistochemistry found a strong presence of IQGAP2 in normal human and zebrafish podocytes. In zebrafish larvae, morpholino-based knockdown of iqgap2 caused a mild foot process effacement of zebrafish podocytes and a cystic dilation of the urinary space of Bowman's capsule upon onset of urinary filtration. Moreover, the glomerulus of zebrafish morphants showed a glomerular permeability for injected high-molecular-weight dextrans, indicating an impaired size selectivity of the glomerular filter. Thus, IQGAP2 is a Rho-GTPase binding protein, highly abundant in human and zebrafish podocytes, which controls normal podocyte structure and function as evidenced in the zebrafish pronephros.


Assuntos
Proteínas Ativadoras de GTPase/genética , Síndrome Nefrótica/genética , Síndrome Nefrótica/fisiopatologia , Podócitos/fisiologia , Pronefro/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/genética , Proteínas Ativadoras de ras GTPase/genética , Proteínas Ativadoras de ras GTPase/metabolismo , Animais , Cápsula Glomerular/patologia , Proteínas Ativadoras de GTPase/metabolismo , Técnicas de Silenciamento de Genes , Humanos , Hibridização In Situ , Glomérulos Renais/metabolismo , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Podócitos/metabolismo , Podócitos/patologia , Pronefro/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/metabolismo
20.
J Am Soc Nephrol ; 26(11): 2765-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25788531

RESUMO

Renal ischemia and reperfusion injury causes loss of renal epithelial cell polarity and perturbations in tubular solute and fluid transport. Na(+),K(+)-ATPase, which is normally found at the basolateral plasma membrane of renal epithelial cells, is internalized and accumulates in intracellular compartments after renal ischemic injury. We previously reported that the subcellular distribution of Na(+),K(+)-ATPase is modulated by direct binding to Akt substrate of 160 kD (AS160), a Rab GTPase-activating protein that regulates the trafficking of glucose transporter 4 in response to insulin and muscle contraction. Here, we investigated the effect of AS160 on Na(+),K(+)-ATPase trafficking in response to energy depletion. We found that AS160 is required for the intracellular accumulation of Na(+),K(+)-ATPase that occurs in response to energy depletion in cultured epithelial cells. Energy depletion led to dephosphorylation of AS160 at S588, which was required for the energy depletion-induced accumulation of Na,K-ATPase in intracellular compartments. In AS160-knockout mice, the effects of renal ischemia on the distribution of Na(+),K(+)-ATPase were substantially reduced in the epithelial cells of distal segments of the renal tubules. These data demonstrate that AS160 has a direct role in linking the trafficking of Na(+),K(+)-ATPase to the energy state of renal epithelial cells.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Isquemia/patologia , Rim/patologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Biotinilação , Linhagem Celular , Citoplasma/metabolismo , Cães , Dinaminas/metabolismo , Endocitose , Células Epiteliais/citologia , Humanos , Rim/lesões , Nefropatias/metabolismo , Células Madin Darby de Rim Canino , Masculino , Camundongos , Camundongos Knockout , Microscopia de Fluorescência , Fosforilação , Transporte Proteico , RNA Interferente Pequeno/metabolismo , Traumatismo por Reperfusão , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA